
DOI:10.1587/transfun.2024EAL2042

Publicized:2024/09/13

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

LETTER
Clock Drift Compensation for Master-Slave Clock Synchronization
in EtherCAT Networks

Jiqian XU†, Lijin FANG†a), Qiankun ZHAO†, Nonmembers, Yingcai WAN†, Student Member, Yue GAO†,
and Huaizhen WANG††, Nonmembers

SUMMARY Clock synchronization represents an essential necessity for
EtherCAT networks. This letter proposes a practical and efficient clock drift
compensation scheme for the master-slave clock synchronization in Ether-
CAT networks, which decouples and then minimizes the adverse effect of
master jitters for synchronization without degrading the clock synchroniza-
tion performance between slave devices. Moreover, our method requires no
modifications to the original EtherCAT protocol, nor does it introduce any
additional bandwidth overhead. Comparative experimental results demon-
strate the performance enhancement of the proposed approach over existing
methods.
key words: Clock synchronization, EtherCAT networks, pulse noise, master
jitters, distributed clock

1. Introduction

EtherCAT is an industrial Ethernet network system that
boasts a powerful real-time capability and an open proto-
col [1]. It is extensively utilized in fields such as high-
precision distributed measurement and motion control [2–4].
EtherCAT offers a hardware-based distributed clock (DC)
synchronization mechanism in the dedicated EtherCAT slave
controller (ESC) [5]. This mechanism ensures that all other
DC-capable slaves (non-reference slaves) are synchronized
with the first DC-capable slave (reference slave), resulting
in clock deviations of less than 1 µs in small-to-medium
systems [6]. In addition to the widely used 100 Mbit/s trans-
mission data rate, EtherCAT Technology Group has launched
EtherCAT G/G10 with 1/10 Gbit/s data rate in recent years,
with no changes to the protocol. This demonstrates the scala-
bility of EtherCAT networks, which is extremely valuable for
application. However, the clock synchronization between the
master and slaves requires additional effort since the mas-
ter typically utilizes a standard Ethernet network interface
card (NIC) for better compatibility [7]. The approaches for
master-slave clock synchronization in EtherCAT networks
can be categorized into two types: (a) synchronizing the ref-
erence slave to the master (S2M), and (b) synchronizing the
master to the reference slave (M2S).

The EtherCAT master stack is typically implemented
as a software package on large real-time operating systems

†The authors are with the Faculty of Robot Science and Engi-
neering, Northeastern University, Shenyang, China.

††The author is with the Institute of Shandong New Generation
Information Industry Technology, Inspur Group, Jinan, China.

a) E-mail: ljfang@mail.neu.edu.cn (Corresponding author)

(RTOS) such as PREEMPT RT patched Linux, Xenomai,
and RTAI [8, 9]. The acquisition and transmission of the
EtherCAT master’s clock for clock synchronization can be
adversely affected by jitters in NIC driver, thread schedul-
ing, and task processing. For the S2M method, the reference
clock of EtherCAT network comes from the EtherCAT mas-
ter [7]. Therefore, the jitters of EtherCAT master clock can
influence clock synchronization of all nodes in EtherCAT
network. Although the clock synchronization performance
between the master and the reference slave (M-rS) is im-
proved, the clock synchronization performance between the
reference slave and the last non-reference slave (rS-lS) is
degraded.

On the contrary, the M2S strategy obtains the reference
clock of network from the reference slave which is more
stable, ensuring reliable and accurate rS-lS clock synchro-
nization. It should also be noted that the impact of jitters on
M-rS clock synchronization remains for the M2S method.
We still need to derive the clock drift (low frequency) of the
master clock relative to the reference slave clock from the
clock data coupling with jitters (high frequency). In [10], an
M-rS clock drift compensation method is proposed. How-
ever, the performance could be further improved because the
adverse effects of jitters are not fully decoupled and reduced
by this method.

To fill the gaps of existing methods, this letter proposes
a clock drift compensator which can theoretically eliminate
the adverse effect of the thread scheduling and task process-
ing jitters, as well as reducing that of NIC driver jitters on
the clock drift calculation. The performance of rS-lS clock
synchronization is also not compromised by our method.

2. Master-Slave Clock Synchronization Model

In this section, considering the jitters in the master and the
clock drift of different devices, the master-slave clock syn-
chronization model is set up under EtherCAT protocol. The
master is allocated the local time through the system clock
of the RTOS on which it runs. The slaves are allocated the
local time using an internal clock. We assume that all slaves
are capable of the DC mechanism and the slave closest to the
master is designated as the reference slave.

As depicted in Fig. 1, the EtherCAT master im-
mediately collects the timestamp 𝑡𝑖𝑚𝑠 by the function
clock gettime() in Linux userspace before the master sends
the 𝑖-th cyclic EtherCAT frame to slaves. Therefore, the

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Master

Non-ref.
slave 1

Scheduling and processing jitters

NIC jittersApplication and data exchange

M2S

ref. clock

S2M

ref. clock

Non-ref.
slave N

Ref.
slave

Fig. 1 Diagram of the master-slave clock synchronization
model.

following relation is satisfied

𝑡𝑖𝑚𝑠 = 𝑡𝑖𝑚𝑡 + 𝑗 𝑖𝑠 + 𝑒𝑚 (1)

where 𝑡𝑖𝑚𝑡 represents the theoretical timestamp when the
master thread starts executing at the 𝑖-th cycle; 𝑗 𝑖𝑠 denotes
the thread scheduling and processing jitters at the 𝑖-th cycle,
which is a bounded random variable for RTOS; 𝑒𝑚 is the
execution time of the master application and data exchange.
Similarly, the timestamp 𝑡𝑖𝑟𝑎 (stored in System Time register
(0x0910:0x0917)) at which the 𝑖-th cyclic EtherCAT frame
arrives at the reference slave is

𝑡𝑖𝑟𝑎 = 𝑡𝑖𝑚𝑠 + 𝑗 𝑖𝑐 + 𝛿𝑖 + 𝑑𝑚,𝑟 − 𝑓𝑚,𝑟 (2)

𝛿𝑖 =

𝑏=𝑖∑︁
𝑏=1

𝛥𝑏 (3)

where 𝑗 𝑖𝑐 denotes the NIC driver jitters at the 𝑖-th cycle, which
is also a bounded random variable for RTOS; 𝛿𝑖 represents
the total M-rS clock drift from the first cycle to the 𝑖-th cycle
and 𝛥𝑏 is the M-rS clock drift during the 𝑏-th cycle, which
both are influenced by the quality of the crystal oscillator of
each device; 𝑑𝑚,𝑟 and 𝑓𝑚,𝑟 (not shown in Fig. 1) refer to the
propagation delay and time offset between the master and the
reference slave, respectively. Similarly, we define 𝑑𝑟 ,𝑛 and
𝑓𝑟 ,𝑛 as the propagation delay and time offset between the
reference slave and each non-reference slave, respectively,
where the subscription 𝑛 = 1, ...,N and N represents the
number of non-reference slaves. Hence, the time relationship
between the reference slave and the 𝑛-th non-reference slave
is given by

𝑡𝑖𝑟𝑎 = 𝑡𝑖𝑛𝑎 + 𝑓𝑟 ,𝑛 − 𝑑𝑟 ,𝑛 (4)

where 𝑡𝑖𝑛𝑎 denotes the timestamp of the 𝑖-th cyclic EtherCAT

Master

1) Adjust start time of

master thread using

ref. slave time and

master time Eq. (14)

2) Collect master time

3) Send FRMW datagram

Insert ref. slave time

into FRMW datagram

Ref. slave

Adjust local time using

ref. slave time Eq.(15)

Non-ref. slaves

FRMW FRMW(ref. slave time)

FRMW(ref. slave time)

Fig. 2 The proposed M2S-based clock drift compensation
procedure.

frame arrives at the 𝑛-th non-reference slave.

3. Proposed Master-Slave Clock Synchronization
Method

The proposed method includes the measurement of propa-
gation delay during the master initialization phase, and the
clock drift compensation depicted in Fig. 2 during the mater
operation phase.

3.1 Measurement of Propagation Delay and Time Offset

Compared with the rS-lS clock synchronization, the M2S
method requires relatively low M-rS clock synchronization
accuracy. Therefore, instead of measuring the time offset
𝑓𝑚,𝑟 and propagation delay 𝑑𝑚,𝑟 of M-rS separately and
precisely, we derive the difference ℎ𝑚,𝑟 between 𝑓𝑚,𝑟 and
𝑑𝑚,𝑟 by

ℎ𝑚,𝑟 = 𝑡𝑚𝑠 − 𝑡𝑟𝑎 . (5)

Substituting (2) into (5), we can get

ℎ𝑚,𝑟 = 𝑓𝑚,𝑟 − 𝑑𝑚,𝑟 − 𝑗𝑐 − 𝛿. (6)

To minimize the adverse effect of NIC jitters 𝑗𝑐 on this mea-
surement, the value of ℎ𝑚,𝑟 is averaged by sending 10,000
EtherCAT frames with interval of 1000 µs. In addition, due
to the short measurement process after master initialization
(<15 s), the total clock drift 𝛿 could be considered equal to
zero during this process, i.e., 𝛿 = 0. Hence, the following
relationship can be obtained by

ℎ̄𝑚,𝑟 = AVG
(
ℎ𝑚,𝑟

)
= 𝑓𝑚,𝑟 − 𝑑𝑚,𝑟 (7)

where ℎ̄𝑚,𝑟 is the averaged ℎ𝑚,𝑟 implemented for M-rS clock
drift compensation.

For the rS-lS clock synchronization, by sending a broad-
cast write (BWR) datagram to Receive Time Port 0 of each
slave, the master activates the propagation delay 𝑑𝑚,𝑟 and
time offset 𝑓𝑚,𝑟 measurement [7]. Once the slave receives
this frame, it latches the local time of the first preamble bit of
this frame at all ports. Depending on the identified network
topology, the master then records the Receive Time Port reg-
ister of each slave and calculates these compensation values.
For the linear network topology, 𝑑𝑟 ,𝑛 and 𝑓𝑟 ,𝑛 are calculated
by

LETTER
3

𝑑𝑟 ,𝑛 =

(
𝑡𝑟
𝑝1 − 𝑡𝑟

𝑝0

)
−
(
𝑡𝑛
𝑝1 − 𝑡𝑛

𝑝0

)
2

(8)

𝑓𝑟 ,𝑛 = 𝑡𝑟𝑝0 − 𝑡𝑛𝑝0 + 𝑑𝑟 ,𝑛 (9)

where 𝑡𝑟
𝑝0 and 𝑡𝑟

𝑝1 denote the Receive Time Port 0 and 1 reg-
ister values of the reference slave, respectively; 𝑡𝑛

𝑝0 and 𝑡𝑛
𝑝1

represent the Receive Time Port 0 and 1 register values of
the 𝑛-th non-reference slave, respectively. Finally, the master
writes the corresponding calculation results back to the Sys-
tem Time Offset register (0x0920:0x0927) and System Time
Delay register (0x0928:0x092B) of each non-reference slave,
respectively. These values are implemented for rS-lS clock
drift compensation.

Therefore, all clocks are considered to have completed
coarse clock synchronization after the master initialization
phase.

3.2 Clock Drift Compensation

3.2.1 M-rS Compensation

As depicted in Fig. 1, using 𝑡𝑖−1
𝑟𝑎 and 𝑡𝑖−1

𝑚𝑠 , we can calculate
the M-rS clock drift 𝜙𝑖 at the 𝑖-th cycle

𝜙𝑖 = 𝑡𝑖−1
𝑟𝑎 + ℎ̄𝑚,𝑟 −

(
𝑡𝑖−1
𝑚𝑠 + 𝛿𝑖−1

)
(10)

where 𝛿𝑖−1 is the estimation of 𝛿𝑖−1 and 𝛿0 = 0. The master
records the timestamp 𝑡𝑟𝑎 by sending configured address
physical read multiple write (FRMW) datagram to read the
System Time register of the reference slave in each cycle.

It is assumed that the clock synchronization has been
successfully achieved before the last sampling cycle, i.e.,
𝛿𝑖−1 = 𝛿𝑖−1. Hence, bringing Eqs. (2) and (7) into Eq. (10),
the following relationship could be satisfied

𝜙𝑖 = 𝛥𝑖−1 + 𝑗 𝑖−1
𝑐 (11)

This suggests the advantage of our method of using 𝑡𝑚𝑠 and
𝑡𝑟𝑎 to compute the M-rS clock drift is that it is not affected by
the thread scheduling and processing jitters 𝑗𝑠 . Therefore,
our method should be more efficient and accurate for clock
drift estimation by a filter.

The NIC driver jitters 𝑗 𝑖−1
𝑐 in 𝜙𝑖 can be viewed as a type

of pulse noise [11]. The median filter (MED) is implemented
for reducing this type of noise

𝜙𝑖 = MED
(
𝜙𝑖 , 𝑤

)
(12)

where 𝑤 is the sliding window width. Taking into account
factors such as computational load and filtering performance,
it is concluded through repeated experiments that the sliding
window width 𝑤 is designed to be 11 in this study. Then, the
estimation of the total clock drift 𝛿𝑖 at 𝑖-th cycle is obtained
by

𝛿𝑖 = 𝛿𝑖−1 + 𝑘𝜙𝑖 (13)

where 𝑘 is the adjustment gain.

Data analysisEtherCAT master (M)

Non-ref.
slaves 1 ~ 4

Last non-ref.
slave (lS)

Ref.
slave (rS)

Fig. 3 The experimental environment.

Finally, we calculate the (𝑖 + 1)-th cycle start time of
master thread based on 𝛿𝑖−1 as follows

𝑡𝑖+1
𝑚𝑡 = 𝑡1𝑚𝑡 + 𝑖𝑃𝑠 − 𝛿𝑖 (14)

where 𝑡1𝑚𝑡 is configured by the master stack; 𝑃𝑠 is the timing
period of the slave DC interrupt.

3.2.2 rS-lS Compensation

The master periodically sends FRMW datagram to obtain
the reference slave time 𝑡𝑟𝑎 from System Time register and
writes it to the System Time register of each non-reference
slave to trigger clock synchronization (DC mechanism) with
the reference slave [6]. Combining Eqs. (4), (8), and (9),
the clock drift 𝜃𝑖𝑟 ,𝑛 between the reference slave and the 𝑛-th
non-reference slave is given by

𝜃𝑖𝑟 ,𝑛 = 𝑡𝑖𝑛𝑎 + 𝑓𝑟 ,𝑛 − 𝑑𝑟 ,𝑛 − 𝑡𝑖𝑟𝑎 . (15)

Depending on the sign of 𝜃𝑖𝑟 ,𝑛, the Time Control Loop will
adjust the local time of the 𝑛-th non-reference slave to follow
that of the reference slave. The entire rS-lS clock synchro-
nization process is implemented in the ESC by hardware
circuits and therefore does not require user intervention.

4. Experiments

4.1 Experimental Setup

Using the open source IgH EtherCAT master stack [9],
comparative experiments are conducted to assess the clock
synchronization performance of the proposed method. As
shown in Fig. 3, the EtherCAT master is an industrial PC
equipped with a Realtek RTL8169 NIC and an Intel Core
i3-4170 CPU. The RTOS is Ubuntu 18.04 LTS distribu-
tion patched with PREEMPT RT (4.4.139-rt192). Ether-
CAT slaves consist of six Panasonic A6 servo drives and
linear network topology is utilized, which is a typical ap-
plication in the field of industrial robots. The slave closest
to the master is designated as the reference slave and the
rest are non-reference slaves. The cable length between the
reference slave and the last non-reference slave is about 1.5
meters. 204 bytes of PDO (process data objects) data are
exchanged between the master and slaves in each cycle.

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 1 Statistics of clock synchronization errors of dif-
ferent methods.

Indicators
(µs)

Proposed E-M2S E-S2M

M-rS rS-lS M-rS rS-lS M-rS rS-lS

MMean -0.091 0.098 1.236 0.135 -0.082 0.502

MStd 0.729 0.017 2.609 0.033 0.867 0.369

MMax 2.153 0.132 28.002 0.229 3.274 2.913

MMin -11.858 0.061 -18.315 0.085 -12.479 0.156

The existing M2S method in [10] (E-M2S) and S2M
method in [7] (E-S2M) are utilized as benchmarks to produce
performance assessment. All experiments use the Linux
command stress-ng to keep the CPUs in a fully loaded state
so that the results are more in line with real-world usage
scenarios. The parameters of our method are designed as
𝑤 = 11 and 𝑘 = 0.01. The PI controller parameters of E-
M2S are 𝑘𝑃 = 0.125 and 𝑘 𝐼 = 0.0005. The timing period
of DC interrupt 𝑃𝑠 is 1000 µs. Following the Section 3.1,
𝑑𝑟 ,𝑛, 𝑓𝑟 ,𝑛, and ℎ̄𝑚,𝑟 are estimated during the master initial-
ization phase. The M-rS clock synchronization errors of the
proposed method and E-M2S are computed by Eq. (10), and
the M-rS clock synchronization errors of E-S2M are calcu-
lated by 𝑡𝑖𝑟𝑎 − 𝑡𝑖𝑚𝑠 . The rS-lS clock synchronization errors
(absolute values) of all methods are collected by periodi-
cally sending Broadcast Read (BRD) datagram to read the
System Time Difference register (0x092C:0x092F) of slaves.
We repeat the experiment five times for each method. For
each experimental round, 1,800,000 samples (30 minutes)
are recorded after the mater enters the operation phase for 2
minutes.

4.2 Results

Fig. 4 illustrates the distribution of clock synchronization
errors of different methods, where M-rS synchronization
errors of the proposed method, E-M2S, and E-S2M are de-
picted in Figures. 4(a), 4(c) and 4(e), respectively; rS-lS
synchronization errors of the proposed method, E-M2S, and
E-S2M are displayed in Figures. 4(b), 4(d) and 4(f), re-
spectively. Moreover, those synchronization error data are
also statistically analyzed by four indicators including mean
(Mean), standard deviation (Std), maximum (Max) and min-
imum (Min). Table 1 shows the five experimental means of
the Mean, Std, Max, and Min indicators defined as MMean,
MStd, MMax, and MMin, respectively.

Comparing the M-rS and rS-lS errors shown in Fig.
4 and Table 1, it is observed that the Std, Max and Min
of M-rS errors are much larger than those of the rS-lS er-
rors. This is because the master stack runs on a large RTOS
(PREEMPT RT, Xenomai, etc.) and uses a standard Ether-
net NIC, resulting in greater jitters in transmitting EtherCAT
frame, while the slave generally runs on a small embedded
RTOS (FreeRTOS, RT-Thread, etc.) and uses dedicated ESC
which offers a hardware-based DC mechanism.

(a) The M-rS synchronization error
of the proposed method.

(b) The rS-lS synchronization error
of the proposed method.

(c) The M-rS synchronization error
of E-M2S.

(d) The rS-lS synchronization error
of E-M2S.

(e) The M-rS synchronization error
of E-S2M.

(f) The rS-lS synchronization error
of E-S2M.

Fig. 4 Distribution of clock synchronization errors of dif-
ferent methods.

Observing the M-rS synchronization errors of each
method shown in Fig. 4 and Table 1, we can conclude
that the M-rS error of the proposed method is the small-
est, slightly better than that of E-S2M, while the M-rS error
of E-M2S is the largest. This is because, in the E-M2S
method, the different jitter sources in the master stack are
not fully analyzed and dealt with accordingly. Fig. 4 and
Table 1 also indicate that although the M-rS of E-S2M is
roughly equivalent to that of the proposed method, the rS-lS
synchronization performance of E-S2M is sharply inferior
to the M2S-based method. For the rS-lS synchronization
errors, the MStd of E-S2M are approximately twenty-two
times that of the proposed method. In E-S2M method, the
clock of the reference slave will not be stable due to the
large transmission jitters in the clock synchronization frame
sent by the master, which in turn affects the clock synchro-
nization between slaves. That is, the M-rS errors will be
passed to the rS-lS errors. Additionally, it is observed that
the synchronization performance of the proposed method for
rS-lS is slightly improved compared to E-M2S. Therefore,
the proposed clock synchronization method has the better
comprehensive performance over other methods.

LETTER
5

5. Conclusion

A novel clock drift compensation method of master-slave
clock synchronization is proposed for the distributed syn-
chronization applications in EtherCAT networks. Consider-
ing the jitters in the master and the clock drift of different
devices, the master-slave clock synchronization model is set
up under EtherCAT protocol. Under the M2S clock synchro-
nization framework, for the calculation of M-rS clock drift,
the proposed method can theoretically eliminate the adverse
effects of thread scheduling and task processing jitters, while
the NIC jitters are efficiently suppressed by the median filter
with low sliding window width. Comparative experiments
are conducted to evaluate the clock synchronization perfor-
mance of the proposed method. Experimental results show
that the proposed method has the better comprehensive per-
formance for master-slave clock synchronization than exist-
ing methods. What’s more, our method requires no modifi-
cations to the original EtherCAT protocol and introduces no
communication overhead.

In future work, we will conduct in-depth testing on
the long-term stability and compatibility of the proposed
method on different EtherCAT networks such as TSN (Time
Sensitive Networking) capable EtherCAT networks.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grant 62273081, in part
by the Science and Technology Small and Medium Enter-
prises Innovation Ability Enhancement Project of Shandong
Province under Grant 2023TSGC0226, and in part by the
Key R&D Plan of Shandong Province (Competitive Innova-
tion Platform) under Grant 2023CXPT094.

References

[1] X. Wu and L. Xie, “Performance evaluation of industrial ethernet
protocols for networked control application,” Control Engineering
Practice, vol.84, pp.208–217, 2019.

[2] J. Ahn, S. Park, J. Sim, and J. Park, “Dual-channel EtherCAT control
system for 33-dof humanoid robot TOCABI,” IEEE Access, vol.11,
pp.44278–44286, 2023.

[3] J. Xu, H. Wang, Q. Zhao, Y. Gao, Y. Wan, and L. Fang, “A robotic
manipulator using dual-motor joints: Prototype design and anti-
backlash control,” IEEE Robotics and Automation Letters, vol.8,
no.12, pp.8327–8334, 2023.

[4] C.C. Tsai, F.C. Tai, C.A. Lin, and C.C. Chan, “EtherCAT-based
impedance control of a 6-dof industrial robotic manipulator,” 2019
IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM), Hong Kong, China, pp.80–85, IEEE, 2019.

[5] S.M. Park, H. Kim, H.W. Kim, C.N. Cho, and J.Y. Choi, “Synchro-
nization improvement of distributed clocks in EtherCAT networks,”
IEEE Communications Letters, vol.21, no.6, pp.1277–1280, 2017.

[6] G. Cena, I.C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino,
“Evaluation of EtherCAT distributed clock performance,” IEEE
Transactions on Industrial Informatics, vol.8, no.1, pp.20–29, 2012.

[7] S.M. Park, H.W. Kim, H.J. Kim, and J.Y. Choi, “Accuracy improve-
ment of master–slave synchronization in EtherCAT networks,” IEEE
Access, vol.8, pp.58620–58628, 2020.

[8] H.C. Yi and J.Y. Choi, “Cycle time improvement of EtherCAT net-
works with embedded linux-based master,” IEICE Transactions on
Information and Systems, vol.E102.D, no.1, pp.195–197, Jan. 2019.

[9] M. Cereia, I.C. Bertolotti, and S. Scanzio, “Performance of a real-
time EtherCAT master under linux,” IEEE Transactions on Industrial
Informatics, vol.7, no.4, pp.679–687, 2011.

[10] N. Zhou and D. Li, “Cyber–physical codesign of field-level reconfigu-
rations in networked motion controllers,” IEEE/ASME Transactions
on Mechatronics, vol.26, no.4, pp.2092–2103, 2021.

[11] K. Ye, Y. Yan, and H. Wu, “Time synchronization algorithm for
networked control systems based on stochastic search,” IEEE Trans-
actions on Industrial Informatics, vol.18, no.1, pp.26–34, 2022.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

