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Characterization for a Generic Construction of Bent Functions and
Its Consequences

Yanjun LI† ,††a), Nonmember, Jinjie GAO††† ,††††b), Haibin KAN††† ,†††† ,†††††c), Members, Jie PENG††††††d),
Lijing ZHENG∗e), and Changhui CHEN∗f), Nonmembers

SUMMARY In this letter, we give a characterization for a generic con-
struction of bent functions. This characterization enables us to obtain an-
other efficient construction of bent functions and to give a positive answer
on a problem of bent functions.
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1. Introduction

Bent functions, introduced in [9], are those Boolean func-
tions in an even number of variables having the highest non-
linearity. Such functions have been extensively studied al-
most five decades, because of their closely relationship with
the theory of difference sets, and their significant applica-
tions in coding theory and cryptography [3]. In the past,
a large amount of work was done on the characterizations
and constructions of bent functions. But until now, a com-
plete classification is not finished and it remains elusive.
Along with the deep-going of the research, the progress on
bent functions becomes more and more difficult, even if a
tiny progress is not easy. For a comprehensive book on bent
functions, the interested readers are referred to [8] for details.

In this letter, we focus our attention on the characteri-
zations and constructions of bent functions with the form

h(x) = f (x) + F ◦ φ(x), (1)

Manuscript received March 11, 2024.
Manuscript publicized May 7, 2024.
†Institute of Statistics and Applied Mathematics, Anhui Uni-

versity of Finance and Economics, Bengbu, Anhui 233030, China.
††School of Computer Sciences, Fudan University, Shanghai,

200433, China.
†††Shanghai Key Laboratory of Intelligent Information Process-

ing, School of Computer Science, Fudan University, Shanghai
200433, China.
††††Shanghai Engineering Research Center of Blockchain, Shang-
hai 200433, China.
†††††Yiwu Research Institute of Fudan University, Yiwu City
322000, China.
††††††Mathematics and Science College of Shanghai Normal Uni-
versity, Guilin Road #100, Shanghai 200234, China.
∗School of Mathematics and Physics, University of South

China, Hengyang, Hunan 421001, China.
a) E-mail: yanjlmath90@163.com
b) E-mail: jjgao18@fudan.edu.cn
c) E-mail: hbkan@fudan.edu.cn
d) E-mail: jpeng@shnu.edu.cn
e) E-mail: zhenglijing817@163.com
f) E-mail: cchxuexi@126.com
DOI: 10.1587/transfun.2024EAL2032

where f is a bent function on F2n , F is a Boolean function on
Fr2, and φ = (φ1, φ2, . . . , φr ) is an (n,r)-function. In fact, the
research on the bent-ness of h can be dated back to [2], where
Carlet presented a sufficient condition for a particular case
of h to be bent. That sufficient condition had been proved
by Mesnager [7] to be necessary. Mesnager [7] also studied
the bent-ness of two particular cases of Carlet function, from
which Mesnager obtained a lot of bent functions and gave
their duals. Thereafter, several papers (such as [5], [10],
[11], [12], [13]) were done for generalizing Carlet’s and
Mesnager’s works.

In this letter, we obtain a characterization for the generic
construction of bent functions given in [5], which enables us
to find another efficient construction of bent functions. This
characterization also enables us to provide a positive answer
on the problem of bent function proposed in Conclusion of
[5].

2. Preliminaries

Throughout the paper, let n = 2m be an even positive integer.
Let F2n be the finite field of order 2n, F∗2n = F2n\{0}, and
Fn2 be the n-dimensional vector space over F2.

For a vector ω = (ω1,ω2, . . . ,ωn) ∈ F
n
2 , the set

suppt(ω) = {1 ≤ i ≤ n : ωi , 0} is said to be the sup-
port of ω, whose cardinality is called the (Hamming) weight
of ω, denoted by wt(ω). Namely, wt(ω) = |suppt(ω)|.

A mapping φ from Fn2 to Fr2 is called an (n,r)-function.
When n is divisible by r , the (n,r)-function

Trnr (x) = x + x2r + x22r
+ · · · + x2n−r

is called the trace function. The set of all (n,1)-functions
(namely, all Boolean functions) is denoted by Bn.

For a given Boolean function f on Fn2 , the Walsh-
Hadamard transform of f is a mapping from Fn2 to Z defined
as

W f (µ) =
∑
x∈Fn2

(−1) f (x)+µ ·x, µ ∈ Fn2 ,

and its inverse transform is given by

(−1) f (µ) = 2−n
∑
x∈Fn2

W f (x)(−1)µ ·x, µ ∈ Fn2 ,

where µ · x denotes the canonical inner product of µ and x
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(in F2n , µ · x = Trn1 (µx)).
The first derivative of f in terms of µ ∈ Fn2 is defined

as

Dµ f (x) = f (x) + f (x + µ),

and the second derivative of f with µ, ν ∈ Fn2 is defined as

DµDν f (x) = f (x) + f (x + µ) + f (x + ν) + f (x + µ + ν).

Definition 1. A Boolean function f on Fn2 is called bent if n
is even and W f (µ) = ±2 n

2 for all µ ∈ Fn2 .

Bent functions always appear in pairs, that is, for any
bent function f on Fn2 , there is always a unique bent func-
tion f ∗ such that W f (µ) = 2 n

2 (−1) f ∗(µ) for all µ ∈ Fn2 (in
literatures, f ∗ is called the dual of f ).

3. A Characterization of a Generic Construction of
Bent Functions

In [5], the authors have given a generic construction of bent
functions, which generalizes the constructions of bent func-
tions given in [2], [7], [10], [11], [12], [13]. We restate it as
follows.

Theorem 1. [5, Theorem 3] Let i be an integer with 1 ≤
i ≤ r , f , gi ∈ Bn, and let φ = (φ1, φ2, . . . , φr ) be the (n,r)-
function with φi = f + gi . If the sum of any odd number of
functions in f , g1, . . . , gr is a bent function, and its dual is
equal to the sum of the duals of corresponding bent functions.
Then for any Boolean function F on Fr2, the function h given
by (1) is bent, and the dual of h is

h∗(x) = f ∗(x) + F ◦ ϕ(x),

where ϕ = (ϕ1, ϕ2, . . . , ϕr ) is the (n,r)-function with ϕi(x) =
f ∗(x) + g∗i (x), 1 ≤ i ≤ r .

Below, we want to generalize Theorem 1 by using the
following property.

Definition 2 (Pr). Let f be a Boolean function over F2n . If
there is an (n,r)-function φ = (φ1, φ2, . . . , φr ) such that the
following two conditions are satisfied:

(i) f (x) + ω · φ(x) = f (x) +
∑r

i=1 ωiφi is bent for any
ω = (ω1,ω2, . . . ,ωr ) ∈ F

r
2;

(ii) there is an (n,r)-function ϕ = (ϕ1, ϕ2, . . . , ϕr ) such that(
f (x) + ω · φ(x)

)∗
= f ∗(x) + ω · ϕ(x) for any ω ∈ Fr2,

then we say that f satisfies Pr with respect to the (n,r)-
function φ.

Theorem 2. Let n = 2m. Let φ be an (n,r)-function, and let
f be a Boolean function on F2n satisfying Pr with respect to
φ. Then for any Boolean function F on Fr2, the function h
given by (1) is bent, and the dual of h is

h∗(x) = f ∗(x) + F ◦ ϕ(x).

Proof. By the definition of the inverse Walsh-Hadamard
transform, it holds that

(−1)F◦φ(x) = 2−r
∑
ω∈Fr2

WF (ω)(−1)ω ·φ(x), ∀ x ∈ Fn2 .

Hence, the Walsh-Hadamard transform of h at β ∈ F2n is
that

Wh(β) =
∑
x∈F2n

(−1) f (x)+Trn1 (βx)(−1)F◦φ(x)

= 2−r
∑
x∈F2n

(−1) f (x)+Trn1 (βx)
∑
ω∈Fr2

WF (ω)(−1)ω ·φ(x)

= 2−r
∑
ω∈Fr2

WF (ω)
∑
x∈F2n

(−1) f (x)+Trn1 (βx)+ω ·φ(x)

= 2−r
∑
ω∈Fr2

WF (ω)Wg(β),

where g(x) = f (x)+ω · φ(x). Recall that f satisfies Pr with
respect to φ, that is, g is bent and g∗(x) = f ∗(x) + ω · ϕ(x)
for any ω ∈ Fr2. Hence, we have

Wh(β) =2m−r
∑
ω∈Fr2

WF (ω)(−1) f
∗(β)+ω ·ϕ(β)

=2m(−1) f
∗(β)+F◦ϕ(β).

The proof is completed. �

Corollary 1. Theorem 2 is reduced to that of Theorem 1
when φ = (φ1, φ2, . . . , φr ) is an (n,r)-function with φi =
f + gi , 1 ≤ i ≤ r , where f and gi are any Boolean functions
on F2n .

Proof. Suppose that φ = (φ1, φ2, . . . , φr ) with φi = f + gi ,
1 ≤ i ≤ r . Then for any ω = (ω1,ω2, . . . ,ωr ) ∈ F

r
2, we have

f (x) + ω · φ(x) = f (x) +
r∑
i=1

ωi( f (x) + gi(x))

=

{
Gω(x), if wt(ω) is odd,
f (x) + Gω(x), if wt(ω) is even,

where Gω(x) = ω1g1(x) + ω2g2(x) + · · · + ωrgr (x). There-
fore, Item (i) of Pr holds if and only if the sum of any
odd number of functions in f , g1, g2, . . . , gr is bent. When
suppt(ω) = {i}, we have

f (x) + ω · φ(x) = gi(x), f ∗(x) + ω · ϕ(x) = f ∗(x) + ϕi(x).

So Item (ii) of Pr holds only if ϕi(x) = f ∗(x)+ g∗i (x) for any
integer i, 1 ≤ i ≤ r . In this case,

f ∗(x) + ω · ϕ(x) = f ∗(x) +
r∑
i=1

ωi( f ∗(x) + g∗i (x))

=

{
G∗ω(x), if wt(ω) is odd,
f ∗(x) + G∗ω(x), if wt(ω) is even,
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where G∗ω(x) = ω1g
∗
1(x)+ω2g

∗
2(x)+ · · · +ωrg

∗
r (x). Hence,

Item (ii) of Pr holds if and only if (Gω)
∗ = G∗ω when wt(ω)

is odd, and ( f + Gω)
∗ = f ∗ + G∗ω when wt(ω) is even.

Equivalently, the dual of the sum of any odd number of
functions in f , g1, g2, . . . , gr is equal to the sumof the duals of
corresponding bent functions. This completes the proof. �

From the proof of Corollary 1, it is easily seen that for
a given Boolean function f on F2n , and an (n,r)-function
φ = (φ1, φ2, . . . , φr ), Pr holds if and only if the sum of any
odd number of functions in f , f + φ1, f + φ2, . . . , f + φr
is bent, and its dual is equal to the sum of the duals of
corresponding bent functions. Namely, Theorem 1 is another
characterization of Theorem 2. Note that Theorem 1 was
proved by induction in [5]. Here we provide a more simple
alternative proof from another perspective.

Theorem 2 allows us to deduce the following result.

Corollary 2. Let n = 2m. Let f and g be two bent functions
on F2n . Let µ2, µ3, . . . , µr ∈ F

∗
2n . If the following two

conditions are satisfied:

(A) Dµi Dµ j f ∗ = 0 for any 2 ≤ i < j ≤ r;

(B) for any ω′ = (ω2,ω3, . . . ,ωr ) ∈ F
r−1
2 , it holds that

g∗(x+
r∑
i=2

ωiµi)=


g∗(x)+ f ∗(x)+

∑r
i=2 ωi f ∗(x+µi),
if wt(ω′) is odd,

g∗(x) +
∑r

i=2 ωi f ∗(x + µi),
if wt(ω′) is even,

(2)

then for any Boolean function F on Fr2, the function h given
by

h(x) = f (x) + F( f (x) + g(x),Trn1 (µ2x), . . . ,Trn1 (µr x))

is bent. Moreover, the dual of h is

h∗(x) = f ∗(x) + F(ϕ1, ϕ2, . . . , ϕr ),

where ϕ1(x) = f ∗(x)+ g∗(x) and ϕi(x) = f ∗(x)+ f ∗(x + µi)
for any integer 2 ≤ i ≤ r .

Proof. Let φ = (φ1, φ2, . . . , φr ) be the (n,r)-function with
φ1(x) = f (x)+g(x) and φi(x) = Trn1 (µi x) for each 2 ≤ i ≤ r .
Then for any ω = (ω1,ω2, . . . ,ωr ) ∈ F

r
2, it is easily seen that

f (x) + ω · φ(x) =


f (x) + Trn1 ((ω2µ2 + · · · + ωr µr )x),

if ω1 = 0,
g(x) + Trn1 ((ω2µ2 + · · · + ωr µr )x),

if ω1 = 1.

This implies that Item (i) of Pr is satisfied when f and g are
bent. So we have

(
f (x) + ω · φ(x)

)∗
=


f ∗(x + ω2µ2 + · · · + ωr µr ),

if ω1 = 0,
g∗(x + ω2µ2 + · · · + ωr µr ),

if ω1 = 1.

Note that when suppt(ω) = {i}, we have

f (x) + ω · φ(x) =

{
g(x), if i = 1,
f (x) + Trn1 (µi x) otherwise,

and f ∗(x) + ω · ϕ(x) = f ∗(x) + ϕi(x). Hence, Item (ii)
of Pr holds only if ϕ1(x) = f ∗(x) + g∗(x) and ϕi(x) =
f ∗(x) + f ∗(x + µi) for any 2 ≤ i ≤ r . In this case,

f ∗(x) + ω · ϕ(x) =


f ∗(x) +

∑r
i=2 ωi( f ∗(x) + f ∗(x + µi)),

if ω1 = 0,
g∗(x) +

∑r
i=2 ωi( f ∗(x) + f ∗(x + µi)),

if ω1 = 1.

Hence, Item (ii) of Pr holds if and only if the following two
relations hold:

f ∗(x + ω2µ2 + · · · + ωr µr )

= f ∗(x) +
r∑
i=2

ωi( f ∗(x) + f ∗(x + µi))

=

{
f ∗(x) +

∑r
i=2 ωi f ∗(x + µi), if wt(ω′) is even,∑r

i=2 ωi f ∗(x + µi), if wt(ω′) is odd,
(3)

and

g∗(x + ω2µ2 + · · · + ωr µr )

=g∗(x) +
r∑
i=2

ωi( f ∗(x) + f ∗(x + µi))

=

{
g∗(x) +

∑r
i=2 ωi f ∗(x + µi), if wt(ω′) is even,

g∗(x)+ f ∗(x)+
∑r

i=2 ωi f ∗(x+µi), if wt(ω′) is odd,
(4)

where ω′ = (ω2,ω3, . . . ,ωr ). By [13, Lemma 3.3], we know
that Relation (3) holds if and only if Dµi Dµ j f ∗ = 0 for any
2 ≤ i < j ≤ r . Then the result follows from Theorem 2
immediately. �

Note that Condition (B) of Corollary 2 is elusive when
r > 2. In the following corollary, we give a reduced form by
applying Corollary 2 to g(x) = f (x + α) for some α ∈ F∗2n .

Corollary 3. Let f be a bent function on F2n . Let α ∈ F2n

and µ2, µ3, . . . , µr ∈ F
∗
2n be such that α ∈

〈
µ2, µ3, . . . , µr

〉⊥
and Dµi Dµ j f ∗ = 0 for any 2 ≤ i < j ≤ r . Then for any
Boolean function F on Fr2, the function

h(x) = f (x) + F( f (x) + f (x + α),Trn1 (µ2x), . . . ,Trn1 (µr x))

is bent. Moreover, the dual of h is

h∗(x) = f ∗(x) + F(ϕ1, ϕ2, . . . , ϕr ),

where ϕ1(x) = Trn1 (αx) and ϕi(x) = f ∗(x) + f ∗(x + µi) for
any integer 2 ≤ i ≤ r .
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Proof. Let g(x) = f (x + α). Then it is easily seen that
g∗(x) = f ∗(x)+Trn1 (αx), and then Relation (2) becomes that

f ∗(x +
r∑
i=2

ωiµi) =


∑r

i=2 ωi f ∗(x + µi),
if wt(ω′) is odd,

f ∗(x) +
∑r

i=2 ωi f ∗(x + µi),
if wt(ω′) is even,

since α ∈
〈
µ2, µ3, . . . , µr

〉⊥. Hence, Condition (B) of Corol-
lary 2 is satisfied if and only if Dµi Dµ j f ∗ = 0 for any
2 ≤ i < j ≤ r by [13, Lemma 3.3]. Then the result follows
from Corollary 2 directly. �

Remark 1. Note that though the conditions of h to be bent in
Corollary 3 are similar as that of given in [13, Theorem 3.5]
(in fact, Corollary 3 is reduced to [13, Theorem 3.5] when
α = 0), the corresponding bent functions in Corollary 3 and
[13, Theorem 3.5] can be EA-inequivalent. For instance, let
n = 6 and

f (x) = (x1, x2, x3) · (x4, x5, x6).

Let µ2 = (1,0,0,0,0,0), µ3 = (0,1,1,0,0,0). Then it is easy
to check that Dµ2 Dµ3 f ∗ = 0. Hence, by [13, Theorem 3.5],
we have that

h(x) = f (x) + F(µ2 · x, µ3 · x) = f (x) + F(x1, x2 + x3)

is bent for any Boolean function F on F2
2; and by Corollary 3,

we have that

ĥ(x) = f (x) + F̂
(
f (x) + f (x + α), µ2 · x, µ3 · x

)
= f (x) + F̂

(
f (x) + f (x + α), x1, x2 + x3

)
is bent for any α ∈

〈
µ2, µ3

〉⊥ and any Boolean function F̂ on
F3

2. These two bent functions can be clearly EA-inequivalent,
since the algebraic degree of h is 2, while the algebraic
degree of ĥ is 3 when α = µ3 and F̂(x1, x2, x3) = x1x2x3.

In [5], the authors have found two kinds of f and φ
satisfying the conditions of Theorem 1 (that is, Pr by the
previous discussion) for constructing new bent functions.
The first kind is to let f be a bent function and φ be a linear
(n,r)-function; and the second kind is to let f and f + φi
be some self-dual bent functions for each 1 ≤ i ≤ r . They
also invited the readers to find more kinds of f and φ for
obtaining more classes of bent functions in Conclusion of
[5]. Note that we have found a method to find such kinds of
f and φ in Corollary 3.

Then similarly as the concrete bent functions obtained
in [5], [11], [12] and [13], by applying Corollary 3 to the
following three monomial bent functions

f1(x) = Trn1 (λx2t+1),

f2(x) = Tr6k
1 (λx22k+2k+1),

f3(x) = Tr4k
1 (λx22k+2k+1+1),

respectively; and to the following bent functions with Niho
exponents

f4(x) = Trm1 (x
2m+1) + Trn1

( 2k−1−1∑
i=1

x(2
m−1) i

2k
+1

)
,

one can also obtain certain concrete bent functions, since
by Corollary 3, one only needs to determine the duals of
f1, f2, f3, f4 (which have been done in [4], [5], [6] and [1],
respectively), find some elements µ2, µ3, . . . , µr ∈ F

∗
2n such

that Dµi Dµ j f ∗e = 0 for any 2 ≤ i < j ≤ r and any 1 ≤ e ≤ 4
(such elements exist by [7], [10], [11], [12], [13]), and find
some α ∈ F2n such that α ∈

〈
µ2, µ3, . . . , µr

〉⊥. Here, the
concrete results do not unfolded in details.

4. Conclusion

This paper gave another characterization for the generic con-
struction of bent functions given in [5], which enabled us to
obtain another efficient construction of bent functions and to
provide a positive answer on the problem of bent functions
proposed in Conclusion of [5].
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