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LETTER
New Bounds for Aperiodic Wide-Gap Frequency Hopping
Sequences

Xinyu TIAN†, Hongyu HAN†a), Limengnan ZHOU††, Nonmembers, and Hanzhou WU†††, Member

SUMMARY Frequency hopping sequences (FHSs) play a significant
role in modern frequency hopping spread spectrum communication and
radar systems. In terms of application, the aperiodic Hamming correlation
(HC) holds greater significance compared to the periodic HC as it directly
impacts the communication performance. In addition, it is crucial for each
user’s FHS to have a substantial wide-gap (WG) in order to prevent the
received signals from interfering with each other. In this letter, we obtain a
new bound by extending the aperiodic bound proposed by Peng-Fan and the
WG FHS bound introduced by Li-Fan-Yang-Wang. The proposed bound is
strict since they can be verified using specific parameters of aperiodic WG
FHSs.
key words: Peng-Fan bounds, Aperiodic wide-gap, Hamming correlation,
Frequency hopping sequences.

1. Introduction

Frequency hopping (FH) multiple-access (MA) spread spec-
trum systems are widely applicable in military radar com-
munications, mobile communications, and modern radar and
sonar applications [1], [2]. In such system, each frequency
hopping sequence (FHS) correspond to one user. It gen-
erates mutual interference (MI) when more than one user
sends signals at the same time. This MI needs to be as little
as possible to mitigate MA interference and enhance overall
system performance [2], [3].

The aperiodic Hamming correlation (HC) property of
FHS is more significant than the periodic HC property, due
to aperiodic HC is more accurate to evaluate system perfor-
mance in real-world applications [4], [5], and the periodic
HC mainly has been considered in most of the papers [6]–
[11]. In contrast to periodic HC, aperiodic HC has received
little attention in the literature. In 2004, Peng and Fan [12]
derived the aperiodic bound on the FHS set.

However, the rapid development of modern informa-
tion technology poses many challenges to the traditional
frequency hopping communication technology. These chal-
lenges include the scarcity of available spectrum resources,
the continuous upgrade of complex interference sources, and
the complexities of variable communication link environ-
ments. One of the issues encountered in FH systems is the
interference that arises when there is a small gap between
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neighbouring frequency hops of an FHS. This interference
can significantly affect the received signal quality. To ad-
dress this problem, researchers have proposed FHSs with
wide gaps between adjacent frequency hops, referred to as
wide-gap (WG) FHSs [13], [14]. By ensuring a sufficient
spectrum span between adjacent frequency hops, even if a
particular hop signal falls within an interference band, the
adjacent hop signals remain unaffected, and the interfered
information can be recovered through encoding. In 2019,
Li, Fan, Yang and Wang [15] derived the WG’s bound on the
FHS set.

In summary, this paper introduces the theoretical bound
for designing aperiodic WG FHSs. For the construction
of aperiodic WG FHSs, this theoretical bound that provide
a theoretical basis for constructing FHSs. The outline of
this paper is as follows. In Section II, we review some
preliminaries. In Section III, we generalize the bound on
FHS to the case of aperiodic WG FHS. We generalize the
bound on FHS set to the case of aperiodic WG FHS set
in Section IV. An example of aperiodic WG FHSs, whose
parameters are met with the proposed bound, are given in
Section V.

2. Preliminaries

Let S denote a set of FHSs defined on the frequency slot
set 𝐹, with parameters 𝐿, 𝑀, and 𝑞. Here, 𝐿 represents the
period of each FHS, 𝑀 represents the number of FHSs in set
S, and 𝑞 represents the size of the frequency slots in the set
𝐹. At time delay 𝜏, the periodic HC and the aperiodic HC
between any two FHSs 𝑋 = {𝑥 𝑗 }𝐿−1

𝑗=0 and 𝑌 = {𝑦 𝑗 }𝐿−1
𝑗=0 in the

set S are respectively defined as follows.

𝐻𝑋,𝑌 (𝜏) =

𝐿−1∑︁
𝑗=0

ℎ[𝑥 𝑗 , 𝑦 𝑗+𝜏], 0 ≤ 𝜏 ≤ 𝐿 − 1,

�̄�𝑋,𝑌 (𝜏) =

𝐿−𝜏−1∑︁
𝑗=0

ℎ[𝑥 𝑗 , 𝑦 𝑗+𝜏], 0 ≤ 𝜏 ≤ 𝐿 − 1,

where the modulo 𝐿 is performed to calculate the index 𝑗 +𝜏,
and ℎ[𝑥 𝑗 , 𝑦 𝑗+𝜏]=1 if 𝑥 𝑗 = 𝑦 𝑗+𝜏 , and 0 otherwise.

When 𝑋 = 𝑌 , we obtain the periodic Hamming auto-
correlation (HAC) value 𝐻𝑋 (𝜏) of the FHS 𝑋 at time delay
𝜏. When 𝑋 ≠ 𝑌 , we obtain the periodic Hamming cross-
correlation (HCC) value 𝐻𝑋,𝑌 (𝜏) between 𝑋 and 𝑌 at time
delay 𝜏. The maximum HAC value of S, the maximum
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HCC value, and the maximum periodic Hamming correla-
tion (MHC) value are respectively denoted as

𝐻𝑎 (S) = max
𝑋∈S

{𝐻𝑋 (𝜏) | 𝜏 = 1, 2, . . . , 𝐿 − 1} ,

𝐻𝑐 (S) = max
𝑋,𝑌 ∈S,𝑋≠𝑌

{
𝐻𝑋,𝑌 (𝜏) | 𝜏 = 0, 1, . . . , 𝐿 − 1

}
,

𝐻𝑚 (S) = max {𝐻𝑎 (S), 𝐻𝑐 (S)} .

When 𝑋 = 𝑌 , we obtain the aperiodic Hamming au-
tocorrelation (AHAC) value �̄�𝑋 (𝜏) of the FHS 𝑋 at time
delay 𝜏. When 𝑋 ≠ 𝑌 , we obtain the aperiodic Hamming
cross-correlation (AHCC) value �̄�𝑋,𝑌 (𝜏) between 𝑋 and 𝑌

at time delay 𝜏. Furthermore, the maximum AHAC value
of S, the maximum AHCC value, and the maximum aperi-
odic Hamming correlation (MAHC) value are respectively
denoted as

�̄�𝑎 (S) = max
𝑋∈S

{
�̄�𝑋 (𝜏) | 𝜏 = 1, 2, . . . , 𝐿 − 1

}
,

�̄�𝑐 (S) = max
𝑋,𝑌 ∈S,𝑋≠𝑌

{
�̄�𝑋,𝑌 (𝜏) | 𝜏 = 0, 1, . . . , 𝐿 − 1

}
,

�̄�𝑚 (S) = max
{
�̄�𝑎 (S), �̄�𝑐 (S)

}
.

In 2004, the lower bound of the aperiodic HC FHS set
was established by Peng, Fan as follows.

Lemma 1 (Peng-Fan bound [12]): Let S be a set of 𝑀

FHSs of period 𝐿 over an frequency slot set with size 𝑞,
and 𝐼 = ⌊ 2𝑀𝐿

𝑞+𝑀 ⌋. We have

�̄�𝑚 (S) ≥
⌈
(3𝑀𝐿 − 𝑞𝐿 − 𝐿 − 𝑀 − 𝑞)𝐿
(2𝑀𝐿 − 𝑀 − 1) (𝑀 + 𝑞)

⌉
(1)

and

�̄�𝑚 (S) ≥
⌈
(4𝐼 − 𝐿 − 1)𝑀𝐿 − 𝐼 (𝐼 + 1) (𝑀 + 𝑞 + 2)

(2𝑀𝐿 − 𝑀 − 1)𝑀

⌉
.

(2)

It is claimed that the set is an optimal FHS set if its
relevant parameters meet the Peng-Fan bound with equality.

Definition 1: For any given 𝑋 ∈ S, and a positive integer
𝐷, if

min
0≤ 𝑗≤𝐿−1

{
��𝑥 𝑗+1 − 𝑥 𝑗

�� , |𝑥𝐿−1 − 𝑥0 |} > 𝐷, 𝐷 > 0,

then 𝑋 is called a WG FHS with a minimum FH gap 𝐷.

In 2019, the lower bound of a WG FHS set was estab-
lished by Li, Fan, Yang and Wang as follows.

Lemma 2 (Li-Fan-Yang-Wang bound [15]): Let S be a set
of 𝑀 WG FHSs of period 𝐿 over an frequency slot with
size 𝑞, 𝐼 = ⌊𝑀𝐿

𝑞
⌋, and the maximum periodic Hamming

correlation 𝐻𝑚 (S). Then we have

𝐻𝑚 (S) ≥
⌈
(𝐿𝑀 − 𝑞)𝐿
(𝐿𝑀 − 3)𝑞

⌉
, (3)

𝐻𝑚 (S) ≥
⌈
2𝐼𝐿𝑀 − (𝐼 + 1)𝐼𝑞

(𝐿𝑀 − 3)𝑀

⌉
. (4)

A WG FHS set S is optimal if it achieves the equal sign
of Eq.(3) or Eq.(4).

Let �̄� be a new frequency slot set obtained by adding
𝑀 distinct frequency slots 𝑞1, 𝑞2, ..., 𝑞𝑀 to the original fre-
quency slot set 𝐹.

Expanding the period length of 𝑋 𝑖 = {𝑥𝑖0, 𝑥
𝑖
1, . . . , 𝑥

𝑖
𝐿−1}

∈ S to 2𝐿 obtains the sequence �̄� 𝑖 = {𝑥𝑖0, 𝑥
𝑖
1, . . . , 𝑥

𝑖
𝐿−1, 𝑞𝑖 , 𝑞𝑖 , . . . , 𝑞𝑖} ∈

S̄, where 1 ≤ 𝑖 ≤ 𝑀 . S̄ is a set of 𝑀 FHSs of length 2𝐿
over �̄� of size 𝑞 + 𝑀 .

For any aperiodic FHSs �̄� = {𝑥 𝑗 }𝐿−1
𝑗=0 , 𝑌 = {�̄� 𝑗 }𝐿−1

𝑗=0 ∈
S̄, we have

𝐻�̄� (𝜏) =
�̄�𝑋 (𝜏) + 𝐿 − 𝜏, 0 ≤ 𝜏 ≤ 𝐿 − 1
0, 𝜏 = 𝐿

�̄�𝑋 (2𝐿 − 𝜏) + 𝜏 − 𝐿, 𝐿 + 1 ≤ 𝜏 ≤ 2𝐿 − 1.
𝐻�̄�,�̄� (𝜏) =

�̄�𝑋,𝑌 (𝜏), 0 ≤ 𝜏 ≤ 𝐿 − 1
0, 𝜏 = 𝐿

�̄�𝑋,𝑌 (2𝐿 − 𝜏), 𝐿 + 1 ≤ 𝜏 ≤ 2𝐿 − 1.
(5)

For any frequency slot 𝑓 ∈ 𝐹 and FHS 𝑋 = {𝑥 𝑗 }𝐿−1
𝑗=0 ,

we have

𝑢(𝑋, 𝑓 ) =
𝐿−1∑︁
𝑗=0

ℎ(𝑥 𝑗 , 𝑓 ),

which is the number of occurrences that the frequency slot
𝑓 appeared in 𝑋 .

Lemma 3 ([12]): Let frequency slot 𝑓 ∈ 𝐹, then we have
𝐿−1∑︁
𝜏=0

𝐻𝑋 (𝜏) =
∑︁
𝑋∈S

𝑢(𝑋, 𝑓 )2.

3. New Bound on Aperiodic Wide-Gap Frequence-
Hopping Sequence

Theorem 1: Let 𝑋 be a WG FHS of period 𝐿 over 𝐹. Then
one has

�̄�𝑚 (𝑋) ≥
⌈
𝐿2 − 𝑟2 + 𝑞𝑟 − 2𝑞𝐿

𝑞(2𝐿 − 3)

⌉
, (6)

where 𝑟 = 𝐿 −
⌊
𝐿
𝑞

⌋
· 𝑞.

Definition 2: A WG FHS 𝑋 ∈ S is said to be optimal if 𝑋
reaches the equal sign of Eq.(6).

Proof: From the definition of WG FHS, it’s clear that
there are

𝐻�̄� (1) =
𝐿−1∑︁
𝑗=0

ℎ
[
𝑥 𝑗 , 𝑥 𝑗+1

]
+ 𝐿 − 1 = 𝐿 − 1.
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Then, we have

2𝐿−1∑︁
𝜏=0

𝐻�̄� (𝜏) = 2𝐿 + 𝐿 − 1 +
2𝐿−1∑︁
𝜏=2

𝐻�̄� (𝜏)

= 3𝐿 − 1 +
𝐿−1∑︁
𝜏=2

{�̄�𝑋 (𝜏) + 𝐿 − 𝜏} + 0

+
2𝐿−1∑︁
𝜏=𝐿+1

{�̄�𝑋 (2𝐿 − 𝜏) + 𝜏 − 𝐿}

= 3𝐿 − 1 + (𝐿 − 1)2 +
𝐿−1∑︁
𝜏=2

�̄�𝑋 (𝜏)

+
2𝐿−1∑︁
𝜏=𝐿+1

�̄�𝑋 (2𝐿 − 𝜏).

= 𝐿 + 𝐿2 +
𝐿−1∑︁
𝜏=2

�̄�𝑋 (𝜏) +
𝐿−1∑︁
𝜏=1

�̄�𝑋 (𝜏).

Let

¯𝑃𝐻 (𝑋) = 1
2𝐿 − 3

2𝐿−1∑︁
𝜏=2

�̄�𝑋 (𝜏).

Then, we have

¯𝑃𝐻 (𝑋) =

2𝐿−1∑
𝜏=0

𝐻�̄� (𝜏) − 𝐿2 − 𝐿

2𝐿 − 3
.

(7)

Let 𝑘 �̄� (𝜏 |𝑒) =
𝑒+𝐿−1∑
𝑗=𝑒

2𝐿−1∑
𝜏=0

ℎ[𝑥 𝑗 , 𝑥 𝑗+𝜏], then

𝑘 �̄� (𝜏 |0) =
𝐿−1∑︁
𝑗=0

2𝐿−1∑︁
𝜏=0

ℎ[𝑥 𝑗 , 𝑥 𝑗+𝜏]

=

𝐿−1∑︁
𝑗=0

𝐿−1∑︁
𝜏=0

ℎ[𝑥 𝑗 , 𝑥 𝑗+𝜏] +
𝐿−1∑︁
𝑗=0

2𝐿−1∑︁
𝜏=𝐿−1

ℎ[𝑥 𝑗 , 𝑥 𝑗+𝜏]

= 𝐻𝑋 (𝜏) = 𝛼

According to the Lemma 3, 𝛼 =
∑

𝑋∈S
𝑢 (𝑋, 𝑓 )2.∑

𝑋∈S
𝑢 (𝑋, 𝑓 )2 is rewritten as 𝑢𝑋 ( 𝑓 )2. It is clear that the

optimal solution of the problem is the distribution of 𝑢𝑋 ( 𝑓 )
that minimizes the value of 𝛼 if and only if 𝑢𝑋 ( 𝑓 ) is as nearly
uniform as possible.

It is well known that integer 𝐿 can be expressed in terms
of a positive integer 𝐼 of the form 𝐿 = 𝐼𝑞 + 𝑟, 0 ≤ 𝑟 < 𝑞,
Thus, the value of 𝛼 is found to be

min𝛼 = (𝑞 − 𝑟)𝐼2 + 𝑟 (𝐼 + 1)2

=
𝐿2 − 𝑟2 + 𝑞𝑟

𝑞
.

(8)

And it is clear that 𝑘 �̄� (𝜏 |𝐿+1) = 𝐿2−𝐿, 0 ≤ 𝜏 ≤ 2𝐿−1.
Then,

min

{2𝐿−1∑︁
𝜏=0

𝐻�̄� (𝜏)
}
= min{𝑘 �̄� (𝜏 |0)} + min{𝑘 �̄� (𝜏 |𝐿)}

+ min{𝑘 �̄� (𝜏 |𝐿 + 1)}
= 𝛼 + 𝐿2 − 𝐿.

(9)

Combining (7), (8), and (9), one arrive at

¯𝑃𝐻 (𝑋) ≥ min𝛼 − 2𝐿
2𝐿 − 3

=
𝐿2 − 𝑟2 + 𝑞𝑟 − 2𝑞𝐿

𝑞(2𝐿 − 3) .

Hence, for every aperiodic WG FHS 𝑋 , one has

�̄�𝑚 (𝑋) ≥ ¯𝑃𝐻 (𝑋) ≥ 𝐿2 − 𝑟2 + 𝑞𝑟 − 2𝑞𝐿
𝑞(2𝐿 − 3) .

Q.E.D.

4. New Bound on Aperiodic Wide-Gap Frequence-
Hopping Sequence set

Lemma 4 ([12]): Let S̄ be a set of 𝑀 FHSs of period 2𝐿
over �̄�. Then we have

2𝐿−1∑︁
𝜏=0

𝐻�̄�,�̄� (𝜏) ≥
4𝐿2𝑀2

𝑀 + 𝑞

and
2𝐿−1∑︁
𝜏=0

𝐻�̄�,�̄� (𝜏) ≥ 2(2𝐼 + 1)𝐿𝑀 − 𝐼 (𝐼 + 1) (𝑀 + 𝑞),

where 𝐼 = ⌊ 2𝐿𝑀
𝑀+𝑞 ⌋.

Lemma 5: For any given aperiodic WG FHS set S̄, we have∑
�̄�,�̄� ∈S̄

2𝐿−1∑
𝜏=0

𝐻�̄�,�̄� (𝜏) ≤ 𝑀 (𝐿2 + 𝐿) + (𝐿 − 2)𝑀�̄�a (S)

+(𝐿 − 1)𝑀�̄�𝑎 (S) + (𝑀 − 1)𝑀𝐿�̄�𝑐 (S)
+𝑀 (𝑀 − 1) (𝐿 − 1)�̄�𝑐 (S).

Proof: For any two sequences �̄�,𝑌 ∈ S̄ and any two
sequences 𝑋,𝑌 ∈ S,

2𝐿−1∑︁
𝜏=0

𝐻�̄�,�̄� (𝜏) =
2𝐿−1∑︁
𝜏=0

𝐻�̄� (𝜏) +
∑̄︁
𝑋≠�̄�

2𝐿−1∑︁
𝜏=0

𝐻�̄�,�̄� (𝜏)

= 𝐻�̄� (0) + 𝐻�̄� (1) +
𝐿−1∑︁
𝜏=2

𝐻�̄� (𝜏) +
2𝐿−1∑︁
𝜏=𝐿+1

𝐻�̄� (𝜏)

+
∑̄︁
𝑋≠�̄�

𝐿−1∑︁
𝜏=0

𝐻�̄�,�̄� (𝜏) +
∑̄︁
𝑋≠�̄�

2𝐿−1∑︁
𝜏=𝐿+1

𝐻�̄�,�̄� (𝜏)
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= 2𝐿𝑀 + 𝑀 (𝐿 − 1) +
𝐿−1∑︁
𝜏=2

{
�̄�𝑋 (𝜏) + 𝐿 − 𝜏

}
+

2𝐿−1∑︁
𝜏=𝐿+1

{�̄�𝑋 (2𝐿 − 𝜏) + 𝜏 − 𝐿}

+
∑︁
𝑋≠𝑌

𝐿−1∑︁
𝜏=0

�̄�𝑋,𝑌 (𝜏) +
∑︁
𝑋≠𝑌

𝐿−1∑︁
𝜏=1

�̄�𝑋,𝑌 (𝐿 − 𝜏)

≤ 3𝐿𝑀 − 𝑀 + (𝐿 − 2)𝑀�̄�a (S) + 𝑀
(1 + 𝐿 − 2) (𝐿 − 2)

2

+ (𝐿 − 1)𝑀�̄�𝑎 (S) + 𝑀
(1 + 𝐿 − 1) (𝐿 − 1)

2
+ (𝑀 − 1)𝑀𝐿�̄�𝑐 (S) + 𝑀 (𝑀 − 1) (𝐿 − 1)�̄�𝑐 (S).

≤ 𝑀 (𝐿2 + 𝐿) + (𝐿 − 2)𝑀�̄�a (S) + (𝐿 − 1)𝑀�̄�𝑎 (S)
+(𝑀 − 1)𝑀𝐿�̄�𝑐 (S) + 𝑀 (𝑀 − 1) (𝐿 − 1)�̄�𝑐 (S).

Q.E.D.
Combining Lemmas 4 and 5, we can generalize the

Peng-Fan bound and Li-Fan-Yang-Wang bound for a aperi-
odic WG FHS set.
Theorem 2: Let S be a set of 𝑀 aperiodic WG FHSs of
period 𝐿 over 𝐹, and 𝐼 = ⌊ 2𝐿𝑀

𝑀+𝑞 ⌋. Then we have

�̄�𝑚 (S) ≥ 3𝑀𝐿2 − 𝑀𝐿 − 𝑞𝐿2 − 𝑞

(2𝑀𝐿 − 𝑀 − 2) (𝑀 + 𝑞) (10)

and

�̄�𝑚 (S) ≥ 𝑀𝐿 (4𝐼 − 𝐿 + 1) − (𝐼2 + 𝐼) (𝑀 + 𝑞)
𝑀 (2𝑀𝐿 − 𝑀 − 2) . (11)

Definition 3: A aperiodic WG FHS set S is optimal if it
achieves the equal sign of Eq.(10) or Eq.(11).

5. Example

Example 1: Let frequency slot set𝐹 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
FHS set S = {𝑋1, 𝑋2, 𝑋3, 𝑋4}, where

𝑋1 = [0, 2, 4, 6, 8], 𝑋2 = [1, 3, 5, 7, 9],
𝑋3 = [0, 4, 8, 2, 6], 𝑋4 = [1, 5, 9, 3, 7] .

It can be verified from the above that the sequence set
S is a WG FHS set where 𝐷 = 2.

As shown in Fig.1, the MAHC value for time delay
0 < 𝜏 ≤ 𝐿 − 1 is 1. By substituting Theorem 2, we get

�̄�𝑚 (S) = ⌈ 3𝑀𝐿2 − 𝑀𝐿 − 𝑞𝐿2 − 𝑞

(2𝑀𝐿 − 𝑀 − 2) (𝑀 + 𝑞) ⌉ = ⌈ 20
476

⌉ = 1.

That is, S is an optimal set of aperiodic WG FHS set.
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