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Permanent Magnet Synchronous Motor Speed Control System
Based on Fractional Order Integral Sliding Mode Control

Jun-Feng LIU†, Yuan FENG†, Zeng-Hui LI†, and Jing-Wei TANG††a), Nonmembers

SUMMARY To improve the control performance of the permanent
magnet synchronous motor speed control system, the fractional order cal-
culus theory is combined with the sliding mode control to design the frac-
tional order integral sliding mode sliding mode surface (FOISM) to im-
prove the robustness of the system. Secondly, considering the existence of
chattering phenomenon in sliding mode control, a new second-order slid-
ing mode reaching law (NSOSMRL) is designed to improve the control
accuracy of the system. Finally, the effectiveness of the proposed strategy
is demonstrated by simulation.
key words: permanent magnet synchronous motors, fractional order cal-
culus, second order sliding mode, chattering, robustness

1. Introduction

With the development of control theory, computer tech-
nology, etc., the application of advanced, intelligent con-
trol to the control of permanent magnet synchronous motor
(PMSM) has given PMSM new opportunities. Sliding mode
control (SMC) is characterized by its simple structure, ro-
bustness to uncertainties such as system parameters and ex-
ternal disturbances, and fast response, which makes it a hot
research topic when applied to the field of motor control [1].
However, its application is limited by the problem of inher-
ent chattering.

In order to reduce chattering and improve its control
performance, scholars have combined SMC with adaptive
control [2], fuzzy control [3], neural network control [4] and
so on to achieve better results, but its algorithm becomes
complex, weakening the advantages of SMC algorithm is
simple and fast response. For this reason, some scholars
have proposed integral sliding mode control (ISMC) by in-
troducing an integral term on the sliding mode surface to
improve the robustness of the system while weakening the
chattering [5]. However, it has a cumulative effect on the er-
ror, if the initial error is large or the reference signal changes
will cause the integral saturation, which will lead to the
system overshooting increases, the regulation time becomes
longer, and deteriorate the dynamic performance of the sys-
tem [6].

In sliding mode control, the discontinuity of the tradi-
tional reaching law is directly transferred to the control, and
the frequent switching causes chattering, which affects the
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system control accuracy. For this reason, a new variable ex-
ponential reaching law according to the system state change
is proposed in the literature [7] to suppress the sliding mode
chattering. However, its parameters are too many and the
tuning parameter is too cumbersome. Literature [8] applies
a second-order sliding mode reaching law to induction mo-
tor speed loop control, which suppresses chattering by plac-
ing discontinuous switching functions with large gain val-
ues in the integration term. However, the control gain of
this reaching law needs the disturbance term to be differ-
entiable, and there is a specific boundary value, the precise
value of this boundary in practical applications, it is difficult
to determine, in order to get the stable control of the system,
often selected as large as possible parameter, which results
in bringing the system damage and violent chattering [9].

In order to solve this problem, this paper combines the
fractional order calculus theory [10] with the integral slid-
ing mode control to design a fractional order integral slid-
ing mode surface, which improves the robustness and sta-
bility of the system under the premise of reducing the static
error of the system. Secondly, a new second-order slid-
ing mode reaching law is introduced to suppress the sliding
mode chattering, which further improves the control accu-
racy of the system. Finally, the effectiveness of the proposed
strategy is verified by simulation experiments.

2. Mathematical Model of PMSM

To facilitate the modeling, this paper adopts the surface-
mounted PMSM (SPMSM) with equal stator inductance
Ld = Lq = Ls, which is expressed as follows:

did
dt

= −
R
Ls

id + ωeiq +
ud

Ls

diq
dt

= −
R
Ls

iq − ωeid −
ϕ f

Ls
ωe +

uq

Ls

(1)

Where id, iq, ud, uq stands for the stator current as well as
stator voltage inside the d-q coordinate system, separately,
R is the stator resistance, ωe represents the electrical motor
angular speed; ϕ f represents magnetic flux.

For SPMSM, using the vector control method with id =

0, the formulation of motion is listed below [11]:J
dωm

dt
= Te − TL − Bωm

Te = 1.5piqϕ f

(2)
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Where TL, Te, ωm, p, B and J are the load torque, the elec-
tromagnetic torque, mechanical angular speed, the quantity
of pole pairs, damping coefficient as well as rotational iner-
tia respectively.

3. Design of Speed Controller

3.1 Design of Sliding Mode Surface

First, define the state variable as:
e = ω̂ − ω

ė = −

(
1.5piqϕ f − TL − Bω

)
J

(3)

Where ω̂ is the given speed of the motor, ω is the actual
speed of the motor, ω̂ = 30

π
ωm.

The integral sliding mode surface is [12]:

s = e + g

∫
edt (4)

Where g is the constant. Due to the cumulative effect of the
integral term on the deviation, the dynamic performance of
the control system can be deteriorated when the initial error
is large or when the integral saturation phenomenon tends
to occur when there is a sudden change in the given signal.
To solve this problem, the fractional order integral sliding
mode surface is designed as:

s = e + b Π−r
0 t e + ϑ(t) (5)

Where Π−r
0 t is fractional order integral term for eliminat-

ing the system steady state error; b are constant values;
ϑ(t) = ϑ(0) exp−t/D, D is the constant determining the rate
of convergence of ϑ(t).

The derivation of Eq. (5) is obtained:

ṡ = ė + b Π1−r
0 t e + ϑ̇(t)

= −

(
1.5piqϕ f − TL − Bω

)
J

+ b Π1−r
0 t e −

ϑ(0)
D

exp−t/D

(6)

To improve the operating quality of the system, the
speed controller is designed using the exponential reaching
law and the controller expression is given as:

iq =
2J

3pϕ f

[
b Π1−r

0 t e −
ϑ(0)

D
exp−t/D

+
TL

J
+

B
J
ω + εsign(s) + ks

] (7)

Where ε, k are constant values. From Eq. (7), it can be seen
that the iq contains discontinuous sign function, which can
cause a lot of chattering, and affect the control accuracy of
the system of the system.

3.2 Design of Reaching Law

To further improve the operation quality of the system,

the well-known second-order sliding mode reaching law
(SOSMRL), i.e., the super-twisting algorithm [13], is used
in this paper instead of the exponential reaching law, which
is expressed as follows:

ẋ = −β1||
1
2 sign(x) + y

ẏ = −β2sign(x) + σ̇
(8)

When |σ̇| ≤ γ, then:
β1 > 2

β2 >
β3

1 + (4β1 − 8)γ2

4β2
1 − 8β1

(9)

From Eq. (8) and Eq. (9), it can be seen that the
SOSMRL suppresses the sliding mode chattering by placing
the switching function term containing a large gain into the
integral part. However, its proportional part is calculated as
an open square, which leads to a slight lack of the system’s
ability to cope with disturbances [14].

Therefore, this paper designs a NSOSMRL with the ba-
sic form:

ẋ = −β1|x|
1
2 sigmoid(x) + λx + y

ẏ = −β2sigmoid(x) + σ̇
(10)

Where λx is the linear term. From Eq. (10), it can be seen
that compared with Eq. (8), there is one more linear term in
the proportional part of NSOSMRL, which can enhance the
convergence speed of the system by reasonably taking the
value of λ and thus improve the system’s anti-disturbance
ability; secondly, the purpose of further weakening the chat-
tering is reached by adopting the continuous sigmoid func-
tion instead of the sign function at the zero point in Eq. (10),
and the basic expression of which is:

sigmoid(x) =
2

1 + exp−ax − 1 (11)

Where a > 0. As a proof of the stability of Eq. (10), defini-
tion:F1 = x

F2 = −
∫
β2sigmoid (F1) dt + σ

(12)

For the system shown in Eq. (10), the Lyapunov func-
tion is chosen as:

V (F1, F2) = IT ΠI (13)

Where IT = [I1,I2] =
[√
|F1||sigmoid (F1) , F2

]
, Π is a real

symmetric positive definite matrix, taken as:

Π =

4β2 +
(
β1 + λ

√
|F1|

)2
−β1 − λ

√
|F1|

−β1 − λ
√
|F1| 2

 (14)

The derivative of Eq. (3) can be obtained:

V̇ (F1, F2) = İT ΠI + IT Πİ

=
1

2 |I1|

(
I

T AT ΠI + IT ΠAI + ρBT ΠI + ρIT ΠB
)



1380
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024

≤
1

2 |I1|

[(
I

T AT ΠI + IT ΠAI + ρBT ΠI + ρIT ΠB
)

+ γ2
I

2
1

−ρ2
]

≤
1

2 |I1|

(
I

T AT ΠI + IT ΠAI + γ2
I

T CT CI + IT ΠBBT ΠI
)

=
1

2 |I1|

(
I

T AT ΠI + IT ΠAI + ITγ2CT CI + IT ΠBBT ΠI
)

= −
1

2 |I1|
I

T QI (15)

Where A =

[
−β1 − λ

√
|F1| 1

−2β2 0

]
, B =

[
0
1

]
C =

[
1 0

]
, ρ =

2
√
|F1|σ̇ = 2|I1|σ̇, σ̇ ≤ 1

2γ, Q = −(AT Π + ΠA + γ2CT C +

ΠBBT Π).
For V (F1, F2) ≤ 0, then Q is:

Q = −
[
AT Π + ΠA + δ2CT C + ΠBBT Π

]
=

2
(
β1+λ

√
|F1|

)3
−

(
β1+λ

√
|F1|

)2
+4β2

(
β1+λ

√
|F1|

)
− γ2

2
(
β1 + λ

√
|F1|

)
− 2

(
β1 + λ

√
|F1|

)2

2
(
β1 + λ

√
|F1|

)
− 2

(
β1 + λ

√
|F1|

)2

2
(
β1 + λ

√
|F1|

)
− 4

 (16)

By the Schur complementary lemma, a sufficient con-
dition for Q to be a positive definite matrix can be intro-
duced:

β1 > 2

β2 >

(
β1 + λ |F1|

0.5
)2

4β1 + 4λ |F1|
0.5 − 8

+
γ2

4β1

λ > 0

(17)

Combining Eq. (10) and Eq. (6) obtains:

iq =
2J

3pϕ f

[
b Π1−r

0 t e −
ϑ(0)

D
exp−t/D +

T L
J

+
B
J
ω

+β1|s|
1
2 sigmoid(s) + λs + β2sigmoid(s)

] (18)

4. Stabilization Analysis

To demonstrate the stability of the designed controller, the
following Lyapunov function is defined:

V2 =
1
2

s2 (19)

The derivation of Eq. (18) is obtained:

V̇2 = s · ṡ
= s

[
ė + b Π1−r

0 t e + ϑ̇(t)
]

= s

−
(
1.5piqϕ f − TL − Bω

)
J

+ b Π1−r
0 t e −

ϑ(0)
D

exp−t/D


= s

[
−β1|s|

1
2 sigmoid(s) − λs − β2sigmoid(s)

]
≤ −β1|s|

3
2 − λs2 − β2|s|

(20)

From Eq. (19), it can be seen that the value of Eq. (17)
can be taken to ensure that V̇2 ≤ 0, the system is stable.

5. Simulations

In order to verify the validity of the designed, this paper uses
MATLAB/Simulink as a platform for simulation research.
The parameters of the used PMSM motor are shown in Ta-
ble 1.

5.1 Load Disturbance Verification

The system is started in no-load mode with a given speed
of 1000 Rpm. The simulated waveforms are shown in Fig. 1
for an increase of 20 N·m and a decrease of 20 ·Nm at 0.2 s
and 0.4 s, respectively. Additionally, the parameters for each
controller are as follows: SMC: ε = 200000, k = 200; FOI-
SMC: b = 5, r = 0.00000001, ε = 200, k = 150; FOI-
SOSMC: b = 5, r = 0.00000001, β1 = 1500, β2 = 6000;
FOI-NSOSMC: b = 5, r = 0.00000001, λ = 1000, β1 =

500, β2 = 6000.
According to Fig. 1, it can be seen that the SMC has

large speed overshoot in the startup phase and load change
phase, the longest adjustment time, and the largest speed
fluctuation of 0.6 Rpm. Compared with the SMC, the
FOISMC with the introduction of fractional-order integral

Table 1 Motor parameters.

Fig. 1 The speed response under load change.
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Fig. 2 The speed response under speed change.

sliding-mode surface can effectively suppress sliding-mode
chattering, and the speed fluctuation is smaller, 0.2 Rpm,
and it can effectively cope with the load disturbance, without
startup overshoot. Compared to FOI-SMC, FOI-SOSMC
with the introduction of SOSMRL can better cope with load
disturbances and its regulation time is smaller. For this rea-
son, the NSOSMRL-based FOI-NSOSMC has the fastest
response and the smallest speed fluctuation of 0.1 Rpm by
rationally designing the linear term.

5.2 Speed Change Verification

From Fig. 2, compared with the SMC based on linear sliding
mode surface, FOI-SMC, FOI-SOMSC and FOI-NSOSMC
introducing fractional-order integral sliding mode surface
can effectively track the actual speed, among which the FOI-
NSOSMC introducing NSOSMRL has the fastest response
speed, and it can effectively inhibit the sliding mode chatter-
ing with the smallest speed fluctuation, so as to increase the
control accuracy of the system.

6. Conclusions

In this paper, a new second-order sliding mode reaching law
is proposed by introducing a linear term based on the tra-
ditional second-order sliding mode reaching law, which is
combined with a fractional-order integral sliding mode sur-
face to design a speed controller for PMSM. And it is com-
pared and analyzed with the traditional SMC, FOI-SMC,
and FOI-SOSMC. The simulation results show that the de-
signed FOI-NSOSMC can effectively suppress chattering,
and the system dynamic and static characteristics are good,
which can effectively improve the system control quality.
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