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Edge Assembly Crossover Incorporating Tabu Search for the
Traveling Salesman Problem

Maaki SAKAI†, Kanon HOKAZONO††, and Yoshiko HANADA††a), Nonmembers

SUMMARY In this letter, we propose a method to introduce tabu search
into Edge Assembly Crossover (EAX), which is an effective crossover
method in solving the traveling salesman problem (TSP) using genetic
algorithms. The proposed method, called EAX-tabu, archives the edges
that have been exchanged over the past few generations into the tabu list for
each individual and excludes them from the candidate edges to be exchanged
when generating offspring by the crossover, thereby increasing the diver-
sity of edges in the offspring. The effectiveness of the proposed method
is demonstrated through numerical experiments on medium-sized instances
of TSPLIB and VLSI TSP.
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1. Introduction

For tackling combinatorial optimization problems using a
Genetic Algorithm (GA) [1], it is important to design a
crossover method that effectively passes on good partial so-
lutions (traits) to offspring. In the past, a number of crossover
methods that focus on the inheritance of edge traits have been
proposed for solvingTraveling SalesmanProblem (TSP) [2]–
[6]. Edge Assembly Crossover (EAX) has proven to be the
most successful crossover method among them [3], [6].

EAXmaintains preferable traits by generating offspring
with only edges of both parents to the extent possible while
obtaining new traits by limited recombination of the edges
between the two. EAX can search the solution space with
high accuracy by increasing the diversity of individuals in the
population, i.e., the diversity of edges included in the popu-
lation. In [6], Nagata et al. have focused on the diversity of
trait inheritance and introduced a survival selection strategy
for offspring that form the next generation in order to ease
the loss of edge diversity in the population. This strategy
has high search performance for very large instances of TSP,
outperforming other promising heuristic methods [6]. In ad-
dition to the trait inheritance, the diversity of trait acquisition
is also important. Increasing the diversity of offspring gener-
ated throughout the search is expected to improve the search
performance. However, a direct approach that enhances the
diversity of offspring in EAX has not yet been proposed.

In this letter, to improve the diversity of exchanged
edges, i.e., the diversity of offspring, in EAX, we propose
EAX-tabu [7], which incorporates a tabu search algorithm [8]
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into the EAX process. In the proposed method, the edges
exchanged by EAX over the previous several generations
are recursively recorded for each individual as tabu edges.
The proposed method prohibits to exchange the tabu edges
when generating offspring, which prevents bias in the ex-
changed edgeswhile ensuring the acquisition of diverse traits
throughout the search. In this letter, we verify the effective-
ness of EAX-tabu for medium-scale instances of TSPLIB [9]
and VLSI TSP [10]. Through a series of experiments, we
show that incorporating the tabu search algorithm into EAX
improves the search performance.

2. Traveling Salesman Problem

TSP can be described as follows: Given a set of n cities
(vertices) V = {v1, · · · , vn} and distances between cities
w(vi, vj) (1 ≤ i, j ≤ n), we need to find the shortest tour form-
ing Hamilton cycle H = (v(1), · · · , v(n)), where v(i) denotes
the ith visited city starting from an arbitrary city in V . If we
let {vi, vj} be the edge between vi and vj , then a tour is rep-
resented as a set E = {{v(i), v(i+1)}|1 ≤ i ≤ n, v(n+1) = v(1)}
of edges. The objective function value is defined by the tour
length calculated by

∑n
i=1 w(v(i), v(i+1)).

3. Edge Assembly Crossover

3.1 Flow of EAX

By incorporating edges of one parent into the tour of another
parent, EAX acquires new traits without destroying favorable
traits of both the parents with relatively limited change. Let
EA and EB be sets of edges constituting the tours of parent
individuals pA and pB, respectively. The flow of EAX that
generates offspring cA and cB from pA and pB is described
as follows.

Step 1 Construct a multigraph GA,B = (V,EA ∪ EB).
Step 2 Apply AB-cycle decomposition (discussed in

Sect. 3.2) to GA,B and obtain a set D of AB-cycles.
Step 3 Generate a subset Eset of D according to some crite-

rion. Let g(i)AB and E (i) (1 ≤ i ≤ |Eset |) be ith AB-cycle
constituting Eset and the set of edges of each g(i)AB , re-
spectively.

Step 4 Generate intermediate individuals IA and IB by ap-
plying EA ← EA ⊕ E (i) and EB ← EB ⊕ E (i) (1 ≤ i
≤ |Eset |) to the tours of pA and pB, respectively.

Step 5 Apply Repairing (discussed in Sect. 3.3) to IA and
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IB and obtain offspring cA and cB.

3.2 AB-Cycle Decomposition

AB-cycle, represented by gAB in the flow of EAX, is a closed
path consisting of an even number of edges, which can be
obtained by alternately tracing edges in EA and EB on the
multigraph GA,B. AB-cycle is the most important element
of EAX, which is used in extracting candidate edges to be
exchanged between parents. The procedure of the AB-cycle
decomposition in Step 2 of the flow is shown in Algorithm 1.
In this algorithm, d(v) denotes the degree of each city v in
GA,B; all initial values are 4. Lines 4 to 12 are the operations
to extract one AB-cycle from GA,B. Here, each AB-cycle is
treated as a graph (V ′,E ′), where V ′ and E ′ are subsets of
cities V and edges EA ∪ EB in GA,B, respectively. All cities
and edges in GA,B are decomposed so that they belong to
one of the AB-cycles, yielding a set D of AB-cycles.

Each AB-cycle constituting D represents a set of can-
didate edges to be exchanged. In actuality, EAX generates
Eset which is a subset of D. Thus, the exchanged edges
between parents correspond to edges of the AB-cycles in-
cluded in Eset . There are two simple ways to construct Eset :
EAX-RAND [3] and k-multiple strategy [6]. EAX-RAND
incorporates AB-cycles included in D into Eset with a prob-
ability of 0.5. The k-multiple strategy selects a small number
of AB-cycles randomly from D to generate offspring locally.
EAX-RAND can generate a wide variety of offspring. How-
ever, the size of Eset follows a binomial distribution, so that
an extremely small Eset is hard to construct.

We here consider a method to construct Eset of arbi-
trary size with equal probability to enhance the local search
property while keeping the diversity of offspring. The size of
Eset is uniformly, randomly selected from among [1, |D |] for
each pair of parents. Then AB-cycles are randomly chosen
from D according to the selected number to make up Eset .
Hereafter, this method is referred to as EAX-UNIFORM.

3.3 Intermediate Individual and Repairing

In Step 4 of the flow, for all edges included in Eset , EAX
deletes edges belonging to EA from the tour of pA and adds
edges belonging to EB, thereby generating a set of multiple
decomposed subtours, or partial cycles. The set thus ob-
tained is called intermediate individual. Let intermediate
individual generated from pA by this operation be IA. This
operation of exclusive superposition of edges in Eset into the
tour of one parent is also used to generate the intermediate
individual IB from pB.

The Repairing is then applied to these generated inter-
mediate individuals in Step 5. The procedure of Repairing
is shown in Algorithm 2, where intermediate individual I is
represented as a set of subtours {S1, · · · Sm} and the distance
of edge ei j = {vi, vj} is abbreviated as w(ei j). This operation
iteratively connects subtours of an intermediate individual so
that a single feasible tour is formed as an offspring. Each it-
eration generates edges that connect two close subtours with
the shortest distance between them.

4. Proposed Method

As the population moves toward convergence, the exchange
edges in EAX become biased and the ability to generate new
traits decreases. To ease the bias, we propose EAX-tabu
by incorporating a tabu search scheme into EAX [7]. Tabu
search is a local search that works effectively on combina-
torial optimization problems, including TSP [8]. EAX is
highly compatible with tabu search since it does not signif-
icantly perturb the tours of parents, and changes in edges
are almost exclusively limited to the edges possessed by the
parents. Tabu search focuses on the change of a single search
point. When generating neighborhood solutions, it refers to a
tabu list that records changes over a certain period in the past
called tabu tenure in order to prohibit the repetition of the
same change. To incorporate the concept of tabu search into
GA using the multipoint search in this letter, past changes
for each individual are archived in the tabu list.

Edge changes in individuals in EAX are primarily
caused by the acquisition and loss of edges due to the ap-
plication of AB-cycles to the tours. Therefore, by archiving
the set of AB-cycles, i.e., Eset , applied in the past for each
individual, EAX can refer to the past Eset as a tabu list.
The flow of the proposed EAX-tabu is as follows, where the
archives of parents pA and pB are denoted as EA

pre and EB
pre.
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The archive of each individual in the initial population is
initialized with ∅. Since each offspring obtains more edges
from one of its parents, it inherits the archive of that parent.

Step 1-2 Same processes as Step 1-2 of EAX (section 3.1)
Step 3 Epre ← EA

pre ∪ EB
pre.

Step 4 Add edges included in Epre as tabu edges to the tabu
list ET according to some criterion.

Step 5 Remove AB-cycles whose edges are contained in ET

from D.
Step 6-8 Same processes as Step 3-5 of EAX
Step 9 EA

pre ← EA
pre ∪ Eset , EB

pre ← EB
pre ∪ Eset , and set

EA
pre and EB

pre as the archives of cA and cB, respectively.
Step 10 Delete AB-cycles that have expired after a given

retention period (i.e., tabu tenure) from EA
pre and EB

pre.

In Step 5, all edges contained in Epre are selected as
tabu edges with a probability of 0.5 to constitute a tabu
list ET . Since Epre keeps each AB-cycle as a graph, some
edges could be redundantly archived in the tabu list. This
means that edges that exist in the archive more frequently,
i.e., edges that have been exchanged more frequently in the
past, are more likely to be selected as tabu edges.

5. Numerical Experiments

We evaluated the search performance of EAX-tabu by com-
paring it with that of EAX-UNIFORM. In EAX-tabu, after
removing AB-cycles from D according to the tabu list ET ,
Eset is constructed in the same way as EAX-UNIFORM. In
the experiments, we used 10 medium-scale instances from
TSPLIB and VLSI TSP, respectively. For both EAXs, the
generation alternation model in the GA was the same as that
used in [4], [6], where the population size was set to 300 and
the number of offspring generated by one pair of parents in
the crossover was set to 200. In the case where the best so-
lution in the population was not updated for 30 generations,
the search was terminated as having achieved convergence.

5.1 Performance of EAX-Tabu

Table 1 shows the number of trials that produced the optimal
solution and the average number of generations required for
convergence in EAX-tabu and EAX-UNIFORM (“EAX” in
the table) for each of the 10 instances. These results are from
30 trials. For EAX-tabu, a tabu tenure of 5 was employed
across the experiment.

From Table 1, we observe that the proposed method
finds optimal solutions with a high probability compared to
EAX-UNIFORM in most instances. In addition, the pro-
posed method increases the number of generations required
for the convergence of the search, which means the ability
of the population to generate new solutions is maintained
longer by the tabu scheme.

Among the instances, no improvement in performance
was observed in fnl4461 (TSPLIB). Figure 1 shows the tran-
sition of the number of AB-cycles generated in one pair of
parents in solving fnl4461 by EAX-tabu. For comparison, it

Table 1 Comparisons of the number of trials producing the optimum and
the number of generations for convergence.

Fig. 1 Transition of the number of AB-cycles.

shows the transition in bgb4335 (VLSI TSP), which has the
same scalewith respect to the number of cities as fnl4461 and
where the tabu schemeworkedwell. In the figure, the dashed
line represents the average number of all the AB-cycles gen-
erated by the AB-cycle decomposition process, and the solid
line represents the average number of AB-cycles after being
removed by the tabu list. Both are the results of a typical
trial. Figure 1 shows that although the total number of gener-
ated AB-cycles decreases with convergence in bgb4335, the
number of AB-cycles is kept high even after removing some
AB-cycles that contain tabu edges. In contrast, in fnl4461,
the number of AB-cycles decreases as the search progresses,
and is finally close to 0. Thus, in such a case, the tabu scheme
does not work well.

5.2 Effectiveness of Tabu

In general, it is known that restricting the number of AB-
cycles applied to offspring improves search performance in
EAX [6]. To demonstrate the superiority of the proposed
method over a straightforward approach that just limits AB-
cycles selection, we conducted a comparative analysis be-
tween EAX-tabu and EAX reducing the selection probability
of AB-cycles named EAX-limit. In the 20 instances used in
the experiments, we observed that AB-cycles are removed
in each pair of parents in EAX-tabu at an average rate of
0.3 to 0.5 (TSPLIB) and 0.3 to 0.4 (VLSI TSP) through-
out all generations. Moreover, they have been removed at a
maximum rate of 0.6 to 0.7. From these trends, EAX-limit
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Table 2 Performance Comparison of EAX-tabu (tabu) and EAX-limit.

randomly selected AB-cycles in the proportions of 0.3, 0.5,
and 0.7 to the entire set and then some of those are randomly
incorporated into Eset as in EAX-UNIFORM.

Table 2 shows the results of comparing the number of
trials that produced the optimal solution. These results are
from 30 trials. From the results of EAX-limit in Table 2 and
those of EAX-UNIFORM (“1.0” under EAX-limit) shown
in Table 1, we can confirm that restricting the number of
AB-cycles improves the performance of EAX in some in-
stances. For vm1748, u2152, and pcb3038 in TSPLIB and
most instances of VLSI TSP, the simple suppression of AB-
cycles did not show a significant improvement in the search
performance, and EAX-tabu showed superior performance
to EAX-limit. These instances have city layouts of a lattice
pattern or a straight line, which have a strong edge depen-
dence among neighborhood cities, and the diversity of ex-
change edges has a significant impact on the performance of
the crossover. In such instances, the tabu scheme is deemed
effective, as it restricts the exchange edges while preserving
diversity across successive generations.

5.3 Influence of Tabu Tenure

Here, we examine the effect of tabu tenure on search perfor-
mance. Figure 2 shows the proportion of trials that found
optimal solutions in 8 instances of TSPLIB and VLSI TSP.
These results are from 30 trials; tabu tenure was set to 1, 3,
5, 7, and 10. The other search conditions are the same as
in the previous sections. Note that tenture=0 corresponds to
EAX-UNIFORM. For comparison, we refer to the results of
the most recent EAX that uses edge entropy-based survival
selection for improving the diversity of trait inheritance (la-
beled with EAX-ent). The results of EAX-ent in instances of
TSPLIB are from [6]; we identify these instances by attach-
ing an asterisk ‘*’ to their labels.

Figure 2 illustrates that augmenting the tabu tenure
value in EAX-tabu can enhance its search performance, al-
beit with variation depending on the instance. The per-
formance enhancement diminishes with larger tabu tenure
values in VLSI TSP instances where diversity of exchange
edges is required. This is attributed to a reduction in avail-
able AB-cycles within the crossover due to the expansion of
the tabu list. It is also worth noting the exceptional perfor-

Fig. 2 Influence of tabu tenure setting on search performance.

mance of EAX-ent for the fnl4461 instance, which indicates
that, in addition to the crossover, maintaining a diversity of
trait inheritance in the selection is important.

6. Conclusion

In this study, we proposed EAX-tabu that introduces a tabu
search scheme into EAX. Through numerical experiments
conducted on medium-scale instances of TSPLIB and VLSI
TSP, we showed that the tabu scheme can significantly im-
prove the performance of EAX, regardless of the tabu tenure
setting. Further preliminary experiments indicated that the
tabu scheme also improves the performance of EAX-RAND
and EAX-5AB which is a part of the k-multiplex strategy.
Moreover, Nagata’s edge entropy-based survival selection
[6], emphasizing trait inheritance diversity, has proved highly
effective and can be seamlessly integrated with the tabu
scheme proposed in our study. However, the evaluation of
EAX-tabu’s search performance on larger instances and its
compatibility with the edge entropy-based survival selection
method are left to future work.
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