
DOI:10.1587/transfun.2024EAL2019

Publicized:2024/05/13

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

LETTER
Adaptive Output Feedback Leader-Following in Networks of Linear
Systems Using Switching Logic

Sungryul LEE†, Member

SUMMARY This study explores adaptive output feedback leader-
following in networks of linear systems utilizing switching logic. A local
state observer is employed to estimate the true state of each agent within the
network. The proposed protocol is based on the estimated states obtained
from neighboring agents and employs a switching logic to tune its adaptive
gain by utilizing only local neighboring information. The proposed leader-
following protocol is fully distributed because it has a distributed adaptive
gain and relies on only local information from its neighbors. Consequently,
compared to conventional adaptive protocols, the proposed design method
provides the advantages of a very simple adaptive law and dynamics with a
low dimension.
key words: adaptive protocol, leader-following, switching logic, output
feedback

1. Introduction

Recently, a great deal of research attention has been paid to
the synchronization problem of complex networks because
of its broad applicability in various fields like formation
control, cooperative control, robotics, sensor networks, and
so on [1]. Extensive research has demonstrated that the
solvability of the synchronization problem is determined by
the algebraic connectivity related to the Laplacian matrix
[2-7]. Nevertheless, a significant drawback of existing syn-
chronization protocols lies in their dependence on global
information associated with the Laplacian matrix. To re-
move this obstacle, recent research has focused on various
adaptive synchronization approaches that rely exclusively on
locally acquired information from neighboring agents.

Early works [8] and [9] on the adaptive synchronization
approach were developed for the directed network of first or
second-order systems. Importantly, they are considered fully
distributed because the coupling gain of each agent is ad-
justed using solely local neighboring information. The fully
distributed studies on the network of low-order systems were
extended to the undirected network of high-order nonlinear
systems in [10], the directed network of high-order linear
systems in [11] and [12], and the directed network of com-
plex nonlinear systems in [13]. Remarkably, both [14] and
[15] extended previous adaptive state feedback synchroniza-
tion schemes to output feedback approaches for the adaptive
synchronization problem. It’s worth noting that the proto-
cols discussed in [14] and [15] exhibit high-order dynamics
as they incorporate both local and distributed observers. Fur-
thermore, the structures of the protocols introduced in [13],
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[14], and [15] are very complicated since their design is
closely related to the construction of the Lyapunov function.
Unlike the adaptive methods explained earlier, an adaptive
edge-based protocol is proposed for the synchronization of
nonlinear networks in [16], [17], and [18]. However, their
design approaches are limited to state feedback and only
applicable to undirected networks.

Inspired by the limitations of previous adaptive ap-
proaches, we introduce a novel local observer-based leader-
following protocol employing switching logic. The pre-
sented leader-following protocol employs a low-dimensional
observer and a simple update law based on logic-based
switching. These advantages not only diminish the com-
putational burden but also facilitate the implementation of
the protocol. In contrast to previous Lyapunov-based adap-
tive protocols, the proposed method allows for an indepen-
dent design of switching logic, state observer, and leader-
following protocol. Threrefore, the presented methodol-
ogy can be derived by integrating the presented switching
logic with existing non-adaptive protocols. As a result, it
can be considered a general solution to the adaptive leader-
following problem.

2. Problem Statement

Consider a network of general linear systems as follows.

¤𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡), (1)
𝑦𝑖 (𝑡) = 𝐶𝑥𝑖 (𝑡), 𝑖 = 0, · · · , 𝑁,

where 𝑥𝑖 ∈ 𝑅𝑛, 𝑦𝑖 ∈ 𝑅𝑝 , 𝑢𝑖 ∈ 𝑅𝑚 are the state, the measured
output, and the control input of the 𝑖th agent, respectively, and
𝐴, 𝐵, 𝐶 are constant matrices with appropriate dimensions.
𝑥0 (𝑡) denotes the leader’s state and 𝑥𝑖 (𝑡), 𝑖 = 1, · · · , 𝑁 denote
the follower’s state. Since the dynamics of the leader is not
influenced by the followers, we assume that 𝑢0 (𝑡) = 0.

Assumption 1: (𝐴, 𝐵, 𝐶) is stabilizable and detectable.

Lemma 1: [7] Under Assumption 1, there exist always
unique matrices 𝑃 = 𝑃𝑇 > 0 and 𝑄 = 𝑄𝑇 > 0 such that

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝐵𝑇𝑃 = −𝐼𝑛, (2)
𝐴𝑄 +𝑄𝐴𝑇 −𝑄𝐶𝑇𝐶𝑄 = −𝐼𝑛, (3)

where 𝐼𝑛 ∈ 𝑅𝑛×𝑛 denotes the identity matrix.

The network topology of the system (1) is defined by a
directed graph 𝐺 = (𝑉, 𝐸, 𝐴) where 𝑉 = {0, · · · , 𝑁} de-
notes the node set, 𝐸 ⊂ 𝑉 × 𝑉 denotes the edge set, and
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A = (𝑎𝑖 𝑗 ) ∈ 𝑅 (𝑁+1)×(𝑁+1) denotes the adjacency matrix
with 𝑎𝑖𝑖 = 0 , 𝑎𝑖 𝑗 = 1 if ( 𝑗 , 𝑖) ∈ 𝐸 , and 𝑎𝑖 𝑗 = 0 if ( 𝑗 , 𝑖) ∉ 𝐸 .
𝐿 = (𝑙𝑖 𝑗 ) ∈ 𝑅 (𝑁+1)×(𝑁+1) denotes the Laplacian matrix of
𝐺 with 𝑙𝑖𝑖 =

∑𝑁
𝑗=0 𝑎𝑖 𝑗 and 𝑙𝑖 𝑗 = −𝑎𝑖 𝑗 for 𝑖 ≠ 𝑗 .

Assumption 2: The directed graph 𝐺 has a directed span-
ning tree whose root node is the leader.

Lemma 2: [15] Under Assumption 2, the Laplacian matrix
𝐿 can be decomposed as

𝐿 =

(
0 01×𝑁
𝐿2 𝐿1

)
(4)

where 𝐿1 ∈ 𝑅𝑁×𝑁 is a nonsingular M-matrix, 𝐿2 ∈ 𝑅𝑁×1

is some matrix, and 01×𝑁 ∈ 𝑅1×𝑁 is a zero matrix. Further-
more, there exists a matrix 𝑈 = 𝑑𝑖𝑎𝑔 (𝑢1, 𝑢2, · · · , 𝑢𝑁 ) > 0
such that �̂� = 𝑈𝐿1 + 𝐿𝑇

1𝑈 > 0.

The goal of this paper is to design a fully distributed out-
put feedback protocol to solve the leader-following problem
defined as follows.

Definition 1: The leader-following problem of the network
(1) is to design 𝑢𝑖 (𝑡) such that

lim
𝑡→∞

∥𝑥𝑖 (𝑡) − 𝑥0 (𝑡)∥ = 0, 𝑖 = 1, · · · , 𝑁, (5)

3. Main Results

Before introducing a switching logic-based leader-following
protocol, we first examine an observer-based protocol with a
distributed constant gain for the network (1).

¤̂𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡) +𝑄𝐶𝑇 (𝑦𝑖 (𝑡) − 𝐶𝑥𝑖 (𝑡)) ,
𝑖 = 0, · · · , 𝑁 (6)

𝑢𝑖 (𝑡) = −𝜎𝑖𝐵
𝑇𝑃𝑧𝑖 (𝑡), 𝑖 = 1, · · · , 𝑁 (7)

where 𝜎𝑖 > 0 is a distributed constant gain, 𝑃 and 𝑄 are
solution matrices of (2) and (3), respectively, and 𝑧𝑖 (𝑡) is the
estimated states of neighboring agents as follows.

𝑧𝑖 (𝑡) =
𝑁∑︁
𝑗=0

𝑎𝑖 𝑗
(
𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)

)
(8)

The equation (6) is a local state observer to estimate the full
state of the leader and followers. The protocol (7) is fully
distributed in the sense that it has a distributed static gain 𝜎𝑖

and uses only estimated states obtained from its neighbours.

Lemma 3: Under Assumptions 1 and 2, there always exists
a constant 𝜎∗

𝑖
> 0 such that, for any 𝜎𝑖 > 𝜎∗

𝑖
, the protocols

(6) and (7) solve the leader-following problem of (1).

Proof : First, let 𝜀(𝑡) =
(
𝑒𝑇0 (𝑡), · · · , 𝑒

𝑇
𝑁
(𝑡)

)𝑇 with 𝑒𝑖 (𝑡) =

𝑥𝑖 (𝑡) − 𝑥𝑖 (𝑡), 𝑖 = 0, · · · , 𝑁 be the estimation error of (6).
Then, we have

¤𝜀(𝑡) = 𝐼𝑁+1 ⊗
(
𝐴 −𝑄𝐶𝑇𝐶

)
𝜀(𝑡) (9)

where ⊗ denotes the Kronecker product. Consider the Lya-
punov function 𝑉1 (𝑡) = 𝜀𝑇 (𝑡)

(
𝐼𝑁+1 ⊗ 𝑄−1) 𝜀(𝑡). Then, us-

ing (3) and defining 𝜀(𝑡) =
(
𝐼𝑁+1 ⊗ 𝑄−1) 𝜀(𝑡), we have

¤𝑉1 (𝑡) = 𝜀𝑇
(
𝐼𝑁+1 ⊗ (𝑄−1𝐴 + 𝐴𝑇𝑄−1 − 2𝐶𝑇𝐶)

)
𝜀

= 𝜀𝑇
(
𝐼𝑁+1 ⊗ (𝐴𝑄 +𝑄𝐴𝑇 − 2𝑄𝐶𝑇𝐶𝑄)

)
𝜀

≤ −∥𝜀(𝑡)∥2 (10)

which means that the estimation error dynamics (9) is expo-
nentially stable. Second, considering (1) and (7), we have

¤𝑥(𝑡) = (𝐼𝑁 ⊗ 𝐴)𝑥(𝑡) − (Σ ⊗ 𝐵𝐵𝑇𝑃)𝑧(𝑡) (11)

where 𝑥(𝑡) =
(
𝑥𝑇1 , · · · , 𝑥

𝑇
𝑁

)𝑇 , 𝑧(𝑡) =
(
𝑧𝑇1 , · · · , 𝑧

𝑇
𝑁

)𝑇 , and
Σ = 𝑑𝑖𝑎𝑔 (𝜎1, · · · , 𝜎𝑁 ). Consider the state transformation

𝜂(𝑡) = (𝐿1 ⊗ 𝐼𝑛) (𝑥(𝑡) − 1𝑁 ⊗ 𝑥0 (𝑡)) (12)

where 1𝑁 = (1, · · · , 1)𝑇 ∈ 𝑅𝑁 . Since 𝐿1 is nonsingular,
(12) implies that (5) holds if and only if 𝜂(𝑡) → 0 as 𝑡 → ∞.
Thus, for proving (5), it is enough to prove the asymptotical
stability of 𝜂(𝑡). Using (11) and (12), it follows that

¤𝜂(𝑡) = (𝐼𝑁 ⊗ 𝐴)𝜂(𝑡) − (𝐿1Σ ⊗ 𝐵𝐵𝑇𝑃)𝑧(𝑡) (13)

From (8), we have

𝑧(𝑡) = (𝐿1 ⊗ 𝐼𝑛)𝑥(𝑡) + 𝐿2 ⊗ 𝑥0 (𝑡) (14)

Since 𝐿1𝑁+1 = 0, it follows that 𝐿2 + 𝐿11𝑁 = 0. Then, we
have

𝑧(𝑡) = (𝐿1 ⊗ 𝐼𝑛) (𝑥(𝑡) − 1𝑁 ⊗ 𝑥0 (𝑡)) (15)

where 𝑥(𝑡) =
(
𝑥𝑇1 · · · 𝑥𝑇

𝑁

)𝑇 . Let 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡)
and 𝜁 (𝑡) = (𝐿1 ⊗ 𝐼𝑛) (𝑒(𝑡) − 1𝑁 ⊗ 𝑒0 (𝑡)). Then, it follows
that

𝑧(𝑡) = 𝜂(𝑡) − 𝜁 (𝑡) (16)

Substituting (16) into (13), we have

¤𝜂(𝑡) = (𝐼𝑁 ⊗ 𝐴)𝜂(𝑡) − (𝐿1Σ ⊗ 𝐵𝐵𝑇𝑃)𝜂(𝑡) (17)
+(𝐿1Σ ⊗ 𝐵𝐵𝑇𝑃)𝜁 (𝑡)

(10) means that 𝜁 (𝑡) → 0 as 𝑡 → ∞. Therefore, the stability
of (17) reduces to that of (18) below.

¤𝜂(𝑡) = (𝐼𝑁 ⊗ 𝐴)𝜂(𝑡) − (𝐿1Σ ⊗ 𝐵𝐵𝑇𝑃)𝜂(𝑡) (18)

To examine the stability of (18), define the Lyapunov function
𝑉2 (𝑡) = 𝜂𝑇 (𝑡) (𝑈Σ ⊗ 𝑃) 𝜂(𝑡). Then, we have

¤𝑉2 (𝑡) = 𝜂𝑇 (𝑡)
(
𝑈Σ ⊗ (𝑃𝐴 + 𝐴𝑇𝑃)

)
𝜂(𝑡) (19)

−𝜂𝑇 (𝑡) (Σ�̂�Σ ⊗ 𝑃𝐵𝐵𝑇𝑃)𝜂(𝑡)

Using Lemma 2, we have

𝜂𝑇 (Σ�̂�Σ ⊗ 𝑃𝐵𝐵𝑇𝑃)𝜂 ≥ 𝑐0𝜂
𝑇 (𝑈Σ2 ⊗ 𝑃𝐵𝐵𝑇𝑃)𝜂 (20)

where 𝑐0 = 𝜆𝑚 ( �̂�)
/
𝜆𝑀 (𝑈), 𝜆𝑚 ( �̂�) > 0 is the smallest
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eigenvalue of �̂�, and 𝜆𝑀 (𝑈) > 0 is the largest eigenvalue of
𝑈 . Using (2) and (20), we have

¤𝑉2 ≤
𝑁∑︁
𝑖=1

𝑢𝑖𝜎𝑖𝜂𝑖
𝑇
(
(𝑃𝐴 + 𝐴𝑇𝑃) − 𝑐0𝜎𝑖𝑃𝐵𝐵

𝑇𝑃

)
𝜂𝑖 ,

=

𝑁∑︁
𝑖=1

𝑢𝑖𝜎𝑖𝜂𝑖
𝑇
(
−𝐼𝑛 − (𝑐0𝜎𝑖 − 1)𝑃𝐵𝐵𝑇𝑃

)
𝜂𝑖 (21)

Let 𝜎∗
𝑖
= 1/𝑐0. If 𝜎𝑖 ≥ 𝜎∗

𝑖
, we have

¤𝑉2 (𝑡) ≤ −
𝑁∑︁
𝑖=1

𝑢𝑖𝜎𝑖 ∥𝜂𝑖 (𝑡)∥2 (22)

From (22), it is evident that (17) exhibits exponential stabil-
ity, implying the satisfaction of (5).

Remark 1: Equation (22) shows that to solve the leader-
following problem, the design of the static gain 𝜎𝑖 depends
on the matrices 𝑈 and �̂� that are derived from the Laplacian
matrix 𝐿1. Despite the fully distributed structure of the
proposed protocol, its static gain is determined by utilizing
global information on the Laplacian matrix. The reliance
on global information is eliminated by the adaptive protocol
presented in the next Theorem 1.

Next, we propose the observer-based protocol with a dis-
tributed adaptive gain as follows.

¤̂𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡) +𝑄𝐶𝑇 (𝑦𝑖 (𝑡) − 𝐶𝑥𝑖 (𝑡)) ,
𝑖 = 0, · · · , 𝑁 (23)

𝑢𝑖 (𝑡) = −𝜎𝑖 (𝑡)𝐵𝑇𝑃𝑧𝑖 (𝑡), 𝑖 = 1, · · · , 𝑁 (24)

where 𝜎𝑖 (𝑡) > 0 denotes an adaptive gain. The switching
logic to tune 𝜎𝑖 (𝑡) is proposed as follows.

𝜎𝑖 (𝑡) = 𝜀
𝑗

𝑖
, 𝑖 𝑓 𝜀

𝑗

𝑖
≤ 𝛿𝑖 (𝑡) < 𝜀

𝑗+1
𝑖

, 𝜎𝑖 (0) = 𝜀0
𝑖 ,

𝜀
𝑗

𝑖
= 𝜀0

𝑖 𝑎
𝑗

𝑖
, 𝑗 = 0, · · · ,∞, (25)

¤𝛿𝑖 (𝑡) = ∥𝑧𝑖 (𝑡)∥2, 𝛿𝑖 (0) = 𝛿0
𝑖 ,

where 𝛿𝑖 (𝑡) is a variable to estimate a synchronization error
between the leader and followers, 𝜀

𝑗

𝑖
is an increasing se-

quence, and 𝜀0
𝑖
> 0, 𝑎𝑖 > 1, 𝛿0

𝑖
> 0 are initial constants.

By using (25), the switching happens when 𝛿𝑖 (𝑡) = 𝜀
𝑗

𝑖
,

and 𝜎𝑖 (𝑡) is changed to 𝜀
𝑗

𝑖
. 𝜎𝑖 (𝑡) is kept constant while

𝜀
𝑗

𝑖
≤ 𝛿𝑖 (𝑡) < 𝜀

𝑗+1
𝑖

. Thus, it is clear from (25) that 𝛿𝑖 (𝑡) > 0
is monotonically non-decreasing and 𝜎𝑖 (𝑡) increases in a
piecewise constant manner.

Theorem 1: If Assumptions 1 and 2 are satisfied, the
proposed protocols (23), (24), and (25) solve the leader-
following problem in (1). Moreover, 𝜎𝑖 (𝑡) is bounded for
all 𝑡 ≥ 0 and there exists 𝜎𝑠

𝑖
> 0 such that 𝜎𝑖 (𝑡) → 𝜎𝑠

𝑖
as

𝑡 → ∞.

Proof : Firstly, let 𝑡𝑘 be the 𝑘th switching moment deter-
mined by the switching logic (25). Because 𝜎𝑖 (𝑡) is piece-
wise constant, it is assumed that 𝜎𝑖 (𝑡) = 𝜎𝑖𝑘 during the

interval [𝑡𝑘 , 𝑡𝑘+1). In the same manner as in deriving (17),
we have, for all 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1),

¤𝜂(𝑡) = (𝐼𝑁 ⊗ 𝐴)𝜂(𝑡) − (𝐿1Σ𝑘 ⊗ 𝐵𝐵𝑇𝑃)𝜂(𝑡) (26)
+(𝐿1Σ𝑘 ⊗ 𝐵𝐵𝑇𝑃)𝜁 (𝑡)

where Σ𝑘 = 𝑑𝑖𝑎𝑔 (𝜎1𝑘 , · · · , 𝜎𝑁𝑘). Taking (10) into account,
there exist 𝜁0

𝑘
> 0 and 𝛽 > 0 such that for all 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1),

∥𝜁 (𝑡)∥2 ≤ 𝜁0
𝑘𝑒

−𝛽 (𝑡−𝑡𝑘 ) (27)

Thus, in order to prove the stability of (26), it is sufficient to
prove the stability of (28) below.

¤𝜂(𝑡) = (𝐼𝑁 ⊗ 𝐴)𝜂(𝑡) − (𝐿1Σ𝑘 ⊗ 𝐵𝐵𝑇𝑃)𝜂(𝑡) (28)

Define the Lyapunov function𝑉3𝑘 (𝑡) = 𝜂𝑇 (𝑡) (𝑈Σ𝑘 ⊗ 𝑃) 𝜂(𝑡).
Using the same manner as deriving (21), we have

¤𝑉3𝑘 ≤
𝑁∑︁
𝑖=1

𝑢𝑖𝜎𝑖𝑘𝜂𝑖
𝑇
(
−𝐼𝑛 − (𝑐0𝜎𝑖𝑘 − 1)𝑃𝐵𝐵𝑇𝑃

)
𝜂𝑖 (29)

By considering (29) and letting 𝜎∗
𝑖𝑘

= 1/𝑐0 , there exist
positive constants 𝜂0

𝑘
and 𝛼 such that for 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1) and

𝜎𝑖𝑘 ≥ 𝜎∗
𝑖𝑘

,

∥𝜂(𝑡)∥2 ≤ 𝜂0
𝑘𝑒

−𝛼(𝑡−𝑡𝑘 ) (30)

Second, employing a contradiction method, we will prove
that a finite number of switching occurs. Conversely, let
us assume that an infinite number of switching takes place.
From (25), this means that𝜎𝑖 (𝑡) → ∞ as 𝑘 → ∞. Therefore,
there is the switching time 𝑡 �̄� such that 𝜎𝑖𝑘 (𝑡) > 𝜎∗

𝑖𝑘
for all

𝑡 ≥ 𝑡 �̄� . Let Δ𝛿𝑖 = 𝛿𝑖 (𝑡𝑘+1) − 𝛿𝑖 (𝑡𝑘). Using (16) and (25), we
have for all 𝑘 ≥ �̄� ,

Δ𝛿𝑖 =

∫ 𝑡𝑘+1

0
∥𝑧𝑖 (𝜏)∥2𝑑𝜏 −

∫ 𝑡𝑘

0
∥𝑧𝑖 (𝜏)∥2𝑑𝜏 (31)

=

∫ 𝑡𝑘+1

𝑡𝑘

∥𝑧𝑖 (𝜏)∥2𝑑𝜏 ≤
∫ 𝑡𝑘+1

𝑡𝑘

∥𝑧(𝜏)∥2𝑑𝜏

≤
∫ 𝑡𝑘+1

𝑡𝑘

∥𝜂(𝜏)∥2𝑑𝜏 +
∫ 𝑡𝑘+1

𝑡𝑘

∥𝜁 (𝜏)∥2𝑑𝜏

Considering (27) and (30), for all 𝑘 ≥ �̄� , (31) becomes

Δ𝛿𝑖 ≤
𝜂0
𝑘

𝛼

(
1 − 𝑒−𝛼(𝑡𝑘+1−𝑡𝑘 )

)
+
𝜁0
𝑘

𝛽

(
1 − 𝑒−𝛽 (𝑡𝑘+1−𝑡𝑘 )

)
(32)

From (32), it is easy to show that there exists 𝛿 > 0 such that
Δ𝛿𝑖 ≤ 𝛿 for all 𝑘 ≥ �̄� . Let Δ𝜀 𝑗

𝑖
= 𝜀

𝑗+1
𝑖

− 𝜀
𝑗

𝑖
. Keeping (25)

in mind, it is clear that

Δ𝜀
𝑗

𝑖
= 𝜀0

𝑖 (𝑎𝑖 − 1)𝑎 𝑗

𝑖
(33)

From (33), it is clear that Δ𝜀 𝑗

𝑖
→ ∞ as 𝑗 → ∞, which

implies that there is a finite constant 𝑗 satisfying Δ𝜀
𝑗

𝑖
> 𝛿.

Therefore, it is evident that a finite number of switching
occurs. The result contradicts an initial supposition of an
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infinite number of switching. Hence, we conclude that a
finite number of switching occurs. Since 𝜎𝑖 (𝑡) is bounded
and non-decreasing, it is clear that 𝜎𝑖 (𝑡) → 𝜎𝑠

𝑖
as 𝑡 → ∞.

Lastly, we will prove that 𝜂(𝑡) → 0 as 𝑡 → ∞. Let 𝑡𝑠 be
the last switching instant. Then, there exists 𝜎𝑠

𝑖
such that

𝜎𝑖 (𝑡) = 𝜎𝑠
𝑖

for all 𝑡 ≥ 𝑡𝑠 . Thus, for all 𝑡 ≥ 𝑡𝑠 , we can rewrite
the equation (28) as

¤𝜂(𝑡) = (𝐼𝑁 ⊗ 𝐴)𝜂(𝑡) − (𝐿1Σ
𝑠 ⊗ 𝐵𝐵𝑇𝑃)𝜂(𝑡) (34)

= (𝐼𝑁 ⊗ 𝐴)𝜂(𝑡) − (𝐿1Σ
∗ ⊗ 𝐵𝐵𝑇𝑃)𝜂(𝑡)

+(𝐿1 (Σ∗ − Σ𝑠) ⊗ 𝐵𝐵𝑇𝑃)𝜂(𝑡)
= �̂�𝜂(𝑡) + �̂�𝜂(𝑡)

where �̂� = (𝐼𝑁 ⊗ 𝐴) − (𝐿1Σ
∗ ⊗ 𝐵𝐵𝑇𝑃), �̂� = 𝐿1 (Σ∗ − Σ𝑠) ⊗

𝐵𝐵𝑇𝑃, Σ𝑠 = 𝑑𝑖𝑎𝑔(𝜎𝑠
1 , · · · , 𝜎

𝑠
𝑁
), Σ∗ = 𝑑𝑖𝑎𝑔(𝜎∗

1 , · · · , 𝜎
∗
𝑁
).

In order to analyze the stability of (34), define the Lyapunov
function 𝑉𝑠 (𝑡) = 𝜂𝑇 (𝑡) (𝑈Σ∗ ⊗ 𝑃) 𝜂(𝑡). Then, we have

¤𝑉𝑠 (𝑡) ≤ −𝛼𝑉𝑠 (𝑡) + 𝑐1∥𝜂(𝑡)∥2 ≤ 𝑐1∥𝜂(𝑡)∥2 (35)

where 𝑐1 = 2
(𝑈Σ∗ ⊗ 𝑃) �̂�

2 . Integrating both sides of
(35) from 𝑡𝑠 to 𝑡, it follows that

𝑉𝑠 (𝑡) ≤ 𝑉𝑠 (𝑡𝑠) + 𝑐1

∫ 𝑡

𝑡𝑠

∥𝜂(𝜏)∥2𝑑𝜏 (36)

= 𝑉𝑠 (𝑡𝑠) + 𝑐1

∫ 𝑡

𝑡𝑠

∥𝜁 (𝜏)∥2𝑑𝜏 + 𝑐1

∫ 𝑡

𝑡𝑠

∥𝑧(𝜏)∥2𝑑𝜏

From (25) and the boundedness of 𝜎𝑖 (𝑡), it is clear that 𝛿𝑖 (𝑡)
is bounded, and 𝑧(𝑡) is square integrable. Moreover, (27)
implies square integrability of 𝜁 (𝑡). From (36), it is evident
that 𝜂(𝑡) is also bounded and square integrable. Furthermore,
considering (34), we can see that ¤𝜂(𝑡) is bounded. Conse-
quently, the asymptotical stability of 𝜂(𝑡) is guaranteed by
Barbalat’s lemma.

Remark 2: Lemma 3 means that if the static gain 𝜎𝑖 is suf-
ficiently large, the leader-following problem can be solved.
Motivated by this fact, the proposed switching logic (25)
increases the adaptive gain 𝜎𝑖 (𝑡) in a piecewise constant
manner until the synchronization error between the leader
and followers converges to zero. Since the adaptive gain
𝜎𝑖 (𝑡) is determined by the sequence 𝜀

𝑗

𝑖
as shown in (25),

𝜀
𝑗

𝑖
must be a strictly increasing sequence. It is worth not-

ing that the presented method employs a simpler update law
and lower dimensional observer than the previous Lyapunov-
based methods [14] and [15]. In addition, compared to state
feedback adaptive protocols [17] and [18], our approach is
applicable to the directed network and depends on output
feedback.

4. Numerical Example

Consider the network of the form (1) as follows.

𝐴 =

(
0.15 2.5
−3 −0.2

)
, 𝐵 =

(
1
1

)
, 𝐶 =

(
1 1

)
(37)

Fig. 1 Network graph

Fig. 2 The graphs of 𝑥𝑖 (𝑡 )

Figure 1 illustrates the directed graph representing the com-
munication network of (37). It is easy to confirm that the
Assumptions 1 and 2 hold for the system (37). From (2) and
(3), we can derive the matrices 𝑃 and 𝑄 as follows.

𝑃 =

(
1.29 −0.03
−0.03 0.76

)
, 𝑄 =

(
0.85 −0.16
−0.16 1.34

)
(38)

For simulation, we choose 𝜀0
𝑖
= 0.2, 𝑎𝑖 = 2, 𝛿0

𝑖
= 0, 𝑖 =

1, · · · , 4, 𝑥0 (0) = (−2, 1)𝑇 , 𝑥1 (0) = (−1, 2)𝑇 , 𝑥2 (0) =

(0,−2)𝑇 , 𝑥3 (0) = (1,−1)𝑇 , 𝑥4 (0) = (2, 0)𝑇 , 𝑥𝑖 (0) =

(0, 0)𝑇 , 𝑖 = 0, · · · , 4. Figure 2 demonstrates that the states
of all followers converge to the state of the leader asymp-
totically. Importantly, as proved in Theorem 1, Figure 3
illustrates that both 𝛿𝑖 (𝑡) and 𝜎𝑖 (𝑡) are non-decreasing and
bounded.
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