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Spatial extrapolation of early room impulse responses
with noise-robust physics-informed neural network

Izumi TSUNOKUNI†a), Member, Gen SATO†, Yusuke IKEDA†b), Nonmembers,
and Yasuhiro OIKAWA††, Member

SUMMARY This paper reports a spatial extrapolation of the sound field
with a physics-informed neural network. We investigate the spatial extrap-
olation of the room impulse responses with physics-informed SIREN archi-
tecture. Furthermore, we proposed a noise-robust extrapolation method by
introducing a tolerance term to the loss function.
key words: Deep neural network, Wave equation, SIREN, PI–SIREN

1. Introduction

Measurement of the room impulse response (RIR), which
represents the sound propagation characteristics in a room,
is essential in various applications, such as sound field re-
production, visualization, and acoustic design. The RIR
depends on the position of the microphone because each
RIR is measured using a single loudspeaker and microphone
assuming the linear time-invariant system. To obtain the
spatial difference in sound propagation, RIRs must be mea-
sured at multiple points in a wider region, particularly in
the early part of the RIR, which is highly dependent on the
measurement position.

Recently, several reconstruction methods for sound
fields and RIRs at multiple points based on physical models
have been proposed. In early RIRs, reconstruction methods
based on physical models and compressed sensing have been
extensively studied [1]–[4]. Mignot et al. proposed a method
to estimate the early RIRs using the sparsity of the early parts
of the RIRs in the time domain [5]. In [6], a sound field was
interpolated and extrapolated using the superposition of a
sparse set of plane waves. In addition, extrapolation meth-
ods that are more difficult than interpolation methods have
been investigated [6], [7]. In [8], [9], a method for extrapo-
lating the early RIR around locally-located microphones by
superposing sparse point sources was proposed.

With the development of machine learning, deep
learning-based reconstruction methods for sound fields have
been proposed [10], [11]. However, in machine learning, the
computed results are not guaranteed to satisfy the physical
properties. In 2019 [12], a physics-informed neural network
(PINN) was proposed to introduce a governing equation for
the loss function. PINN can obtain an output that satisfies
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physical laws. Recently, the PINN was introduced to the
problem of sound field reconstruction [13]–[15]. However,
in general machine learning, it is difficult to introduce higher-
order derivatives, which are also included in the wave equa-
tion, into the cost function because of the commonly used
activation function, such as rectified linear unit (ReLU).

The sinusoidal representation network (SIREN) archi-
tecture [16] allows higher-order differentiation by introduc-
ing periodic functions into the activation function. In [14],
[17], the early part of RIRs was reconstructed by introduc-
ing the wave equation into the cost function of the SIREN
architecture, which is called “Physics-informed SIREN (PI–
SIREN)” in [14]. PI–SIREN applies SIREN to the inverse
problem of sound propagation, which has a wide range of
applications but has not been fully investigated, particularly
in the extrapolation problem.

Furthermore, general data-driven methods avoid over-
fitting by adding noise to the input signals in the training
dataset or by data augmentation [18]. However, PI–SIREN
cannot use data augmentation because it is not a data-driven
method. Using only a single set of microphone signals, PI–
SIREN solves the inverse problem of estimating signals at
specified positions based on the wave equation.

In this study, we investigated the use of PI–SIREN
for spatial extrapolation of early RIRs in a two-dimensional
sound field. In addition, we propose a noise-robust method
using PI–SIREN by dynamically changing the loss function
considering the error tolerance of the microphone signals.

We emphasize two main differences between the pro-
posed method and PI–SIREN [14], [17]: first, in this study,
we introduced the error tolerance of microphone signals in
the loss function; second, we contributed to the investiga-
tion of the spatial extrapolation of early RIRs in the two-
dimensional sound field by comparing the estimation accu-
racies with and without the use of physical laws.

The remainder of this paper is organized as follows.
Section 2 introduces the problem statement, SIREN, PI–
SIREN, and proposed method. Section 4 presents the simu-
lation results. Finally, we conclude the paper in Section 5.

2. Method
2.1 Problem statement

As shown in Fig. 1, we consider the reconstruction of a
two-dimensional sound field Ω from an internal sound field
Ωin (∈ Ω). In the region Ω, we assume that the sound field
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Fig. 1 Extrapolation problem of sound field.

is homogeneous and no sound source exists. Thus, for the
sound pressure 𝑝(x) |x ∈ Ω, the following wave equation
holds:

1
𝑐2

𝜕2𝑝(x)
𝜕𝑡2

− ∇2𝑝(x) = 0 (x ∈ Ω), (1)

where 𝑐 is the speed of sound, 𝑡 is time, and ∇ is the gradient.
The sound field Ω is discretized at 𝑀 points and in-

dexed as M(= 1, 2, . . . , 𝑀). The 𝑀̃ measurement points
are part of the discretized positions (M̃ ∈ M) and are posi-
tioned in the region Ωin. In this study, we reconstructed the
signals 𝑝(x𝑚) |𝑚 ∈ M at all discrete points from the signals
𝑝(x𝑚) |𝑚 ∈ M̃ at the measurement points.

2.2 SIREN and PI–SIREN

Using multilayer perceptron (MLP), the function 𝑓 (·) of the
neural network for RIR reconstruction is as follows:

𝑓 (w, x) = (𝜙𝑁 ◦ 𝜙𝑁−1, . . . , 𝜙1) (x), (2)

where x is the input to the network and w is the set of
learnable parameters. 𝜙𝑛 is the function of 𝑛-th layer of MLP.
To represent the wave equations shown in Eq.(1), obtaining
the second derivatives of the function 𝑓 (·) is necessary. To
determine this using a synthetic derivative, the derivative
of the activation function must be determined. However,
general neural network models use activation functions that
cannot be differentiated into higher orders.

SIREN [16] is an effective network architecture repre-
senting higher-order derivative signals. To maintain the in-
formation contained in higher-order derivatives, SIREN uses
a periodic function as the activation function of the MLP.
Consequently, the SIREN derivative becomes its phase-
shifted output. SIREN uses the sinusoidal activation func-
tion and 𝑛-th layer function 𝜙𝑛 as follows:

𝜙𝑛 (x𝑛) = sin(𝜔xT
𝑛w𝑛 + b𝑛), (3)

where x𝑛, w𝑛, and b𝑛 are the input signal, weight, and bias
of the 𝑛-th layer, respectively. 𝜔 is a hyperparameter [16].

In PI–SIREN [14], SIREN was applied to solve the
inverse problem of sound field reconstruction by introducing
the wave equation Eq.(1) to the loss function 𝐿ps as follows:
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Fig. 2 (a) Arrangement of measurement positions and room geometry.
(b) Detailed arrangement of measurement and estimation positions. The
solid black circle is the position of microphone, and the blue circle is the
estimation position.

𝐿ps = 𝐿err + 𝜆𝐿wave, (4)

where,

𝐿err =
1
𝑀̃

𝑀̃∑︁
𝑚=1

∥ĥ𝑚 − h𝑚∥2
2, (5)

𝐿wave =
1
𝑀

𝑀∑︁
𝑚=1

∥ 1
𝑐2

𝜕2ĥ𝑚

𝜕𝑡2
− ∇2ĥ𝑚∥2

2. (6)

∥ · ∥2 is the ℓ2-norm, and ĥ𝑚 and h𝑚 (∈ R𝑇×1) are the esti-
mated and measured RIRs of the 𝑚-th microphone, respec-
tively. 𝑇 is the number of samples. 𝜆 is a weight parameter
that controls the balance between 𝐿err and 𝐿wave. The loss
function 𝐿wave allows the solution of the neural network to
follow physics laws. Note that SIREN and PI–SIREN are
not data-driven methods, and the network inputs are fixed
positions for the measurement and estimation. In addition,
h𝑚 in Eq.(5) is only a single set of measurement signals.

3. Proposed method

In this study, we considered early RIR measurements in a
noisy environment. As shown in Eq. (5), the loss function
𝐿err determines a solution that minimizes the differences be-
tween the microphone signals and the output. When the
microphone signals are contaminated by noise, the estima-
tion accuracy degrades because of the overfitting of the mi-
crophone signals with noise. Thus, the proposed method
introduces error tolerance into the loss function, as follows:

𝐿 =

{
𝐿err + 𝜆𝐿wave, if 𝐿err > 𝜖

𝜖 + 𝜆𝐿wave, if otherwise
(7)

The error tolerance 𝜖 is determined by the noise energies of
all the microphones. When the loss 𝐿err becomes smaller
than the error tolerance 𝜖 , the loss function becomes only
the loss 𝐿wave in the wave equation.

In [19], a similar method was used to dynamically
change the cost function with respect to the cost based
on physical laws to make it easier to solve the extrapola-
tion problem. However, the proposed method changes the
cost function with respect to microphone errors to introduce
microphone-error tolerance.



LETTER
3

(b) PI-SIREN(a) SIREN (c) Proposal

0 5000 10000 15000
Iteration number

0

0.5

1

1.5

2

Lo
ss

15 dB
13 dB
10 dB

0 5000 10000 15000
Iteration number

0

0.5

1

1.5

2

Lo
ss

15 dB
13 dB
10 dB

0 5000 10000 15000
Iteration number

-15

-10

-5

0

N
M

SE
 [d

B
]

0 5000 10000 15000
Iteration number

-1

0

1

2

3

4

N
M

SE
 [d

B
]

0 5000 10000 15000
Iteration number

-15

-10

-5

0

N
M

SE
 [d

B
]

0 5000 10000 15000
Iteration number

0

0.5

1

1.5

2

Lo
ss

15 dB
13 dB
10 dB

0 5000 10000 15000
Iteration number

-15

-10

-5

0

N
M

SE

0 5000 10000 15000
Iteration number

0

0.5

1

1.5

2

Lo
ss

15 dB
13 dB
10 dB

Fig. 3 Comparison of loss and NMSE with SIREN, PI–SIREN, and proposed method. The upper and
bottom figures show the loss functions and NMSEs for microphones with SNRs of 10, 13, and 15 dB,
respectively.

Table 1 Comparison of NMSE at 5k, 10k, and 15k iterations. NMSEall indicates the overall estimation
error. NMSEest and NMSEmic indicate NMSEs for the estimation and microphone positions, respectively.

SNR 10 dB SNR 13 dB SNR 15 dB
Iteration No. PI–SIREN Proposal PI–SIREN Proposal PI–SIREN Proposal

5000
NMSEall -9.8 -10.0 -11.1 -11.0 -12.0 -11.5
NMSEest -8.1 -8.3 -9.4 -9.3 -10.2 -9.9
NMSEmic -19.9 -18.6 -20.6 -19.6 -22.2 -17.8

10000
NMSEall -8.8 -9.8 -11.0 -11.2 -12.3 -12.3
NMSEest -7.0 -8.2 -9.2 -9.7 -10.6 -10.5
NMSEmic -21.1 -17.2 -23.6 -17.8 -21.2 -24.2

15000
NMSEall -7.4 -10.0 -10.1 -11.5 -12.0 -12.5
NMSEest -5.5 -8.1 -8.4 -9.7 -10.2 -10.6
NMSEmic -19.6 -21.3 -19.6 -22.6 -23.4 -24.2

4. Simulation experiment
4.1 Simulation condition

Simulation experiments were conducted to evaluate the noise
robustness of the proposed method compared to SIREN and
PI–SIREN. As demonstrated in [14], SIREN uses 𝐿err (Eq.5)
for the loss function. The RIRs were analytically calculated
with the sfs-toolbox [20] and Pyroomacoustics [21] using the
image source method [22]. Gaussian white noise was added
to the microphone signals with 10, 13, and 15 dB signal-to-
noise ratio (SNR). The room size was 6 m × 4 m and the
line source was positioned at (0, 1.5). Figure 2 shows the
arrangement of the experiment; 256 points around the mi-
crophones were extrapolated from 144 microphone signals at
0.02 m intervals, which correspond to the half-wavelength at
the sampling frequency 8 kHz. We used the first 200 samples
of RIRs, including the second-order reflections.

The network architecture comprises 3 hidden layers
with 256 neurons, the last layer of which is linear. The
hyperparameter of SIREN was 𝜔 = 12 for the first and
the hidden layers. The parameter 𝜆 in Eq. (6) was set to
𝜆 = 1.0 × 10−6, and the network was trained for 15000 it-
erations. The optimizer was Adam. The learning rate was
1.0 × 10−4.

The estimation accuracy was evaluated using the nor-
malized mean square error (NMSE), defined as

NMSE = 10 log10
1
𝑀

𝑀∑︁
𝑚=1

∥ĥ𝑚 − h𝑚∥2
2

∥h𝑚∥2
2

, (8)

where ĥ𝑚 and h𝑚 denote 𝑚-th estimated signal and ground
truth, respectively.

4.2 Result

Figure 3 compares the loss functions and NMSEs at SNR 10,
13, and 15 dB for the SIREN, PI–SIREN, and the proposed
methods, respectively.

In SIREN, from Figs. 3(a), the loss function converged
and decayed as the number of iterations increased. However,
NMSE did not improve with increasing iterations and was
above 0 dB for nearly all the iterations. In PI–SIREN, as
shown in Figs. 3(b), at SNR of 15 dB, both the loss function
and NMSE decreased and converged. At SNRs of 13 and 10
dB, NMSE decreased once, however, the estimation accuracy
degraded as learning proceeded. The NMSE was degraded
owing to the overfitting of the microphone signal with noise.

Early stopping of learning is a method used to prevent
overfitting [23]. In these methods, the data used is a single
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Fig. 4 Estimated signals at 15K iterations with SNR 10 dB. The upper figures show signals at 𝑦 = 0.03
m (including the microphone positions). The bottom figures show signals at 𝑦 = −0.19 m (not including
the microphone positions).

data set. In addition, it is not possible to obtain all the data
required for the NMSE calculation in advance. Thus, the
timing of early stopping must be determined by only the loss
function. From Fig. 3(b), the convergence of the loss func-
tion in PI–SIREN exhibited the same trend regardless of the
magnitude of the noise, but the timings of the convergences
of the NMSEs were different. Moreover, if the stop of learn-
ing is delayed, the overfitting to the microphone noise will
begin. Therefore, it is difficult to determine when to stop
learning based on the loss function only.

As shown in Figs. 3(c), NMSE remained constant as
the number of training iterations increased at 13 dB and 10
dB SNR for the proposed method. Thus, the estimation of
the proposed method was stable, regardless of the timing of
learning stops after convergence. After the loss converged,
it changed repeatedly and rapidly compared to PI–SIREN.
This is because the proposed method changes the loss when
the microphone error is less than the error tolerance.

As shown in Table 1, we compared NMSEs for 5K,
10K, and 15K iterations. In Table 1, NMSEall indicates the
overall estimation error. NMSEest and NMSEmic indicate
NMSEs for the estimation and microphone positions, re-
spectively. At SNR 15 dB, both PI–SIREN and the proposed
method exhibited similar accuracy, which did not depend on
the number of training. However, at 15K iterations of SNR
13 dB, the NMSE and NMSEest were approximately 1 dB
larger than those of the 5K iterations, whereas the NMSEall
and NMSEest were lower in the proposed method. In par-
ticular, the degradation of estimation accuracy in PI–SIREN
was most noticeable at SNR 10 dB. The NMSE of PI–SIREN
degraded by approximately 1–2 dB for each additional 5K
of training, whereas the NMSE of the proposed method re-
mained constant even as the training iterations increased.

Therefore, in noisy environments, it was appropriate
for the PI–SIREN to complete the learning as soon as the
loss function decreased. In the proposed method, because
the estimation accuracy does not depend significantly on the

timing of training, the training can be completed at any time
after the loss function is sufficiently lowered.

Finally, the 15K-th estimated signals at SNR 10 dB are
compared at 𝑦 = 0.03 m and 𝑦 = −0.19 m. Figure 4(a) shows
the estimated signals for 𝑦 = 0.03 m. SIREN can reconstruct
signals only at the microphone positions; however, it also
includes noises. By contrast, the proposed method and PI–
SIREN achieved approximate extrapolation and denoising of
the microphone signals. The NMSE was approximately 2.1
dB lower for the proposed method compared to PI–SIREN.
Figure 4(b) shows the estimated signals at 𝑦 = −0.19 m.
SIREN could not estimate all the signals because the micro-
phone positions were not included. PI–SIREN and the pro-
posed method could estimate the direct and reflected sounds,
although the estimation accuracy was degraded compared
with when 𝑦 = 0.03 m. Therefore, the proposed method can
stabilize the estimation accuracy against noise components
as the number of training iterations increases.

5. Conclusion

In this study, we investigated the spatial extrapolation accura-
cies of two-dimensional RIRs using PI–SIREN and proposed
a noise-robust method by introducing error tolerance into the
loss function of PI–SIREN. In the simulation experiments,
the sound field was extrapolated using noise-containing mi-
crophone signals. PI–SIREN achieved spatial extrapolation
of early RIRs in a 2D sound field. Furthermore, the proposed
method achieved constant estimation accuracy even when
noises were added to the microphone signals. In future stud-
ies, we will extend the proposed method to three-dimensional
sound fields. In addition, we will compare the conventional
analytical methods and the proposed deep learning method.
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