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Adaptive Output Feedback Leader-Following in Networks of Linear
Systems Using Switching Logic

Sungryul LEE†a), Member

SUMMARY This study explores adaptive output feedback leader-
following in networks of linear systems utilizing switching logic. A local
state observer is employed to estimate the true state of each agent within the
network. The proposed protocol is based on the estimated states obtained
from neighboring agents and employs a switching logic to tune its adaptive
gain by utilizing only local neighboring information. The proposed leader-
following protocol is fully distributed because it has a distributed adaptive
gain and relies on only local information from its neighbors. Consequently,
compared to conventional adaptive protocols, the proposed design method
provides the advantages of a very simple adaptive law and dynamics with a
low dimension.
key words: adaptive protocol, leader-following, switching logic, output
feedback

1. Introduction

Recently, a great deal of research attention has been paid to
the synchronization problem of complex networks because
of its broad applicability in various fields like formation
control, cooperative control, robotics, sensor networks, and
so on [1]. Extensive research has demonstrated that the
solvability of the synchronization problem is determined by
the algebraic connectivity related to the Laplacian matrix
[2]–[7]. Nevertheless, a significant drawback of existing
synchronization protocols lies in their dependence on global
information associatedwith the Laplacianmatrix. To remove
this obstacle, recent research has focused on various adaptive
synchronization approaches that rely exclusively on locally
acquired information from neighboring agents.

Early works [8] and [9] on the adaptive synchronization
approach were developed for the directed network of first or
second-order systems. Importantly, they are considered fully
distributed because the coupling gain of each agent is ad-
justed using solely local neighboring information. The fully
distributed studies on the network of low-order systems were
extended to the undirected network of high-order nonlinear
systems in [10], the directed network of high-order linear
systems in [11] and [12], and the directed network of com-
plex nonlinear systems in [13]. Remarkably, both [14] and
[15] extended previous adaptive state feedback synchroniza-
tion schemes to output feedback approaches for the adaptive

Manuscript received February 5, 2024.
Manuscript revised April 24, 2024.
Manuscript publicized May 13, 2024.
†School of Computer Science and Engineering, Kunsan Na-

tional University, 558, Daehakro, Gunsan, Jellabuk-do, 54150, Re-
public of Korea.

a) E-mail: 2sungryul@kunsan.ac.kr
DOI: 10.1587/transfun.2024EAL2019

synchronization problem. It’s worth noting that the proto-
cols discussed in [14] and [15] exhibit high-order dynamics
as they incorporate both local and distributed observers. Fur-
thermore, the structures of the protocols introduced in [13],
[14], and [15] are very complicated since their design is
closely related to the construction of the Lyapunov function.
Unlike the adaptive methods explained earlier, an adaptive
edge-based protocol is proposed for the synchronization of
nonlinear networks in [16], [17], and [18]. However, their
design approaches are limited to state feedback and only
applicable to undirected networks.

Inspired by the limitations of previous adaptive ap-
proaches, we introduce a novel local observer-based leader-
following protocol employing switching logic. The pre-
sented leader-following protocol employs a low-dimensional
observer and a simple update law based on logic-based
switching. These advantages not only diminish the com-
putational burden but also facilitate the implementation of
the protocol. In contrast to previous Lyapunov-based adap-
tive protocols, the proposed method allows for an indepen-
dent design of switching logic, state observer, and leader-
following protocol. Threrefore, the presented methodol-
ogy can be derived by integrating the presented switching
logic with existing non-adaptive protocols. As a result, it
can be considered a general solution to the adaptive leader-
following problem.

2. Problem Statement

Consider a network of general linear systems as follows.

Ûxi(t) = Axi(t) + Bui(t), (1)
yi(t) = Cxi(t), i = 0, · · · ,N,

where xi ∈ Rn, yi ∈ Rp,ui ∈ Rm are the state, the measured
output, and the control input of the ith agent, respectively, and
A,B,C are constant matrices with appropriate dimensions.
x0(t) denotes the leader’s state and xi(t), i = 1, · · · ,N denote
the follower’s state. Since the dynamics of the leader is not
influenced by the followers, we assume that u0(t) = 0.

Assumption 1: (A,B,C) is stabilizable and detectable.

Lemma 1: [7] Under Assumption 1, there exist always
unique matrices P = PT > 0 and Q = QT > 0 such that

AT P + PA − PBBT P = −In, (2)
AQ +QAT −QCTCQ = −In, (3)
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where In ∈ Rn×n denotes the identity matrix.

The network topology of the system (1) is defined by a
directed graph G = (V,E, A) where V = {0, · · · ,N} de-
notes the node set, E ⊂ V × V denotes the edge set, and
A = (ai j) ∈ R(N+1)×(N+1) denotes the adjacency matrix with
aii = 0, ai j = 1 if ( j, i) ∈ E , and ai j = 0 if ( j, i) < E .
L = (li j) ∈ R(N+1)×(N+1) denotes the Laplacian matrix of G
with lii =

∑N
j=0 ai j and li j = −ai j for i , j.

Assumption 2: The directed graph G has a directed span-
ning tree whose root node is the leader.

Lemma 2: [15] Under Assumption 2, the Laplacian matrix
L can be decomposed as

L =
(

0 01×N
L2 L1

)
(4)

where L1 ∈ RN×N is a nonsingular M-matrix, L2 ∈ RN×1 is
some matrix, and 01×N ∈ R1×N is a zero matrix. Further-
more, there exists a matrix U = diag (u1,u2, · · · ,uN ) > 0
such that L̂ = UL1 + LT

1 U > 0.

The goal of this paper is to design a fully distributed out-
put feedback protocol to solve the leader-following problem
defined as follows.

Definition 1: The leader-following problem of the network
(1) is to design ui(t) such that

lim
t→∞
‖xi(t) − x0(t)‖ = 0, i = 1, · · · ,N, (5)

3. Main Results

Before introducing a switching logic-based leader-following
protocol, we first examine an observer-based protocol with a
distributed constant gain for the network (1).

Û̂xi(t) = Ax̂i(t) + Bui(t) +QCT (yi(t) − Cx̂i(t)) ,
i = 0, · · · ,N (6)
ui(t) = −σiBT Pzi(t), i = 1, · · · ,N (7)

where σi > 0 is a distributed constant gain, P and Q are
solution matrices of (2) and (3), respectively, and zi(t) is the
estimated states of neighboring agents as follows.

zi(t) =
N∑
j=0

ai j
(
x̂i(t) − x̂j(t)

)
(8)

The Eq. (6) is a local state observer to estimate the full state of
the leader and followers. The protocol (7) is fully distributed
in the sense that it has a distributed static gain σi and uses
only estimated states obtained from its neighbours.

Lemma 3: Under Assumptions 1 and 2, there always exists
a constant σ∗i > 0 such that, for any σi > σ∗i , the protocols
(6) and (7) solve the leader-following problem of (1).

Proof: First, let ε(t) =
(
eT0 (t), · · · , e

T
N (t)

)T with ei(t) =
xi(t) − x̂i(t), i = 0, · · · ,N be the estimation error of (6).

Then, we have

Ûε(t) = IN+1 ⊗
(
A −QCTC

)
ε(t) (9)

where ⊗ denotes the Kronecker product. Consider the Lya-
punov functionV1(t) = εT (t)

(
IN+1 ⊗ Q−1) ε(t). Then, using

(3) and defining ε̄(t) =
(
IN+1 ⊗ Q−1) ε(t), we have

ÛV1(t) = εT
(
IN+1 ⊗ (Q−1 A + ATQ−1 − 2CTC)

)
ε

= ε̄T
(
IN+1 ⊗ (AQ +QAT − 2QCTCQ)

)
ε̄

≤ −‖ε̄(t)‖2 (10)

which means that the estimation error dynamics (9) is expo-
nentially stable. Second, considering (1) and (7), we have

Ûx(t) = (IN ⊗ A)x(t) − (Σ ⊗ BBT P)z(t) (11)

where x(t) =
(
xT1 , · · · , x

T
N

)T , z(t) =
(
zT1 , · · · , z

T
N

)T , and Σ =
diag (σ1, · · · , σN ). Consider the state transformation

η(t) = (L1 ⊗ In) (x(t) − 1N ⊗ x0(t)) (12)

where 1N = (1, · · · ,1)T ∈ RN . Since L1 is nonsingular,
(12) implies that (5) holds if and only if η(t) → 0 as t →∞.
Thus, for proving (5), it is enough to prove the asymptotical
stability of η(t). Using (11) and (12), it follows that

Ûη(t) = (IN ⊗ A)η(t) − (L1Σ ⊗ BBT P)z(t) (13)

From (8), we have

z(t) = (L1 ⊗ In)x̂(t) + L2 ⊗ x̂0(t) (14)

Since L1N+1 = 0, it follows that L2 + L11N = 0. Then, we
have

z(t) = (L1 ⊗ In) (x̂(t) − 1N ⊗ x̂0(t)) (15)

where x̂(t) =
(

x̂T1 · · · x̂TN
)T . Let e(t) = x(t)− x̂(t) and

ζ(t) = (L1 ⊗ In)(e(t) − 1N ⊗ e0(t)). Then, it follows that

z(t) = η(t) − ζ(t) (16)

Substituting (16) into (13), we have

Ûη(t) = (IN ⊗ A)η(t) − (L1Σ ⊗ BBT P)η(t) (17)
+(L1Σ ⊗ BBT P)ζ(t)

(10) means that ζ(t) → 0 as t →∞. Therefore, the stability
of (17) reduces to that of (18) below.

Ûη(t) = (IN ⊗ A)η(t) − (L1Σ ⊗ BBT P)η(t) (18)

To examine the stability of (18), define theLyapunov function
V2(t) = ηT (t) (UΣ ⊗ P) η(t). Then, we have

ÛV2(t) = ηT (t)
(
UΣ ⊗ (PA + AT P)

)
η(t) (19)

−ηT (t)(ΣL̂Σ ⊗ PBBT P)η(t)

Using Lemma 2, we have

ηT (ΣL̂Σ ⊗ PBBT P)η ≥ c0η
T (UΣ2 ⊗ PBBT P)η (20)
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where c0 = λm(L̂)
/
λM (U), λm(L̂) > 0 is the smallest eigen-

value of L̂, and λM (U) > 0 is the largest eigenvalue of U.
Using (2) and (20), we have

ÛV2 ≤

N∑
i=1

uiσiηi
T

(
(PA + AT P) − c0σiPBBT P

)
ηi,

=

N∑
i=1

uiσiηi
T

(
−In − (c0σi − 1)PBBT P

)
ηi (21)

Let σ∗i = 1/c0. If σi ≥ σ
∗
i , we have

ÛV2(t) ≤ −
N∑
i=1

uiσi ‖ηi(t)‖2 (22)

From (22), it is evident that (17) exhibits exponential stabil-
ity, implying the satisfaction of (5).

Remark 1: Equation (22) shows that to solve the leader-
following problem, the design of the static gain σi depends
on the matrices U and L̂ that are derived from the Laplacian
matrix L1. Despite the fully distributed structure of the
proposed protocol, its static gain is determined by utilizing
global information on the Laplacian matrix. The reliance
on global information is eliminated by the adaptive protocol
presented in the next Theorem 1.

Next, we propose the observer-based protocol with a dis-
tributed adaptive gain as follows.

Û̂xi(t) = Ax̂i(t) + Bui(t) +QCT (yi(t) − Cx̂i(t)) ,
i = 0, · · · ,N (23)

ui(t) = −σi(t)BT Pzi(t), i = 1, · · · ,N (24)

where σi(t) > 0 denotes an adaptive gain. The switching
logic to tune σi(t) is proposed as follows.

σi(t) = ε
j
i , i f ε ji ≤ δi(t) < ε

j+1
i , σi(0) = ε0

i ,

ε
j
i = ε

0
i a j

i , j = 0, · · · ,∞, (25)
Ûδi(t) = ‖zi(t)‖2, δi(0) = δ0

i ,

where δi(t) is a variable to estimate a synchronization error
between the leader and followers, ε ji is an increasing se-
quence, and ε0

i > 0,ai > 1, δ0
i > 0 are initial constants.

By using (25), the switching happens when δi(t) = ε
j
i ,

and σi(t) is changed to ε
j
i . σi(t) is kept constant while

ε
j
i ≤ δi(t) < ε

j+1
i . Thus, it is clear from (25) that δi(t) > 0

is monotonically non-decreasing and σi(t) increases in a
piecewise constant manner.

Theorem 1: If Assumptions 1 and 2 are satisfied, the
proposed protocols (23), (24), and (25) solve the leader-
following problem in (1). Moreover, σi(t) is bounded for
all t ≥ 0 and there exists σs

i > 0 such that σi(t) → σs
i as

t →∞.

Proof: Firstly, let tk be the kth switching moment deter-
mined by the switching logic (25). Because σi(t) is piece-
wise constant, it is assumed that σi(t) = σik during the

interval [tk, tk+1). In the same manner as in deriving (17),
we have, for all t ∈ [tk, tk+1),

Ûη(t) = (IN ⊗ A)η(t) − (L1Σk ⊗ BBT P)η(t) (26)
+(L1Σk ⊗ BBT P)ζ(t)

where Σk = diag (σ1k, · · · , σNk). Taking (10) into account,
there exist ζ0

k
> 0 and β > 0 such that for all t ∈ [tk, tk+1),

‖ζ(t)‖2 ≤ ζ0
k e−β(t−tk ) (27)

Thus, in order to prove the stability of (26), it is sufficient to
prove the stability of (28) below.

Ûη(t) = (IN ⊗ A)η(t) − (L1Σk ⊗ BBT P)η(t) (28)

Define the Lyapunov functionV3k(t) = ηT (t) (UΣk ⊗ P) η(t).
Using the same manner as deriving (21), we have

ÛV3k ≤

N∑
i=1

uiσikηi
T

(
−In − (c0σik − 1)PBBT P

)
ηi (29)

By considering (29) and letting σ∗
ik
= 1/c0, there exist

positive constants η0
k
and α such that for t ∈ [tk, tk+1) and

σik ≥ σ
∗
ik
,

‖η(t)‖2 ≤ η0
ke−α(t−tk ) (30)

Second, employing a contradiction method, we will prove
that a finite number of switching occurs. Conversely, let
us assume that an infinite number of switching takes place.
From (25), this means thatσi(t) → ∞ as k →∞. Therefore,
there is the switching time tk̄ such that σik(t) > σ∗

ik
for all

t ≥ tk̄ . Let ∆δi = δi(tk+1) − δi(tk). Using (16) and (25), we
have for all k ≥ k̄,

∆δi =

∫ tk+1

0
‖zi(τ)‖2dτ −

∫ tk

0
‖zi(τ)‖2dτ (31)

=

∫ tk+1

tk

‖zi(τ)‖2dτ ≤
∫ tk+1

tk

‖z(τ)‖2dτ

≤

∫ tk+1

tk

‖η(τ)‖2dτ +
∫ tk+1

tk

‖ζ(τ)‖2dτ

Considering (27) and (30), for all k ≥ k̄, (31) becomes

∆δi ≤
η0
k

α

(
1 − e−α(tk+1−tk )

)
+
ζ0
k

β

(
1 − e−β(tk+1−tk )

)
(32)

From (32), it is easy to show that there exists δ̄ > 0 such that
∆δi ≤ δ̄ for all k ≥ k̄. Let ∆ε ji = ε

j+1
i − ε

j
i . Keeping (25) in

mind, it is clear that

∆ε
j
i = ε

0
i (ai − 1)a j

i (33)

From (33), it is clear that ∆ε ji → ∞ as j → ∞, which
implies that there is a finite constant j satisfying ∆ε ji > δ̄.
Therefore, it is evident that a finite number of switching
occurs. The result contradicts an initial supposition of an
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infinite number of switching. Hence, we conclude that a
finite number of switching occurs. Since σi(t) is bounded
and non-decreasing, it is clear that σi(t) → σs

i as t → ∞.
Lastly, we will prove that η(t) → 0 as t → ∞. Let ts be
the last switching instant. Then, there exists σs

i such that
σi(t) = σs

i for all t ≥ ts . Thus, for all t ≥ ts , we can rewrite
the Eq. (28) as

Ûη(t) = (IN ⊗ A)η(t) − (L1Σ
s ⊗ BBT P)η(t) (34)

= (IN ⊗ A)η(t) − (L1Σ
∗ ⊗ BBT P)η(t)

+(L1(Σ
∗ − Σs) ⊗ BBT P)η(t)

= Âη(t) + B̂η(t)

where Â = (IN ⊗ A) − (L1Σ
∗ ⊗ BBT P), B̂ = L1(Σ

∗ − Σs) ⊗

BBT P,Σs = diag(σs
1 , · · · , σ

s
N ),Σ

∗ = diag(σ∗1 , · · · , σ
∗
N ). In

order to analyze the stability of (34), define the Lyapunov
function Vs(t) = ηT (t) (UΣ∗ ⊗ P) η(t). Then, we have

ÛVs(t) ≤ −αVs(t) + c1‖η(t)‖2 ≤ c1‖η(t)‖2 (35)

where c1 = 2


(UΣ∗ ⊗ P) B̂



2. Integrating both sides of (35)
from ts to t, it follows that

Vs(t) ≤ Vs(ts) + c1

∫ t

ts

‖η(τ)‖2dτ (36)

= Vs(ts) + c1

∫ t

ts

‖ζ(τ)‖2dτ + c1

∫ t

ts

‖z(τ)‖2dτ

From (25) and the boundedness of σi(t), it is clear that δi(t)
is bounded, and z(t) is square integrable. Moreover, (27)
implies square integrability of ζ(t). From (36), it is evident
that η(t) is also bounded and square integrable. Furthermore,
considering (34), we can see that Ûη(t) is bounded. Conse-
quently, the asymptotical stability of η(t) is guaranteed by
Barbalat’s lemma.

Remark 2: Lemma 3 means that if the static gain σi is suf-
ficiently large, the leader-following problem can be solved.
Motivated by this fact, the proposed switching logic (25)
increases the adaptive gain σi(t) in a piecewise constant
manner until the synchronization error between the leader
and followers converges to zero. Since the adaptive gain
σi(t) is determined by the sequence ε ji as shown in (25),
ε
j
i must be a strictly increasing sequence. It is worth not-
ing that the presented method employs a simpler update law
and lower dimensional observer than the previous Lyapunov-
based methods [14] and [15]. In addition, compared to state
feedback adaptive protocols [17] and [18], our approach is
applicable to the directed network and depends on output
feedback.

4. Numerical Example

Consider the network of the form (1) as follows.

A =
(

0.15 2.5
−3 −0.2

)
,B =

(
1
1

)
,C =

(
1 1

)
(37)

Fig. 1 Network graph.

Fig. 2 The graphs of xi (t).

Fig. 3 The graphs of σi (t) and δi (t).

Figure 1 illustrates the directed graph representing the com-
munication network of (37). It is easy to confirm that the
Assumptions 1 and 2 hold for the system (37). From (2) and
(3), we can derive the matrices P and Q as follows.

P =
(

1.29 −0.03
−0.03 0.76

)
,Q =

(
0.85 −0.16
−0.16 1.34

)
(38)

For simulation, we choose ε0
i = 0.2,ai = 2, δ0

i =

0, i = 1, · · · ,4, x0(0) = (−2,1)T , x1(0) = (−1,2)T , x2(0) =
(0,−2)T , x3(0) = (1,−1)T , x4(0) = (2,0)T , x̂i(0) = (0,0)T , i =
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0, · · · ,4. Figure 2 demonstrates that the states of all fol-
lowers converge to the state of the leader asymptotically.
Importantly, as proved in Theorem 1, Fig. 3 illustrates that
both δi(t) and σi(t) are non-decreasing and bounded.
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