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Trace Representation of Balanced Quaternary Generalized
Cyclotomic Sequences of Period pn ∗

Feifei YAN†a), Student Member, Pinhui KE††b), and Zuling CHANG†††c), Nonmembers

SUMMARY Recently, trace representation of a class of balanced qua-
ternary sequences of period p from the classical cyclotomic classes was
given by Yang et al. (Cryptogr. Commun.,15 (2023): 921–940). In this
letter, based on the generalized cyclotomic classes, we define a class of
balanced quaternary sequences of period pn , where p = e f + 1 is an odd
prime number and satisfies e ≡ 0 (mod 4). Furthermore, we calculate the
defining polynomial of these sequences and obtain the formula for deter-
mining their trace representations over Z4, by which the linear complexity
of these sequences over Z4 can be determined.
key words: quaternary sequence, generalized cyclotomic classes, trace
representation, defining polynomial, Galois ring

1. Introduction

Pseudo-random sequences are widely used in various fields,
such as code division multiple access, stream cryptography,
coding theory etc. [1]–[3]. Quaternary sequences with high
complexity, low correlation, and balancedness are the pre-
ferred sequences in practical applications.

Trace function over the Galois ring can effectively gen-
erate quaternary sequences. And the trace representation of
quaternary sequences reveals some important properties of
the sequences. In 2017, Chen [4] defined a family of quater-
nary sequences of period pq over Z4, and given their trace
representation by using discrete Fourier transform, from
which the linear complexity of the sequence is obtained.
Recently, Yang et al. [5] constructed a class of balanced qua-
ternary sequences of period p, and determined their trace
representation and linear complexity over Z4. Except above
mentioned results, limited works on the trace representation
of quaternary sequences over Galois rings are known.

It is convenient to define quaternary sequences by us-
ing the classical and generalized cyclotomic classes [6]–[8].
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Inspired by the works in [4], [5], we introduce a general con-
struction of balanced quaternary sequences of period pn by
using generalized cyclotomic classes. And we calculate the
trace representation of these sequences over Z4.

The rest of this letter is organized as follows. In Sect. 2,
we provide some basic concepts and the required lemmas. In
Sect. 3, we define a family of balanced quaternary sequences
based on generalized cyclotomic classes, and derive the trace
representation and linear complexity of these sequences over
Z4. Section 4 draws the conclusions.

2. Preliminaries

Let Zm = {0,1, . . . ,m − 1}, and Z∗m denote the set of all
elements in Zm that are coprime with m.

The Galois ring of characteristic 4 and cardinality
4r is denoted by GR(4,4r ). There exists a nonzero ele-
ment ξ of order 2r − 1 in GR(4,4r ), which is a root of
a basic primitive polynomial of degree r over Z4. Let
T =

{
0,1, ξ, ξ2, . . . , ξ2r−2}, then any element c ∈ GR(4,4r )

can be written uniquely as c = c0 + 2c1, where c0, c1 ∈ T .
Let d be a positive integer that satisfies d |r . Then

GR(4,4r ) contains GR(4,4d) as a subring. Define a map φ:

φ : GR(4,4r ) → GR(4,4d)
c = c0 + 2c1 7→ c2d

0 + 2c2d

1 , c0, c1 ∈ T .

Then φ is an automorphisms of GR(4,4r ) leaving GR(4,4d)
fixed elementwise. And φ is called the generailzedFrobenius
automorphism of GR(4,4r ) over GR(4,4d) in [9]. For any
c ∈ GR(4,4r ), define Trr

d
(c) = c+φ(c)+ · · ·+φ

r
d −1(c) to be

the generalized trace of c ∈ GR(4,4r ) relative to GR(4,4d).
Especially, if c0 ∈ T , we have

Trrd(c0) = c0 + c2d

0 + · · · + c2d( r
d
−1)

0 . (1)

For more detailed description of the theory of Galois rings,
please refer to [9].

Let p be an odd prime and λn be the order of 2 modulo
pn, that is 2λn ≡ 1 (mod pn), then pn |(2λn − 1), and there
exists a nonzero element ξn of order 2λn − 1 in GR(4,4λn ),

then ξ
2λn −1
pn

n denoted as β has order pn. Thus, the quaternary
sequence s = (s(0), s(1), . . . ) over Z4 of period pn can be
represented as

s(t) =
1
pn

pn−1∑
k=0

ŝ(k)βkt, t = 0,1, . . . , pn − 1, (2)
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where

ŝ(k) =
pn−1∑
t=0

s(t)β−kt, k = 0,1, . . . , pn − 1. (3)

Here ŝ(k) is the discrete Fourier transform of s and ŝ =
(ŝ(0), ŝ(1), . . . ) is called the Fourier spectral sequence of s.
The polynomial defined as

Ŝ(x) =
1
pn

pn−1∑
k=0

ŝ(k)xk ∈ GR(4,4λn )[x] (4)

is calledMattson-Solomon polynomial in coding theory [10].
We have

s(t) = Ŝ(βt ), t ≥ 0. (5)

The polynomial satisfying (5) is also called the defining poly-
nomial of s corresponding to β in [11]. Note that for a given
β, since gcd(pn,4) = 1, thus Ŝ(x) is uniquely determined
modulo xpn

− 1.
The following lemma provides a method for calculating

the linear complexity of quaternary sequences over Z4.

Lemma 1: ([12]) Let s = (s(0), s(1), . . . ) be a quaternary
sequence over Z4 of period pn, and let ŝ = (ŝ(0), ŝ(1), . . . )
be its Fourier spectral sequence defined in (3). Then LC(s),
the linear complexity of s over Z4, is given by

LC(s) = | {k : ŝ(k) , 0,0 ≤ k ≤ pn − 1} |.

That is, the linear complexity of the sequence s is equal to
the number of nonzero coefficients in (4).

The following lemma contributes to understand the cy-
clotomic technique required in this letter.

Lemma 2: ([13]) Let p be a prime, then the following three
assertions are equivalent:
(1) g is a primitive root of p and gp−1 . 1 (mod p2).
(2) g is a primitive root of p2.
(3) For every m ≥ 2, g is a primitive root of pm.

By Lemma 2, if g is a primitive root of p2, then g is a
primitive root of pm, where 1 ≤ m ≤ n. Moreover, the order
of g in Z∗pm is ϕ(pm) = pm−1(p − 1), where ϕ(·) denotes the
Euler function.

Let p = e f + 1 be an odd prime and g is a primitive
root of p2. For each m(1 ≤ m ≤ n), i ∈ Ze, define

D(m)i =
{
gek+i (mod pm) : k = 0,1, . . . ,pm−1 f − 1

}
. (6)

The division of Z∗pm can be obtained, that is

Z∗pm = D(m)0 ∪ D(m)1 ∪ · · · ∪ D(m)
e−1.

Due to Zpm = Z∗pm ∪ pZpm−1 , then Zpn can be denotes as

Zpn = (

n⋃
m=1

pn−mD(m)0 )∪ · · · ∪(

n⋃
m=1

pn−mD(m)
e−1)∪ {0} .

We denote

Ci =

n⋃
m=1

pn−mD(m)i , 0 ≤ i ≤ e − 1. (7)

Then Zpn =
⋃e−1

i=0 Ci ∪ {0}.
The following lemma is the property of the cyclotomic

classes.

Lemma 3: ([14]) Let a ∈ Z∗pn , if a (mod pn) ∈ D(n)i , then
aD(m)

l
(mod pm) = D(m)

l+i (mod e)
, aCl = Cl+i (mod e), where

0 ≤ i ≤ e − 1, 0 ≤ l ≤ e − 1, 1 ≤ m ≤ n.

3. Trace Representation of a Family of Balanced Qua-
ternary Sequences

In this section, wewill use the generalized cyclotomic classes
to define a family of balanced quaternary sequences of period
pn, and calculate their trace representation over Z4.

Let p = e f + 1 be an odd prime, where e ≡ 0 (mod 4),
and Ci is defined in (7). Then a class of balanced quaternary
sequences s = (s(0), s(1), . . . ) can be defined as:

s(t) =

{
ai, if t (mod pn) ∈ Ci,

a∗, if t (mod pn) = 0,
(8)

where a∗,a0, . . . ,ae−1 ∈ Z4, and the number of occurrences
of 0, 1, 2 and 3 in a0,a1, . . . ,ae−1 is the same. Obviously,
pm(m < n) is not a period of s, then it possesses the least
period pn.

Define a sequence bi = (bi(0), bi(0), . . . ) of period pn

as follows:

bi(t) =

{
1, if t (mod pn) ∈ Ci;
0, if t (mod pn) = 0.

(9)

Easy to verify the balanced quaternary sequence defined in
(8) can be represented as

s = a∗δ +
e−1∑
i=0

aibi, (10)

where each bi is defined in (9), and δ = (δ(0), δ(1), . . . )
satisfies

δ(t) =

{
1, if t (mod pn) = 0;
0, otherwise .

(11)

Let g be a primitive root of p2 and v be an integer for
which −1 ∈ D(n)v . Let λn be the order of 2 modulo pn,
then β is a fixed element of order pn in GR(4,4λn ). Define
polynomial D(m)

l
(x) =

∑
t∈D

(m)
l

xt , where D(m)
l

is defined in
(6), 0 ≤ l ≤ e − 1, 1 ≤ m ≤ n. Also define polynomial
Cl(x) =

∑
t∈Cl

xt , where Cl is defined in (7), 0 ≤ l ≤ e − 1.
The defining polynomial of the sequence s defined in

(8) can be calculated by the following lemma.
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Lemma 4: Let s be a sequence defined in (8). Then Ŝ(x),
the defining polynomial of s corresponding to β is given by

Ŝ(x) = ρ∗ +
e−1∑
l=0

n∑
m=1

ρl,mD(m)
l
(xpn−m

),

where ρ∗ = a∗+
pn − 1

e

e−1∑
i=0

ai, and for 0 ≤ l < e, 1 ≤ m ≤ n,

ρl,m = a∗ +
e−1∑
i=0

aiCi+l+v (mod e)(β
pn−m

). (12)

Proof 1: According to (5) and (10), we have

Ŝ(βt ) = s(t) = a∗δ(t) +
e−1∑
i=0

aibi(t)

= a∗4̂(βt ) +
e−1∑
i=0

ai B̂i(β
t ),

where 4̂(x) and B̂i(x) denote the defining polynomials of
δ defined in (11) and bi defined in (9) corresponding to
β, respectively. Thus, we will calculate 4̂(x) and B̂i(x),
respectively.

We first calculate B̂i(x). The Fourier spectral sequence
of the sequence bi defined in (9) write as b̂i . By (3) and

(9), we have b̂i(0) =
∑pn−1

t=0 bi(t) = |Ci | =
pn − 1

e
, and for

k = 1,2, . . . , pn − 1, b̂i(k) =
∑pn−1

t=0 bi(t)β−kt =
∑

t∈Ci
β−kt .

Since we assume that −1 ∈ D(n)v , for any k ∈ Zpn \ {0},
there uniquely exitsts a pair (l,m) such that k = pn−mk ′,
where k ′ ∈ D(m)

l
, 0 ≤ l ≤ e − 1 and 1 ≤ m ≤ n. Then by

Lemma 3, we have

−kCi = −pn−mk ′
(

n⋃
u=1

pn−uD(u)i

)
= pn−m

(
n⋃

u=1
pn−uD(u)

i+l+v (mod e)

)
= pn−mCi+l+v (mod e).

Therefore,

b̂i(k) =
∑
t∈Ci

β−kt =
∑

t∈Ci+l+v (mod e)

βp
n−mt

= Ci+l+v (mod e)(β
pn−m

),

which implies that the value of b̂i(k) depends on pn−mD(m)
l

to which k belongs. By (4), we get

B̂i(x) =
pn−1∑
k=0

b̂i(k)xk = b̂i(0) +
pn−1∑
k=1

b̂i(k)xk

=
pn − 1

e
+

e−1∑
l=0

n∑
m=1

∑
k∈(pn−mD

(m)
l
)

b̂i(k)xk

=
pn − 1

e
+

e−1∑
l=0

n∑
m=1

Ci+l+v (mod e)(β
pn−m

)D(m)
l
(xp

n−m
).

(13)

Next, we calculate 4̂(x). According to (3), the Fourier
spectral sequence of the sequence δ defined in (11) write as
δ̂. For k ∈ Zpn , δ̂ satisfies

δ̂(k) =
pn−1∑
t=0

δ(t)β−kt = δ(0)β0 +

pn−1∑
t=1

δ(t)β−kt = 1.

Thus, by (4), we get

4̂(x) =
pn−1∑
k=0

δ̂(k)xk =
pn−1∑
k=0

xk = 1 +
pn−1∑
k=1

xk

= 1 +
e−1∑
l=0

n∑
m=1

∑
k∈(pn−mD

(m)
l
)

xk

= 1 +
e−1∑
l=0

n∑
m=1

D(m)
l
(xpn−m

). (14)

Therefore, by (5), (10), (13) and (14), we have

s(t) = a∗δ(t) +
e−1∑
i=0

aibi(t) = a∗4̂(βt ) +
e−1∑
i=0

ai B̂i(β
t )

= a∗ +
pn − 1

e

e−1∑
i=0

ai

+

e−1∑
l=0

n∑
m=1
[a∗ +

e−1∑
i=0

aiCi+l+v (mod e)(β
pn−m

)]D(m)
l
(βp

n−mt ).

From (5), it can be concluded that the conclusion is valid. �

Theorem 1: The trace representation of the sequence s de-
fined in (8) over Z4 is given by
(1) If 2 ∈ D(m)0 for any m(1 ≤ m ≤ n), then

s(t) = ρ∗ +
e−1∑
l=0

n∑
m=1

ρl,m

pm−1 f
λm

−1∑
i=0

Trλm1 (β
pn−mtgei+l ),

(2) If 2 ∈ D(m)
h

for any m(1 ≤ m ≤ n), 1 ≤ h ≤ e − 1, then

s(t) = ρ∗ +
e−1∑
l=0

n∑
m=1

ρl,m

pm−1 f d
λm

−1∑
i=0

Trλm
d
(βp

n−mtgei+l ),

where ρ∗ and ρl,m are defined in (12), and d =
e

gcd(e, h)
.

Proof 2: According to Lemma 4 and (5), if we can use the
trace functions over Galois rings to represent D(m)

l
(βp

n−mt )

with 0 ≤ l ≤ e − 1 and 1 ≤ m ≤ n, then we can obtain the
trace representation of the sequence s.

For each 1 ≤ m ≤ n, let λm is the order of 2 modulo
pm, and let Am denote the cyclic group generated by 2. Then
Am can be represented as

Am = 〈2〉 =
{
1,21, . . . ,2λm−1} ,

where 〈a〉 denotes the cyclic group generated by a.
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If 2 ∈ D(m)0 for any m(1 ≤ m ≤ n), then we have
λm |pm−1 f and Am is a subgroup of D(m)0 . And notice that

the element g
pm−1e f
λm = ge ·

pm−1 f
λm ∈ D(m)0 is also of order λm.

This implies

Am = 〈2〉 =
〈
g

pm−1e f
λm

〉
=

{
ge ·

pm−1 f
λm

·t : 0 ≤ t < λm

}
,

hence we have

D(m)0 =
{
gek : 0 ≤ k < pm−1 f

}
=

pm−1 f
λm

−1⋃
i=0

gei
〈
g

pm−1e f
λm

〉
=

pm−1 f
λm

−1⋃
i=0

gei Am.

Define polynomial Am(x) =
∑

l∈Am

xl = x + x2 + x22
+ · · · +

x2λm−1 , then

D(m)0 (x) =

pm−1 f
λm

−1∑
i=0

∑
l∈Am

xg
ei l =

pm−1 f
λm

−1∑
i=0

Am(xg
ei

).

Thus, according to (1), D(m)0 (β
pn−mt ) can be described by

the trace function from GR(4,4λm ) to Z4 as

D(m)0 (β
pn−mt ) =

pm−1 f
λm

−1∑
i=0

Am(β
pn−mtgei )

=

pm−1 f
λm

−1∑
i=0

Trλm1 (β
pn−mtgei ).

For D(m)
l

with 0 < l < e, since D(m)
l
= glD(m)0 , then

D(m)
l
(βp

n−mt ) =

pm−1 f
λm

−1∑
i=0

Trλm1 (β
pn−mtgei+l ).

Therefore, from Lemma 4 and (5), we obtain

s(t)= Ŝ(βt )= ρ∗+
e−1∑
l=0

n∑
m=1

ρl,m

pm−1 f
λm

−1∑
i=0

Trλm1 (β
pn−mtgei+l ).

The case of 2 ∈ D(m)
h

for any m(1 ≤ m ≤ n,0 < h < e)
can be proven similarly, so the proof is omitted here.

The proof is completed. �

Corollary 1: Let s be a sequence defined in (8), ρ∗ and
ρl,m(0 ≤ l ≤ e − 1,1 ≤ m ≤ n) be defined in (12). For
1 ≤ m ≤ n, denote ρm = (ρ0,m, ρ1,m, . . . , ρe−1,m). Then
LC(s), the complexity of s over Z4, is given by LC(s) =
ε(ρ∗) +

∑n
m=1 ωH (ρm)pm−1 f , where if ρ∗ = 0, then ε(ρ∗) =

0; otherwise ε(ρ∗) = 1. And ωH (ρm) denotes the number of
non-zero terms ρl,m(0 ≤ l ≤ e − 1) in ρm.

4. Conclusions

In this letter, we defined a class of balanced quaternary se-
quences of period pn based on the generalized cyclotomic
classes. Started from their defining polynomial, we deter-
mined the trace representation of these sequences over Z4.
And by determining the number of nonzero coefficients in
the defining polynomial of these sequences, their linear com-
plexity over Z4 is obtained. When the value of n in period pn

is equal to 1, the family of quaternary sequences constructed
in this letter becomes the case in [5]. Thus, the results in this
letter can be regarded as generalizations of the work in [5].
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