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CTU-Level Adaptive QP Offset Algorithm for V-PCC Using JND
and Spatial Complexity
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SUMMARY Point cloud video contains not only color information but
also spatial position information and usually has large volume of data. Typ-
ical rate distortion optimization algorithms based on Human Visual System
only consider the color information, which limit the coding performance.
In this paper, a Coding Tree Unit (CTU) level quantization parameter (QP)
adjustment algorithm based on JND and spatial complexity is proposed to
improve the subjective and objective quality of Video-Based Point Cloud
Compression (V-PCC). Firstly, it is found that the JNDmodel is degraded at
CTU level for attribute video due to the pixel filling strategy of V-PCC, and
an improved JND model is designed using the occupancy map. Secondly,
a spatial complexity detection metric is designed to measure the visual im-
portance of each CTU. Finally, a CTU-level QP adjustment scheme based
on both JND levels and visual importance is proposed for geometry and
attribute video. The experimental results show that, compared with the
latest V-PCC (TMC2-18.0) anchors, the BD-rate is reduced by −2.8% and
−3.2% for D1 and D2 metrics, respectively, and the subjective quality is
improved significantly.
key words: V-PCC, adaptive QP, JND, spatial complexity, subjective
quality

1. Introduction

Point cloud video is one of the main representations to de-
scribe the three-dimension space. It usually contains large
volume of data [1]. Therefore, the Moving Picture Experts
Group (MPEG) developed a standard named Video-based
Point Cloud Compression (V-PCC) to reduce storage and
transmission requirements.

In V-PCC, 3D point cloud is projected onto 2D planes,
and three types of videos are generated, including the occu-
pancy map video, geometry video, and attribute video. For
these projected videos, traditional video coding framework,
such as High Efficiency Video Coding (HEVC) is utilized
for compression [2]. In the field of video compression, the
characteristics of the Human Visual System (HVS) play an
important role.

Quantization Parameter (QP) adjustment is one of the
main approaches for rate distortion optimization [3]. In this
regard, the research based onHVS can bemainly divided into
two categories: Just Noticeable Difference (JND)-based al-
gorithms and visual attention-based algorithms [4]–[7]. To
balance the bitrates between salient areas and less salient
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areas, Cui et al. [4] proposed a low-complexity Coding Tree
Unit (CTU) layer saliency detection scheme, and applied it
to adjust the QP in CTU level. Shen et al. [5] employed a
pixel-wise pattern based JND model to determine a percep-
tually lossless distortion threshold for each CTU to decide
the appropriate QP. Nami et al. [6] proposed a JND-based
perceptual coding scheme, where CNN-based JND predic-
tion and visual importance fromvisual attentionmodelswere
used to adjust QP for each block.

In point cloud video, each point contains not only color
information but also spatial position information [8]. HVS is
both sensitive to color distortion and spatial position changes.
However, the existing studies based on HVS did not consider
the spatial position information. In this paper, a CTU-level
adaptive QP offset adjust algorithm is proposed by jointly
considering JND and spatial complexity. It includes three
parts. Firstly, it is found that the averaged JND value in a
CTU is influence by the unoccupied pixels, and an improved
JND model is designed using occupancy map. Secondly,
a spatial complexity metric is designed to measure visual
importance in geometry video. Finally, a CTU-based QP
adjust scheme is proposed based on both JND levels and
visual importance.

In this paper, the CTU with occupied pixels is referred
to as an occupied CTU, while the CTU where all pixels
are unoccupied is referred to as an unoccupied CTU. The
proposed algorithm is applied to occupied blocks. For the
unoccupied blocks, it has been found that unoccupied pixels
have no impact on the reconstruction of point cloud [9]. In
this paper, the QP of this area is set to the maximum to save
as much bit as possible.

The remainder of the paper is organized as follows. The
proposed algorithm is described in Sect. 2. The experimental
results are presented in Sect. 3. Finally, Sect. 4 concludes the
paper.

2. Proposed CTU-Level Adaptive QP Offset Algorithm

2.1 JND-Based Perception Description for Attribute Video

JND is always used to measure the limit of distortion level
that cannot be perceived by human visual system. In this
study, the pixel domain JND model is adopted for the at-
tribute video in V-PCC, which considers the joint effects of
luminance adaptation (LA) and contrast masking (CM), as
shown in (1).
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Fig. 1 Visualization of JND image at CTU level without mask and with
mask for attribute image of sequence Longdress.

JND(x, y) = L A(x, y) + CM(x, y)
− 0.03 ∗min{L A(x, y),CM(x, y)}, (1)

In each CTU, the obtained JND value is averaged and
denoted as JNDCTU . In this study, it is found that although
the pixels in unoccupied area do not affect the reconstruction
quality, however, the existence of unoccupied pixels may in-
fluence the accuracy of the JNDCTU . This is due to that the
filling strategy for attribute image are likely to create flat
texture in unoccupied area, which reduces the threshold of
the human eye to detect distortion. Therefore, the JNDCTU
obtained in this kind of CTU is smaller than it ought to be.
In the proposed algorithm, the occupancy map is employed
as a mask for the calculation of the JNDCTU to exclude un-
occupied pixels from the JND model, as shown in (2).

JNDCTU =
1
N

63∑
x=0

63∑
y=0

JND(x, y) × M, (2)

where M = 1 if the pixel at position (x, y) is occupied,
otherwise M = 0. N represents the number of occupied
pixels in a CTU.

Figure 1 shows the comparison of JND image at CTU
level for attribute image of the sequence Longdress, without
mask and with mask. It is evident that the mask can help to
distinguish salient CTU.

In order to describe the visual sensitivity for attribute
image, a parameter namedAttributeVisual Sensitivity (AVS)
is defined for each occupied CTU, as shown in (3),

AVSCTU =
max JNDCTU − JNDCTU

max JNDCTU −min JNDCTU
, (3)

where maxJNDCTU and minJNDCTU represent the maximum
and minimum JND levels of occupied CTUs in a frame, re-
spectively. The smaller the JND value of the current occu-
pied CTU, the larger the AVS value will be, indicating that
the human eye is more sensitive to the current CTU.

2.2 Spatial Complexity Description for Geometry Video

In point cloud video, areas with significant spatial variation
often reflect high contrast of depth, which conforms with
the fact that depth edges have higher visual sensitivity and
attention [10]. The projected depth information in point
cloud video is stored in the luminance channel of the geom-
etry image. Therefore, the spatial positional changes in the

Fig. 2 An example where occupied pixels in a CTU do not belong to the
same patch in geometry image.

point cloud are represented by calculating the complexity of
the luminance channel within each CTU. Areas with high
complexity usually have high visual attention.

Various methods exist for measuring complexity.
Among them, variance is the popular one. However, the oc-
cupied pixels within a CTU may belong to multiple patches,
as shown in Fig. 2. Different patches may correspond to
different projection planes, and their projected depths may
also vary significantly. Therefore, the spatial variations of
the area may not be represented by the variance of occupied
pixels in a CTU.

In this paper, a parameter named Geometry Visual Sen-
sitivity (GVS) is designed to measure the visual importance
of CTU, as shown in (4). GVS is obtained by scaling the
variances using the average variance of all occupied CTUs
in the frame. The variances of different patches within a
CTU are calculated separately, and the maximum variance
is selected to represent the complexity of the CTU.

GVSCTU =
s ∗ VarCTU + meanVar
VarCTU + s*meanVar

, (4)

where meanVar represents the average variance of all occu-
pied CTUs in the frame, and VarCTU represents the variance
of the current CTU, and s is the intensity factor. In this
paper, s is set to 2. The larger the GVS, the more sensitive
for human is to the area.

2.3 CTU-Level Adaptive QP Offset Algorithm

Based on the calculated AVS and GVS, the visual sensitivity
factor (VSCTU) for both geometry and attribute video of each
CTU is defined, and is utilized to adjust the QP offset for
each CTU. For geometry video, the VSCTU is defined using
the GVS obtained in (4). For attribute video, the GVS is used
to decrease the bit-rate requirement by prioritizing the visual
importance of different areas. This means that the VSCTU of
attribute video is obtained by weighted combining the GVS
and AVS.

VSCTU ={
GVSCTU, if Type = GV
β1 ∗ AVSCTU + β2 ∗ GVSCTU, if Type = AV

,
(5)

where β1 and β2 are empirically selected from experimen-
tal results (β1 = 1.5 and β2 = 0.25). The parameter Type
indicates the type of the video, with GV representing geom-
etry video and AV representing attribute video. If VSCTU is
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Fig. 3 The overall flowchart of the proposed adaptiveQPoffset algorithm.

greater than 1, it indicates that the occupied CTU belongs to
a sensitive area. Conversely, it indicates that the occupied
CTU belongs to a non-sensitive area.

The QP offset of each occupied CTU in the geometry
and attribute image is calculated as follows:

∆QPCTUi
=


1, if 0 ≤ VSCTUi < θ

0, if θ ≤ VSCTUi ≤ 1⌊
−α ∗ logVSCTUi

s

⌋
, if VSCTUi > 1

,

(6)

where α is a constant, representing the maximum QP offset
range in geometry and attribute video. In this paper, α is set
to 2 and 6 respectively. b c represents rounding down. The
threshold θ is used to indicate the degree of visual sensitivity.
When the VSCTU is smaller than θ, the current occupied CTU
is not visual sensitivity. In this paper, θ is set to 0.6.

For unoccupied blocks, QP is adjusted using two
schemes. For attribute video, since unoccupied pixels have
no impact on the reconstruction of point cloud, therefore,
QP is set to the maximum value to decrease the bit-rate
requirement. For geometry video, it had been proved that
unoccupied blocks only require a very small amount of bit
consumption [9]. Therefore, QP is not adjusted for this area.

The flowchart for the algorithm is shown in Fig. 3.

3. Experimental Results

The proposed algorithm is implemented in the V-PCC refer-
ence software TMC2-18.0 to compare with V-PCC anchor.
The test point cloud sequences named “Loot”, “Redand-
black”, “Soldier”, and “Longdress” are encoded following
the Common Test Conditions (CTC) of V-PCC. In the ex-
periments, all-intra (AI) configuration is used. The first 32
frames of each point cloud sequence were tested to validate
the performance of the proposed algorithm in terms of the

Table 1 Overall performance of the proposed algorithm compared with
TMC2-18.0 anchor.

Fig. 4 Comparison of subjective quality for sequences “Longdress” and
“Loot”.

Bjøntegaard-delta (BD)-rate and the subjective results.

3.1 Overall Performance of the Proposed Algorithm

Table 1 shows the overall RD performance of the proposed
algorithm. It can be observed that the proposed algorithm
achieves 2.8% and 3.2% Geom.BD-TotalRate gains on av-
erage in D1 and D2. In terms of attribute video, the pro-
posed algorithm can achieve average performance gains of
0.5%, 0.6%, and 0.6% for Luma, Cb, and Cr components
respectively. In addition, the encoding time of the algorithm
remains almost unchanged compared to the V-PCC anchor.

Figure 4 shows subjective quality comparison of the
reconstructed point clouds for the “Longdress” and “Loot”
at the R3 rate. Figure 4(a) and Fig. 4(c) demonstrate the
reconstructed point clouds using the V-PCC anchor, while
Fig. 4(b) and Fig. 4(d) demonstrate the reconstructed point
clouds using the proposed algorithm. From Fig. 4(a), no-
ticeable distortion can be observed in the relatively flat area,
such as the facial area. For the proposed algorithm, the sub-
jective results are obviously better than the V-PCC anchor, as
evident in Fig. 4(b). Annoying cracks are found in Fig. 4(c),
which greatly impair the subjective experience. As a com-
parison, our method does not exhibit noticeable cracks. In
summary, the subjective quality is enhanced for the proposed
algorithm when subject to bit rate limitations.
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Table 2 Performance of geometry video with only GVS is enabled, com-
pared with TMC2-18.0 anchor.

Table 3 Performance of attribute video by only adjusting QP in occupied
CTUs (with only AVS enabled, and with both AVS and GVS enabled),
compared with TMC2-18.0 anchor.

Table 4 Performance of attribute video by only adjusting QP in unoccu-
pied CTUs, and the overall performance of attribute video, compared with
TMC2-18.0 anchor.

3.2 Ablation Study

Table 2 shows the performance of geometry video with
only GVS enabled. It achieves 2.8% and 3.2% Geom.BD-
TotalRate gains on average in D1 and D2, with only 0.2%
and 0.4% Color.BD-TotalRate loss on average for Luma and
Cb, respectively.

Table 3 shows the results of attribute video with only
AVS enabled and with both AVS and GVS enabled. As has
stated in Sect. 2, they are only applied to occupied CTUs. It
can be found that, the objective loss is 7.8% for Luma, when
only AVS is enabled. With both AVS and GVS enabled, the
loss is only 0.2% in Luma. This is due to that the spatial
complexity (GVS) obtained from geometry video can help
to reduce the bitrate and improve PSNR of attribute video.

Table 4 shows the result of QP adjustment for unoccu-
pied CTUs. The average gains are 1.2%, 0.8%, and 1.1% for
Luma, Cb, and Cr, respectively. It shows that by adjusting
the QP of unoccupied CTUs to the maximum can improve
the objective performance. This is due to that it can save a
significant amount of bits consumption without compromis-
ing the quality of the reconstructed video. Table 4 also show
the overall performance of attribute video, with both AVS
and GVS enabled, and the QPs are adjusted in both occupied

and unoccupied CTUs. The average gains are 1.1%, 1.0%,
and 1.1% for Luma, Cb, and Cr, respectively.

4. Conclusion

In this paper, a CTU-level adaptiveQP offset algorithmbased
on visual sensitivity is proposed for geometry video and at-
tribute video in V-PCC, to improve the subjective and ob-
jective quality of reconstructed point cloud. The visual sen-
sitivity of each occupied CTU in the geometry video and
attribute video is obtained, and is jointly applied to guide
the QP adjustment. The experimental results show that, the
proposed algorithm can significantly improve the subjective
and objective quality of the reconstructed point cloud.
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