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SUMMARY Interpolation-based frequency estimation methods can be 

used to improve the frequency estimation accuracy of discrete Fourier 

transform (DFT) methods for complex exponential or real sinusoidal 

signals. However, traditional interpolation methods first need to search for 

the maximum spectral line and its adjacent spectral lines in order to 

interpolate the frequency estimate. This type of method has a low degree of 

flexibility and does not make full use of the effective information in the 

frequency domain. In order to solve this problem, this paper proposes a 

scalable frequency estimation method based on the multiple point 

interpolation of trigonometry, eliminating the need to find the peak of the 

spectrum and using multiple point spectral information to improve the 

frequency estimation accuracy. This paper first derives the formula for 

frequency estimation of complex sinusoidal signals using multiple spectral 

lines by using the trigonometric constant equation, then analyses the effects 

of frequency interval and number of selected frequency points on the 

frequency estimation error, and finally verifies the estimation performance 

of the proposed estimator against competing estimators by simulation. 

Simulation results show that the root mean square error (RMSE) of the 

estimator is closer to Cramer-Rao Lower Bound (CRLB) than those of the 

competing estimators over the whole effective signal-to-noise ratio (SNR) 

range. 
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1. Introduction 

Frequency estimation is widely used for signal detection and 

Doppler tracking [1] in many engineering applications, such 

as music [2], radar [3], sonar [4] and satellite navigation [5], 

etc. Commonly used methods for estimating frequency 

include time domain method [2], frequency domain method 

[6] and joint time-frequency method [7]. The frequency 

estimation method based on discrete Fourier transform 

(DFT) takes advantage of the efficient fast Fourier transform 

(FFT) algorithm. The method is generally divided into two 

steps: the first step is a coarse estimation of frequency using 

the DFT coefficient with the highest magnitude, and the 

second step tries to refine the coarse frequency. In the fine-

tuning step, traditional methods often use the peak 

magnitude of DFT and its nearest neighbors to design a 

suitable Fourier interpolation algorithms. 

In general, the interpolated DFT method can be divided 

into the direct methods, and the iterative methods. The direct 

method is obtained by taking the Fourier transform function 

of the sequence and expanding it in a Taylor series expansion 

[8]. And its accuracy is strongly correlated with the error in 

the estimation of the peak frequency [9]. In order to reduce 

the dependence on frequency offset, Liao [10] derived a new 

set of simple analytical unbiased estimators. Then he 

showed that correcting a phase term before interpolation can 

reduce the estimation bias [11]. In 2020, Shigeru Ando [6] 

proposed a frequency-domain Prony method based on the 

AR model expressed by Fourier coefficients, which can 

estimate frequencies for both isolated and indecomposable 

sinusoids, with the advantages of anti-noise and high 

statistical efficiency. Meanwhile, the iterative methods have 

been proposed to further improve the accuracy of frequency 

estimation. Aboutanios and Mulgrew [12] proposed a 

method using two DFT coefficients with two iterations, 

resulting in asymptotic variance of 1.0147 times the Cramer-

Rao Lower Bound (CRLB). However, the iterative approach 

is computationally expensive and not suitable for real-time 

processing of signals. Therefore, a noniterative two-point 

interpolation estimator using sinc function fitting was 

proposed, the estimated standard deviation can be reduced 

to 1.0073 times of the CRLB [13]. 

In recent years, three or more DFT coefficients, including 

the maximum magnitude, have been used to improve the 

performance of estimation. Candan theoretically derived 

and extended the empirically based estimator [9] to form a 

new estimator using three spectral lines [8], followed by an 

unbiased estimator [14]. Mou [15] used three-point 

interpolation with an iterative approach to achieve multiple 

frequency estimation, which performs close to CRLB over a 

wide signal-to-noise ratio (SNR) range. Orguner [16] 

proposed the best linear unbiased estimation criterion by 

merging multiple DFT samples, achieving high frequency 

estimation accuracy with high SNR. Macleod [17] improved 

performance by performing frequency estimation with five-

point DFT samples, but the method requires samples 

centered on the peak location. 
To improve estimation performance without increasing 

algorithm complexity, this paper proposes a scalable 

frequency estimator based on multi-point interpolation of 

trigonometric functions. The frequency interval of the 

method is arbitrary, and the method can be flexibly extended 

to further improve frequency estimation accuracy using 

multi-point interpolation. 
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2. Signal model and problem formulation 

A complex exponential signal embedded in additive white 

Gaussian noise (AWGN) can be modeled as: 

𝑦(𝑡) = 𝑥(𝑡) + 𝑟(𝑡) = 𝐴𝑒𝑗(2𝜋𝑓0𝑡+𝜃0) + 𝑟(𝑡) (1) 

The discrete form obtained by sampling the continuous time 

signal y[n] can be expressed as: 

𝑦[𝑛] = 𝐴𝑒𝑗(2𝜋𝑛𝑓0 𝑓𝑠⁄ +𝜃0) + 𝑟[𝑛], 𝑛 = 0,1, ⋯ , 𝑁 − 1 (2) 

where 𝐴 , 𝑓0 , and 𝜃0  are the amplitude, frequency, and 

initial phase of the complex sinusoidal signal respectively. 
𝑓𝑠  is the sampling frequency, and N is the observation 

length. 𝑟[𝑛]  is complex and zero mean AWGN with 

variance 𝜎2 . The SNR is defined as 𝑆𝑁𝑅 = 𝐴2 𝜎2⁄  . Our 

objective is the estimation of the sinusoidal signal frequency 

in the presence of the unknown amplitude and initial phase 

by a block of N samples.  

In the absence of noise, the truncated sinusoidal signal 

𝑥(𝑡) is equivalent to performing a rectangular window of 

the samples. If sinc(𝑥) function is defined as sinc(𝑥) =
sin𝑥 𝑥⁄ , the Fourier transform 𝐹(𝑓) of a complex sinusoid 
𝑥(𝑡) is given by: 

𝐹(𝑓) = ∫ 𝐴𝑒𝑗(2𝜋𝑓0𝑡+𝜃0)𝑒−𝑗2𝜋𝑓𝑡
𝑇

2

−
𝑇

2

𝑑𝑡 = 𝐴𝑇𝑒𝑗𝜃0sinc(𝜋𝑇(𝑓 − 𝑓0))  

(3) 

where 𝑇 = 𝑁 𝑓𝑠⁄   is the sampling duration of the input 

sinusoid. According to Eq. (4) the spectrum obtained from 

the Fourier transform of a complex exponential signal is a 

sinc function.  

The Discrete Time Fourier Transform (DTFT) for a 

noiseless complex sinusoid is shown in Fig. 1, where the 

number of samples is N=16 and the normalized frequency is 

𝐹0 = 0.025 . We assume that 𝑓0  is normalized to the 

sampling rate 𝑓𝑠 , which guaranties that 𝐹0 ∈ [−0.5, 0.5] . 
Fig. 1 shows that by truncating the time domain signal, the 

spectrum of the sinusoid is no longer a single tone. It is 

expanded into a sinc-shaped narrowband signal, which 

appears as a spectrum leakage. The magenta star represents 

the complex sinusoidal DTFT peak. The blue dot represents 

the zero frequency of the signal and its magnitude is given 

by 𝐴𝑃. To the left of the blue dot, the red dots (𝐴𝐿𝑖) represent 

sampled magnitudes in the frequency domain with intervals 

of −𝑖∆𝑓  from the zero frequency, respectively, the cyan 

dots to the right (𝐴𝑅𝑖) represent sampled magnitudes with 

intervals of 𝑖∆𝑓 from the zero frequency. The magnitudes 

𝐴𝐿𝑖, 𝐴𝑃, and 𝐴𝑅𝑖 can be calculated using the DTFT of the 

noisy observation. These magnitudes can be used to refine 

the frequency accuracy in the interpolated DFT method. 

The CRLB of the frequency of a complex exponential 

signal embedded in noise was derived in [18]: 

𝜎𝑓
2 =

6𝑓𝑠
2

(2𝜋)2𝑁(𝑁2−1)𝑆𝑁𝑅
             (4) 

Where N, 𝑓𝑠 , and 𝑆𝑁𝑅  are the observation length, 

sampling frequency, and the SNR respectively. It can be seen 

from the equation that a larger observation window size or 

higher SNR improves the accuracy of the frequency 

estimation [19]. 

 
Fig. 1 The DTFT periodogram with zero frequency and multi-point 

interpolation. 

3. Proposed estimator based on multi-point interpolation  

The proposed method can use M odd DTFT points to 

interpolate for the location of the true frequency. In 

particular, the coefficients to the left and right of the zero 

frequency are 𝐴𝐿𝑖  and 𝐴𝑅𝑖 , 𝑖 = 1, ⋯ ,
𝑀−1

2
 . Intercepting a 

portion of a complex sinusoid for analysis, it is equivalent to 

adding a rectangular window to the signal. These frequency 

domain coefficients, 𝐴𝑃 , 𝐴𝐿𝑖  and 𝐴𝑅𝑖 , all lie on the sinc 

function curve. According to the identity of the 

trigonometric function, we have: 

∑ sin[𝜋𝑇(𝑓0 − 𝑖∆𝑓)]
𝑀−1

2
𝑖=1

+ ∑ sin[𝜋𝑇(𝑓0 + 𝑖∆𝑓)] =
𝑀−1

2
𝑖=1

2 ∑ sin(𝜋𝑇𝑓0) cos(𝜋𝑇𝑖∆𝑓)
𝑀−1

2
𝑖=1

 (5) 

where 𝑓0 is the true frequency of the complex sinusoid.  

By substituting sinc(𝑥) = sin𝑥 𝑥⁄  into Eq. (5), we obtain: 

∑ sinc[𝜋𝑇(𝑓0 − 𝑖∆𝑓)][𝜋𝑇(𝑓0 − 𝑖∆𝑓)]
𝑀−1

2
𝑖=1

+

∑ sinc[𝜋𝑇(𝑓0 + 𝑖∆𝑓)][𝜋𝑇(𝑓0 + 𝑖∆𝑓)]
𝑀−1

2
𝑖=1

=

∑ 2sinc(𝜋𝑇𝑓0)(𝜋𝑇𝑓0) cos(𝜋𝑇𝑖∆𝑓)
𝑀−1

2
𝑖=1

    (6) 

Define 𝐴𝐿𝑖, 𝐴𝑃, and 𝐴𝑅𝑖 as follows: 

{

𝐴𝐿𝑖 = sinc[𝜋(𝑓0 − 𝑖Δ𝑓)𝑇] 

𝐴𝑃 = sinc(𝜋𝑓0𝑇)

𝐴𝑅𝑖 = sinc[𝜋(𝑓0 + 𝑖Δ𝑓)𝑇]

       (7) 

Then, Eq. (6) can be written as: 

𝜋𝑇 ∑ [𝐴𝐿𝑖(𝑓0 − 𝑖∆𝑓) + 𝐴𝑅𝑖(𝑓0 + 𝑖∆𝑓)]
𝑀−1

2
𝑖=1

=

2𝜋𝑇 ∑ 𝐴𝑃𝑓0 cos(𝜋𝑇𝑖∆𝑓)
𝑀−1

2
𝑖=1

    (8) 

We can drive the following equation for estimating of 𝑓0: 

𝑓0̂ =
[∑ 𝑖𝐴𝑅𝑖

𝑀−1
2

𝑖=1
−∑ 𝑖𝐴𝐿𝑖

𝑀−1
2

𝑖=1
]∆𝑓

∑ (𝐴𝐿𝑖+𝐴𝑅𝑖)

𝑀−1
2

𝑖=1
−2𝐴𝑃 ∑ cos(𝜋𝑇𝑖∆𝑓)

𝑀−1
2

𝑖=1

    (9) 

From Eq. (9), the frequency estimation of the complex 

sinusoid is determined by 𝐴𝐿𝑖, 𝐴𝑃, 𝐴𝑅𝑖, ∆𝑓, and M. 

The proposed method differs from existing frequency 
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domain estimation methods in the following ways: first, the 

zero frequency of the intercepted signal is found in the first 

step instead of searching for the DFT peak; second, the 

frequency domain DTFT coefficients are selected at 

frequency intervals of ±𝑖∆𝑓, 𝑖 = 1,2, ⋯ ,
𝑀−1

2
  on the left 

and right sides of the zero frequency. These M coefficients 

correspond to the amplitudes 𝐴𝐿𝑖, 𝐴𝑃, and 𝐴𝑅𝑖; Third, the 

frequency interval can be taken arbitrarily in the main lobe 

of the frequency spectrum. It can be flexibly adjusted for 

frequency estimation according to practical needs. 

4. Parameter selection and analysis 

Equation (9) shows that the accuracy of the frequency 

estimation is related to the frequency interval ∆𝑓 and the 

selected coefficient M. Therefore, the effect of the frequency 

interval on the frequency estimation accuracy is analyzed by 

simulation experiments at different SNRs. In the experiment, 

the amplitude of the complex exponential signal A=1, 𝜃0is 

a random initial phase uniformly distributed on [0,2π], and 

the noise is AWGN. The signal frequency 𝑓0 is assumed to 

be 10 Hz. The number of signal sampling points N is 16 with 

a sampling frequency of 1 KHz. 

Figure 2 shows the frequency bias of the algorithm 

proposed in this paper for different values of M without 

noise. The bias is the absolute value of the difference 

between the estimated frequency and the true frequency. It 

can be seen from the figure that when M=3, the bias 

decreases with increasing frequency interval, reaching a 

minimum at 45 Hz. The bias follows a similar pattern when 

M is equal to 5, 7 or 9. Extensive simulations show that the 

bias is minimal when ∆𝑓 = 2𝑓𝑠/(𝑀𝑁).The bias is 0.008 Hz 

for M=9 and 0.05 Hz for M=3 when the frequency interval 

is 12.7 Hz. Frequency estimation accuracy improves by 84% 

when M=9 is selected. This is because, in the proposed 

method, the range of frequency intervals used 

[− (𝑀 − 1)∆𝑓 2⁄ , (𝑀 − 1)∆𝑓 2⁄ ] increases as M increases, 

which effectively improves the accuracy of frequency 

estimation. 

 
Fig. 2 Effect of different ∆𝑓 and M on frequency bias without noise.  

 
Fig. 3 Effect of different ∆𝑓 and M on frequency RMSE at low SNR. 

Figure 3 shows the results of the effect of ∆𝑓  on the 

accuracy of the frequency estimation at an SNR of 15 dB. In 

the figure, the root mean square error (RMSE) is the square 

root of the mean of the squared errors of the estimated 

frequencies over the true frequencies of the sinusoid. The 

figure shows a significant increase in the frequency RMSE 

due to the increased noise compared to the noiseless case. In 

addition, at low SNR, the declining trend of the frequency 

RMSE is suppressed by the noise. The optimal ∆𝑓  with 

M=3 increases slightly to around 50 Hz, while the estimators 

with M=5, 7, 9 have a better noise immunity and the optimal 

∆𝑓 remains essentially the same, reaching a minimum at 

∆𝑓 = 2𝑓𝑠/(𝑀𝑁). Selecting different M in the spectral line 

still follows the principle that the more frequency points 

selected, the better the anti-noise performance and 

frequency estimation accuracy. Therefore, it is advisable to 

use SNRs and frequency estimation error metrics when 

choosing frequency points and intervals in practice. 

5. Simulation results and performance comparison 

The performance of the proposal estimator is compared with 

the other conventional DFT interpolation estimators in this 

section. The competing estimators include the Candan 

estimator (CE) [8] and the Macleod estimator (ME) [17]. In 

the simulations, CE and ME (M=3) make use of the DFT 

peak and its two neighbors, while ME (M=5) is implemented 

using a five-sample interpolator. And the ∆f of the proposed 

method is chosen following the optimum in Sect. 4. 

First, the computational complexity of the different 

methods is compared. Since the traditional methods need to 

find the peak of the spectrum, they need to calculate the 

results of the DFT for all N points. In contrast, the proposed 

method only needs to compute the amplitude of the spectral 

lines around the zero frequency point using DTFT, thus 

greatly reducing the computational burden. This 

improvement will be significant when the frequency interval 

∆f is small, as the traditional methods have to improve the 

spectral density by zero padding.  
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Second, we evaluate and compare the effect of peak 

frequency estimation error on frequency estimating 

accuracy performance. In the simulation, the sampled 

sinusoidal sequence 𝑓0 = 10Hz,  𝑓𝑠 = 1KHz,  SNR=15 dB 

and N=16. In the figures, the 𝛿 is defined as the frequency 

offset between the peak value and the real frequency 𝑓0 , 

normalized by the spectral line spacing, i.e., 𝛿 ∈
[−0.5, 0.5]. For consistency, the zero-frequency location of 

the proposed method is set as the peak location of the other 

methods. And the ∆𝑓 is set to 41.67Hz. 

Figure 4 shows the RMSE performance for the different 

estimators at a low SNR. It can be seen that the frequency 

estimation errors of ME (M=3) and ME (M=5) gradually 

decrease with increasing |𝛿| . Conversely, the estimating 

RMSEs of CE and the proposed estimator increase. The 

RMSE/CRLB of CE increases from 1.3 to 2, which is the 

highest RMSE, over the whole frequency offset range. In 

contrast, the proposed estimator only increases from 1.0 to 

1.2, which is significantly better than CE. Fig.4 also shows 

that the proposed method achieves the CRLB over a wider 

range of 𝛿 . This indicates that its performance is less 

dependent on the frequency offset. Thus, our estimator 

outperforms the other two estimators at a low SNR. 

 
Fig. 4 RMSE comparison of frequency estimators at low SNR. 

 
Fig. 5 The RMSE performance of the estimators versus SNR. 

Third, the frequency estimation accuracy of estimators 

with different SNRs is evaluated and compared. Fig. 5 

shows the frequency RMSE performance of the different 

estimators at a wide range of SNRs. In the experiment, N=8, 

𝛿 = 0.25 and a SNR ranging from -5 dB to 30 dB are used. 

M=5 and the optimal frequency interval 50 Hz is used in the 

proposed estimator. The figure shows that when the SNR is 

less than 5 dB, all algorithms deviate significantly from the 

CRLB. In the low SNR range, the ME with M=5 shows a 

slight performance improvement over M=3. However, both 

ME with M=5 and M=3 deviate significantly from the CRLB 

in the high SNR range. The CE performs worst in the low 

SNR range from 0 dB to 16 dB. However, it outperforms the 

ME above 20 dB. Over the whole range of SNRs, the RMSE 

performance of the proposed estimator is much closer to the 

CRLB than the others. 

6. Conclusion 

A scalable frequency estimator based on multi-point 

interpolation of trigonometric functions is proposed in this 

paper. The spectral lines used in this estimator don't have to 

be located next to the maximum magnitude. And the 

frequency interval can be taken to be arbitrary. The effects 

on the accuracy of frequency estimation of the frequency 

interval ∆𝑓  and the selected coefficient M are analyzed. 

Simulation results show that the RMSE of the proposed 

estimator is closer to the CRLB than those of the competing 

estimators over the whole effective SNR range. 
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