
DOI:10.1587/transfun.2024EAP1001

Publicized:2024/07/12

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
New Distinguishing Attacks on Round-Reduced Sparkle384 and
Sparkle512 Permutations

Donghoon CHANG† ,†† ,†††a), Nonmember, Deukjo HONG††††b), Member, and Jinkeon KANG†c), Nonmember

SUMMARY The Sparkle permutation family is used as an underlying
building block of the authenticated encryption scheme Schwaemm, and
the hash function Esch which are a part of one of finalists in the National
Institute of Standards and Technology (NIST) lightweight cryptography
standardization process. In this paper, we present distinguishing attacks
on 6-round Sparkle384 and 7-round Sparkle512. We used divide-and-
conquer approach and the fact that Sparkle permutations are keyless, as
a different approach from designers’ long trail strategy. Our attack on
Sparkle384 requires much lower time complexity than existing best one;
our attack on Sparkle512 is best in terms of the number of attacked rounds,
as far as we know. However, our results do not controvert the security claim
of Sparkle designers.
key words: Sparkle384, Sparkle512, Distinguishing Attack

1. Introduction

Sparkle, designed by Beierle et al. [1], is a family of ARX-
based cryptographic permutations, including three mem-
bers corresponding to three sizes: Sparkle256 for 256-bit
block, Sparkle384 for 384-bit block, and Sparkle512 for 512-
bit block. The Sparkle permutation family is used as an
underlying building block of the authenticated encryption
scheme Schwaemm and the hash function Esch which are
a part of one of finalists in the National Institute of Stan-
dards and Technology (NIST) lightweight cryptography stan-
dardization process [11]. The Sparkle permutations have a
round-based iterative structure. Variants of Schwaemm and
Esch use 10-round Sparkle256, 11-round Sparkle384, and 12-
round Sparkle512 as big instances, and 7-round Sparkle256,
7-round Sparkle384, and 8-round Sparkle512 as slim in-
stances.

The designers [1], applied the long trail strategy (LTS)
[3] to the design of Sparkle to get resistance against dif-
ferential cryptanalysis [2] and linear cryptanalysis [7], and
analyzed the security of Sparkle permutations from various
perspectives. Especially, they showed that the maximum
numbers of rounds, for which the security level of 𝑏/2 bits
against differential and linear cryptanalysis is broken, where
𝑏 is the block size, are 5 for Sparkle256, 6 for Sparkle384,

†National Institute of Standards and Technology, Gaithersburg,
Maryland, USA
††Strativia, Largo, Maryland, USA
†††Department of Computer Science, Indraprastha Institute of

Information Technology Delhi(IIIT-Delhi), Delhi, India
††††Smart Grid Research Center, Jeonbuk National University

a) E-mail: donghoon.chang@nist.gov
b) E-mail: deukjo.hong@jbnu.ac.kr(Correspongding author)
c) E-mail: jinkeon.kang@nist.gov

and 6 for Sparkle512, respectively, and claimed that 10-round
Sparkle256, 11-round Sparkle384, and 12-round Sparkle512
have no distinguishers with both time and data lower than
2𝑏/2. Additionally, they presented birthday-differential state-
recovery attacks on 4.5-round Schwaemm128-128 (with-
out whitening) with 296 time and 296 memory, 4.5-round
Schwaemm192-192 (without whitening) with 2128 time and
2128 memory, and 4.5-round Schwaemm256-256 (without
whitening) with 2192 time and 2160 memory. Note that these
state recovery attacks can be used to recover the key as well,
because the attacker can reverse the recovered state up to the
initial state containing the key.

Schrottenloher and Stevens [9] noted that these
birthday-differential attacks could be used to construct dis-
tinguishing attacks on Sparkle256, Sparkle384, Sparkle512
with half more round extension and without any further extra
cost. They also provided guess-and-determine distinguish-
ing attacks on 4-round Sparkle256 with negligible time and
negligible memory, 4-round Sparkle384 with negligible time
and negligible memory, 5-round Sparkle512 with time less
than 232 and negligible memory.

Our Contribution. There are few analysis results for
Sparkle except [1] and [9]. We present new divide-and-
conquer distinguishing attacks on 6-round Sparkle384 and
7-round Sparkle512, which fix specific forms of input and
output differences, and find right pairs satisfying the dif-
ferences. These attacks are devised based on the fact that
Sparkle permutations are keyless. The time complexities of
the distinguishing attacks on 6-round Sparkle384 and 7-round
Sparkle512 are 265.1 and 2191.4, far less than 2192 and 2256,
which are the 𝑏/2-bit security level for 384-bit and 512-bit
block sizes, respectively.

The generic attacks corresponding to them are regarded
as ones to find right pairs satisfying the same differences for
random permutations with 384-bit or 512-bit blocks. We
show that the generic attacks require 2257 queries for both
384-bit and 512-bit block sizes. It implies that our attacks
are valid because they are much more efficient than generic
ones.

Table 1 provides summary of existing distinguishing
attacks on Sparkle permutations. Our attack on Sparkle384
works for the same number of rounds as the linear one in [1],
but the time complexity of ours is much lower. Our attack
on Sparkle512 works for more rounds than any other ones, as
far as we know. However, our results do not controvert the
security claim of Sparkle designers.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Table 1 Summary of distinguishing attacks on Sparkle𝑛 permutations,
where ‘T’ and ‘M’ mean time and memory complexities, respectively.

𝑛
Attack Rounds Complexity Ref.Type T M

256
Guess-and-Determine 4 / 10 negl. negl. [9]

Linear 5 / 10 2114 negl. [1]
Birthday-Differential 5 / 10 296 296 [1]

384

Guess-and-Determine 4 / 11 negl. negl. [9]
Birthday-Differential 5 / 11 2128 2128 [1]

Linear 6 / 11 2178 negl. [1]
Divide-and-Conquer 6 / 11 265.1 264 Sec. 3.2

512

Guess-and-Determine 5 / 12 < 232 negl. [9]
Birthday-Differential 5 / 12 2192 2160 [1]

Linear 6 / 12 2212 negl. [1]
Divide-and-Conquer 7 / 12 2191.4 264 Sec. 3.3

Organization. This paper is organized as follows. Section 2
describes Sparkle384 and Sparkle512 permutations in addi-
tion to some definitions and notations. Section 3 presents our
distinguishing attacks on 6-round Sparkle384 and 7-round
Sparkle512. Section 4 presents generic attacks to find right
pairs for random permutations. Finally, in Section 5, we
conclude the paper.

2. Preliminaries

2.1 Definitions and Notations

Let 𝑥 and 𝑦 be bitstrings of the same length. Bitwise XOR of 𝑥
and 𝑦 is denoted by 𝑥 ⊕ 𝑦. A 𝑛𝑚-bit string 𝑥 can be regarded
as a length-𝑛 vector (𝑥0, 𝑥1, ..., 𝑥𝑛−1) of 𝑚-bit strings or a
length-𝑚 vector (𝑥0, 𝑥1, ..., 𝑥𝑚−1) of 𝑛-bit strings. {0, 1}𝑛
is the set of all 𝑛-bit strings. We often regard {0, 1}𝑛 as a
𝑛-dimensional vector space over 𝐺𝐹 (2).

2.2 Sparkle384 Permutation

First of all, we describe the Alzette operation. It is the only
nonlinear operation in Sparkle, and is a 64-bit nonlinear
ARX-based permutation. When it uses a 32-bit constant
𝑐, it is denoted as 𝐴𝑐. The 64-bit input 𝑧 to 𝐴𝑐 is split into
two 32-bit words 𝑧𝐿 and 𝑧𝑅. That is, 𝑧 = (𝑧𝐿 , 𝑧𝑅). Then,
𝑥 = 𝐴𝑐 (𝑧) is computed as follows:

𝜎 is a simple linear permutation on {0, 1}64, used in
Sparkle. The 64-bit input 𝑡 to 𝜎 is split into four 16-bit words
𝑡0, 𝑡1, 𝑡2, and 𝑡3. Then, 𝜎(𝑡) = 𝜎(𝑡0, 𝑡1, 𝑡2, 𝑡3) is defined by

𝜎(𝑡) = (𝑡1, 𝑡0 ⊕ 𝑡1, 𝑡3, 𝑡2 ⊕ 𝑡3).

Fig. 1 The 𝑖-th round function Round 𝑖 of Sparkle384

Sparkle384 is a permutation on {0, 1}384 and has a round
iterative structure. Sparkle384𝑟 means that it consists of 𝑟
round functions. The 384-bit input is split into six 64-bit
words 𝑧0

0, 𝑧
0
1, ..., 𝑧

0
5. As depicted in Fig. 1, for 0 ≤ 𝑖 < 𝑟 , the

𝑖-th round function Round 𝑖 takes the input words 𝑧𝑖0, 𝑧
𝑖
1, ..., 𝑧

𝑖
5

and produces the output words 𝑧𝑖+10 , 𝑧𝑖+11 , ...𝑧𝑖+15 . The round
function consists of three layers 𝜋, 𝜃, and 𝜌.

In Round 𝑖, the 𝜋 layer adds a 32-bit round constant
and a 32-bit round counter value 𝑖 to 𝑧𝑖0 and 𝑧𝑖1, respectively.
For simplicity, we omit 𝜋 in the description of the round
function because it has no impact on explaining our results
in this paper. So, the input words of the 𝜃 layer are still
represented as 𝑧𝑖0, 𝑧

𝑖
1, ..., 𝑧

𝑖
5.

The 𝜃 layer consists of six Alzette operations. Instead
of 𝐴𝑐, we use the notation of 𝐴𝑖

𝑗
, which means the 𝑗-th

Alzette operation in Round 𝑖, because the position of each
Alzette operation is given more significance than the constant
values used within the operation. So, the 𝜃 layer is described
as 𝑥𝑖

𝑗
← 𝐴𝑖

𝑗
(𝑧𝑖

𝑗
) for 0 ≤ 𝑗 < 6.

The 𝜌 layer linearly transforms (𝑥𝑖0, ..., 𝑥
𝑖
5) to

(𝑧𝑖+10 , ..., 𝑧𝑖+15 ) as follows:

𝑡𝑖 ← 𝑥𝑖0 ⊕ 𝑥𝑖1 ⊕ 𝑥𝑖2;
𝑧𝑖+1
𝑗−1 mod 3 ← 𝜎(𝑡𝑖) ⊕ 𝑥𝑖

𝑗
⊕ 𝑥𝑖

𝑗+3 for 0 ≤ 𝑗 < 3;
𝑧𝑖+1
𝑗+3 ← 𝑥𝑖

𝑗
for 0 ≤ 𝑗 < 3.

See [1] for more details.

2.3 Sparkle512 Permutation

Sparkle512 is a permutation on {0, 1}512 and a round iterative
structure. It has a very similar structure to that of Sparkle384,
and uses the same Alzette and 𝜎 operations. Sparkle512𝑟
means that it consists of 𝑟 round functions. The 512-bit input
is split into eight 64-bit words 𝑧0

0, 𝑧
0
1, ..., 𝑧

0
7. As depicted in

Fig. 2, for 0 ≤ 𝑖 < 𝑟, the 𝑖-th round function Round 𝑖 takes
the input words 𝑧𝑖0, 𝑧

𝑖
1, ..., 𝑧

𝑖
7 and produces the output words

𝑧𝑖+10 , 𝑧𝑖+11 , ...𝑧𝑖+17 .
Similarly to Sparkle384, the round function uses three

layers 𝜋, 𝜃, and 𝜌. We omit 𝜋, again. The 𝜃 layer uses the
64-bit nonlinear ARX-box Alzette 𝐴𝑖

𝑗
as 𝑥𝑖

𝑗
← 𝐴𝑖

𝑗
(𝑧𝑖

𝑗
) for

0 ≤ 𝑗 < 8. The 𝜌 layer linearly transforms (𝑥𝑖0, ..., 𝑥
𝑖
7) to

(𝑧𝑖+10 , ..., 𝑧𝑖+17 ) is computed as follows:



CHANG et al.: NEW DISTINGUISHING ATTACKS ON ROUND-REDUCED SPARKLE384 AND SPARKLE512 PERMUTATIONS
3

Fig. 2 The 𝑖-th round function Round 𝑖 of Sparkle512

𝑡𝑖 ← 𝑥𝑖0 ⊕ 𝑥𝑖1 ⊕ 𝑥𝑖2 ⊕ 𝑥𝑖3;
𝑧𝑖+1
𝑗−1 mod 4 ← 𝜎(𝑡𝑖) ⊕ 𝑥𝑖

𝑗
⊕ 𝑥𝑖

𝑗+4 for 0 ≤ 𝑗 < 4;
𝑧𝑖+1
𝑗+4 ← 𝑥𝑖

𝑗
for 0 ≤ 𝑗 < 4.

See [1] for more details.

3. Finding Right Pairs for Sparkle permutations

In Section 3.1, we give two kinds of probabilities for dif-
ferential property of Alzette. Sections 3.2 and 3.3 present
how to find right pairs for specific forms of input and output
differences of Sparkle3846 and Sparkle5127, respectively. In
Section 3.4, we provide total complexities of our right-pair-
finding methods for Sparkle3846 and Sparkle5127, by using
the probabilities explained in Section 3.1.

3.1 Differential Properties of Alzette

We define 𝑝 and 𝑞 for Alzette operation as follows.

• Let 𝑐 be a 32-bit constant, and let 𝑛(Δ,∇) =

#{𝑧 | 𝐴𝑐 (𝑧) ⊕ 𝐴𝑐 (𝑧 ⊕ Δ) = ∇}. The value of D(Δ,∇)
is defined 0 if 𝑛(Δ,∇) = 0, and 1 if 𝑛(Δ,∇) ≠ 0. Then,
𝑝 is defined as

𝑝 =
1

(264 − 1)2
∑︁

Δ≠0,∇≠0
D(Δ,∇).

• Let 𝑐 and 𝑐′ be distinct 32-bit constants, and let 𝑘 and
𝑘 ′ be 64-bit values. Let 𝑚(Δ,∇) = #{𝑧 | 𝐴𝑐′ (𝐴𝑐 (𝑧) ⊕
𝑘) ⊕ 𝐴𝑐′ (𝐴𝑐 (𝑧 ⊕ Δ) ⊕ 𝑘 ′) = ∇}. The value of T is
defined 0 if 𝑚(Δ,∇) = 0, and 1 if 𝑚(Δ,∇) ≠ 0. Then
𝑞 is defined as

𝑞 =
1

(264 − 1)2
∑︁

Δ≠0,∇≠0
T (Δ,∇).

Here, we assume that 𝑐 and 𝑐′ are the constants with an
appropriate number of ‘0’ bits and ‘1’ bits, and that the
possibility of 𝑘 = 𝑘 ′ is negligible. 𝑝 is the ratio of nonzero
entries in the difference distribution table of 𝐴𝑐 excluding
the cases of Δ = 0 or ∇ = 0.

The addition modulo 232 makes a strong propagation
of difference from least significant bit to most significant
bit, adopting a proper bitwise rotation delivers the effect of

such propagation to least significant bits, and Alzette is a 64-
bit-block nonlinear permutation and designed to alternate
bitwise rotation, addition modulo 232, XOR, and constant
addition operations for 4 rounds. Due to these factors, we
anticipate that the difference distribution of Alzette will be
relatively uniform.

Several analysis results for Alzette have been published
and known [4], [6], [8], [10], [12], but it is computationally
difficult to compute 𝑝 and 𝑞, because the exact computation
of 𝑝 requires 𝑂 (2128) time and the exact computation of 𝑞
requires 𝑂 (2256) time. Alternatively, we have considered
the experiments on Alzette. In each trial of the experiments
for 𝑝, we randomly chose two nonzero values as Δ and ∇
and tested whether D(Δ,∇) = 1. In each trial of the experi-
ments for 𝑞, we randomly chose two nonzero values as Δ and
∇ and two different values as 𝑘 and 𝑘 ′ and tested whether
T (Δ,∇) = 1. However, Each of the tests still remains com-
putationally demanding on a PC because it requires 𝑂 (264)
Alzette operations. So, we performed experiments on re-
duced variants of Alzette with input sizes of 16, 24, 32, and
40 bits, and with reasonable rotation amounts and constants.

For example, The rotation amounts (31, 17, 24, 16) in
Alzette were replaced with (7, 5, 6, 4) in 16-bit-block variant,
(11, 7, 9, 6) in 24-bit-block variant, (15, 9, 12, 8) in 32-bit-
block variant, and (19, 11, 15, 10) in 40-bit-block variant,
respectively. For each variant, the number of the success
cases where D(Δ,∇) = 1 was counted, and the number of
the success cases where T (Δ,∇) = 1 was counted. The
16-bit version was tested 100,000 times, the 24-bit version
was tested 10,000 times, the 32-bit version was tested 1,000
times, and the 40-bit version was tested 100 times. Based on
those experiments, we conjecture 𝑝 ≈ 0.36 and 𝑞 ≈ 0.62.

Table 2 summarizes the success ratios 𝑝 and 𝑞 in our
experiments, which imply that our conjecture is reasonable.
The details and source code used in the experiments can be
found in the Github repository [5].

Table 2 Success ratios in the experiments for reduced Alzette with the
block size 𝑏 = 16, 24, 32, and 40.

𝑏 𝑝̃ 𝑞̃

16 37,197/100,000 63,281/100,000
24 3,664/10,000 6,252/10,000
32 353/1,000 610/1,000
40 39/100 62/100

3.2 Finding A Right Pair for input and output differences
of Sparkle3846

We consider the input differenceΔ𝐼 and the output difference
Δ𝑂 as follows.

{
Δ𝐼 = (0, 0, 0, 𝛼, 0, 0);
Δ𝑂 = (0, 𝜀, 𝜀, 𝜀, 0, 𝜀), (1)

where 𝛼 and 𝜀 are any 64-bit nonzero values. Let Δ𝑧 𝑗
𝑖

and



4
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Δ𝑥
𝑗

𝑖
be differences on 𝑧

𝑗

𝑖
and 𝑥

𝑗

𝑖
, respectively. Through the

following steps, we explain how to find a right pair satisfying
(1) for Sparkle3846.

Fig. 3 Situation in Rounds 2 and 3 after Step 1 in finding a right pair for
the differential of Sparkle3846

Step 1: We set the difference of three left input words in
Round 2 as follows.

(Δ𝑧2
0,Δ𝑧

2
1,Δ𝑧

2
2) = (𝜎(𝛽), 𝛽 ⊕ 𝜎(𝛽), 𝜎(𝛽)). (2)

Let 𝑡 𝑗 = 𝑥
𝑗

0 ⊕ 𝑥
𝑗

1 ⊕ 𝑥
𝑗

2 . We search for a pair for (𝑧2
0, 𝑧

2
1, 𝑧

2
2)

satisfies

Δ𝑥2
0 ⊕ 𝜎(Δ𝑡2) = 0, (3)

where (3) holds with the probability of 2−64. The found
pair determines the values and differences of (𝑧3

3, 𝑧
3
4, 𝑧

3
5),

and also determines the differences Δ𝑧3
0 = 𝛾0 and Δ𝑧3

2 = 0.
Moreover, Δ𝑧3

2 = 0 implies Δ𝑥3
2 = Δ𝑧4

5 = 0. So, we get the
differences Δ𝑥3

3, Δ𝑥3
4, and Δ𝑥3

5 by the computation with the
pair satisfying (3). Then, letting Δ𝑧4

0 = Δ𝑧4
1 = Δ𝑧4

2 = 0, we
have 𝜎(Δ𝑡3) = Δ𝑥3

5, Δ𝑥3
0 = Δ𝑥3

3 ⊕Δ𝑥
3
5, and Δ𝑥3

1 = Δ𝑥3
2 ⊕Δ𝑥

3
5.

Finally, we expect (4) holds with the probability of 2−64.

𝜎(Δ𝑥3
0 ⊕ Δ𝑥3

1) = Δ𝑥3
5 . (4)

Therefore, we need 2128 pairs satisfying (2). Note that
the only requirement for the difference 𝛽 is ‘nonzero’. For
efficient collection of pairs, we consider the set S(𝑋) with a
192-bit value 𝑋 andU = {0, 1}64, defined as

W = {(𝜎(𝑎), 𝑎 ⊕ 𝜎(𝑎), 𝜎(𝑎)) | 𝑎 ∈ U};
S(𝑋) = 𝑋 ⊕W = {𝑋 ⊕ 𝑤 | 𝑤 ∈ W}.

S(𝑋) can derive 264 (264 − 1)/2 ≃ 2127 pairs satisfying (2).
Two distinct sets S(𝑋1) and S(𝑋2) are enough to get 2128

pairs. We expect one of the pairs to satisfy (3) and (4) on
average.

Fig. 4 Situation in Rounds 2 and 3 after Steps 2 and 3 in finding a right
pair for the differential of Sparkle3846

We estimate the complexity 𝐶1 of Step 1, using
Alzette operation time as the unit. For simplicity, we de-
note the cost of one Alzette operation by 𝐴. 𝐴2

0, 𝐴2
1, and

𝐴2
2 (three Alzette operations) are applied to each element in
S(𝑋) and S(𝑋 ′). We count how many pairs out of 2128 sat-
isfy (3). On average, 264 pairs do. Then, we apply 𝐴3

3, 𝐴3
4,

and 𝐴3
5 (at most six Alzette operations) to each among those

264 pairs, in order to check whether (4) holds. Therefore, 𝐶1
is estimated as

𝐶1 = 265 · 3𝐴 + 264 · 6𝐴 = 266 · 3𝐴.

Fig. 3 depicts the situation in Rounds 2 and 3 after Step
1. Bold red dotted lines mean that the values are undeter-
mined but the differences are zero. Bold blue dotted lines
mean that values are undetermined but the differences are
determined and nonzero. Bold red solid lines mean that val-
ues are determined and the differences are zero. Bold blue
solid lines mean that values are determined and differences
are nonzero. Plain black lines mean that both values and
differences are undetermined.

Let the determined differences Δ𝑧3
0, Δ𝑥3

0, and Δ𝑥3
1 be

𝛾0, 𝛿0, and 𝛿1, respectively.

Step 2: For 𝐴3
0, we try all 264 possible input pairs with the

input difference 𝛾0 to find one satisfying the output differ-
ence 𝛿0. If we fail to find it, we go back to Step 1. The
complexity 𝐶2 of Step 2 is estimated as 𝐶2 = 265𝐴.

Step 3: The pair found in Step 1 determines the values of
𝑥2

2⊕𝜎(𝑡
2). Let 𝑘 and 𝑘 ′ be the values. We try all 264 possible

pairs (𝑧2
5, 𝑧

2
5
′) with 𝑧2

5 ⊕ 𝑧2
5
′
= 𝛽 to find one satisfying

𝐴3
1 (𝐴

2
5 (𝑧

2
5) ⊕ 𝑘) ⊕ 𝐴3

1 (𝐴
2
5 (𝑧

2
5
′) ⊕ 𝑘 ′) = 𝛿1.

If we fail to find it, we go to Step 1. The complexity 𝐶3 of
Step 3 is estimated as 𝐶3 = 266𝐴. Fig. 4 shows the situation



CHANG et al.: NEW DISTINGUISHING ATTACKS ON ROUND-REDUCED SPARKLE384 AND SPARKLE512 PERMUTATIONS
5

Fig. 5 Forward propagation from Round 3 to Round 5 after Step 4 in
finding a right pair for the differential of Sparkle3846

after Steps 2 and 3 succeed.

Step 4: If the previous steps are successful, the values of
the input words in Round 3, excluding 𝑧3

2, are determined
and fixed. So, the only undetermined word 𝑥3

2 = 𝐴3
2 (𝑧

3
2) is

related to the other undetermined words in whole rounds.
We use 64 degrees of freedom of 𝑥3

2 to make the differences
of 𝑥5

0 and 𝑥5
2 matched, i.e., Δ𝑥5

0 = Δ𝑥5
2. It requires 264 trials

on average. From previous steps, we have (𝑥3
𝑖
, 𝑥3

𝑖

′) for 𝑖 =
0, 1, 3, 4, and 5. For each candidate for 𝑥3

2, we can check
whether Δ𝑥5

0 = Δ𝑥5
2 by computing the followings:

𝑡3 = 𝑥3
0 ⊕ 𝑥3

1 ⊕ 𝑥3
2;

𝑥4
𝑖
= 𝐴4

𝑖
(𝑥3

𝑖+1 mod 3 ⊕ 𝜎(𝑡3)) for 𝑖 ∈ {0, 1, 2};
𝑡4 = 𝑥4

0 ⊕ 𝑥4
1 ⊕ 𝑥4

2;
𝑥5

0 = 𝐴5
0 (𝐴

4
4 (𝑥

3
1) ⊕ 𝑥4

1 ⊕ 𝜎(𝑡4));
𝑥5

0
′
= 𝐴5

0 (𝐴
4
4 (𝑥

3
1
′) ⊕ 𝑥4

1 ⊕ 𝜎(𝑡4));
𝑥5

2 = 𝐴5
2 (𝐴

4
3 (𝑥

3
0) ⊕ 𝑥4

0 ⊕ 𝜎(𝑡4));
𝑥5

2
′
= 𝐴5

2 (𝐴
4
3 (𝑥

3
0
′) ⊕ 𝑥4

0 ⊕ 𝜎(𝑡4)).

The complexity 𝐶4 of Step 4 is estimated as 𝐶4 = 264 · 11𝐴.
If we find such a value of 𝑥3

2, the propagation to the
other undetermined words is easily computed – the forward
propagation from (𝑧3

0, ..., 𝑧
3
5) to the output difference Δ𝑂

as depicted in Fig. 5 and the backward propagation from
(𝑧2

0, ..., 𝑧
2
5) to the input difference Δ𝐼 as depicted in Fig. 6.

By letting Δ𝑥5
0 = 𝜀 and Δ𝑧0

3 = 𝛼, it is easy to see that the
found pair satisfies (1).

To verify the correctness of the steps from Step 1 to Step
4, we ran experiments on small-scale version, Sparkle486,

Fig. 6 Backward propagation from Round 1 to Round 0 after Step 4 in
finding a right pair for the differential of Sparkle3846

with reduced variant of Alzette with input size of 8 bits. The
rotation amounts used in 8-bit Alzette is (3, 1, 2, 2). The
following is one example of inputs 𝐼 and 𝐼 ′ and outputs 𝑂

and 𝑂′ found through this experiment, where Δ𝐼 = 𝐼 ⊕ 𝐼 ′

and Δ𝑂 = 𝑂 ⊕ 𝑂′:

𝐼 = (0x65, 0x12, 0xed, 0xc1, 0x50, 0xd7),
𝐼 ′ = (0x65, 0x12, 0xed, 0x75, 0x50, 0xd7),
Δ𝐼 = (0x00, 0x00, 0x00, 0xb4, 0x00, 0x00),
𝑂 = (0xc6, 0xba, 0x19, 0xdb, 0x79, 0x7c),
𝑂′ = (0xc6, 0x0d, 0xae, 0x6c, 0x79, 0xcb), and
Δ𝑂 = (0x00, 0xb7, 0xb7, 0xb7, 0x00, 0xb7).

The details and source code used in the experiments can
be found in the Github repository [5].

3.3 Finding A Right Pair for input and output differences
of Sparkle5127

We consider the input differenceΔ𝐼 and the output difference
Δ𝑂 as follows.{

Δ𝐼 = (0, 0, 0, 0, 𝛼, 0, 0, 0);
Δ𝑂 = (𝜉, 0, 𝜁 , 𝜂, 𝜁 , 0, 0, 𝜁), (5)

where 𝛼, 𝜁 , and 𝜂 are 64-bit nonzero values, and 𝜉 is a 64-bit
value.

Through the following steps, we explain how to find a
right pair satisfying (5) for Sparkle5127.

Step 1: We set the difference of three left input words in
Round 2 as follows.

(Δ𝑧2
0,Δ𝑧

2
1,Δ𝑧

2
2,Δ𝑧

2
3)

= (𝜎(𝛽), 𝜎(𝛽), 𝛽 ⊕ 𝜎(𝛽), 𝜎(𝛽)). (6)

Let 𝑡 𝑗 = 𝑥
𝑗

0 ⊕ 𝑥
𝑗

1 ⊕ 𝑥
𝑗

2 ⊕ 𝑥
𝑗

3 . We search for a pair for
(𝑧2

0, 𝑧
2
1, 𝑥

2
2, 𝑧

2
3) satisfying



6
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Fig. 7 Situation in Rounds 2 and 3 after Step 1 in finding a right pair for
the differential of Sparkle5127

(Δ𝑥2
0 ⊕ 𝜎(Δ𝑡2),Δ𝑥2

1 ⊕ 𝜎(Δ𝑡2)) = (0, 0), (7)

where (7) holds with the probability of 2−128. (7) im-
plies Δ𝑥2

0 = Δ𝑥2
1 = 𝜎(Δ𝑡2). The found pair determines

the values and differences of (𝑧3
4, ..., 𝑧

3
7), and also deter-

mines the differences Δ𝑧3
0 = Δ𝑧3

3 = 0 and Δ𝑧3
1 = 𝛾0.

Moreover, Δ𝑧3
0 = Δ𝑧3

3 = 0 implies Δ𝑥3
0 = Δ𝑧4

4 = 0 and
Δ𝑥3

3 = Δ𝑧4
7 = 0. We get the differences Δ𝑥3

4, Δ𝑥3
5, Δ𝑥3

6, and
Δ𝑥3

7 by the computation with the pair satisfying (7). As-
suming Δ𝑧4

0 = · · · = Δ𝑧4
3 = 0, we compute 𝜎(Δ𝑡3) = Δ𝑥3

4,
Δ𝑥3

1 = Δ𝑥3
4 ⊕ Δ𝑥3

5, and Δ𝑥3
2 = Δ𝑥3

4 ⊕ Δ𝑥3
6. Then, we expect

that (8) holds with the probability of 2−64 and that (9) hold
with the probability of 2−64.

Δ𝑥3
4 = Δ𝑥3

7 and (8)
𝜎(Δ𝑥3

1 ⊕ Δ𝑥3
2) = Δ𝑥3

4 . (9)

Therefore, we need 2256 pairs satisfying (6). Note that
the only requirement of the difference 𝛽 is ‘nonzero’. For
efficient collection of pairs, we consider the set S(𝑋) with a
256-bit value 𝑋 andU = {0, 1}64, defined as

W = {(𝜎(𝑎), 𝜎(𝑎), 𝑎 ⊕ 𝜎(𝑎), 𝜎(𝑎)) | 𝑎 ∈ U};
S(𝑋) = 𝑋 ⊕W = {𝑋 ⊕ 𝑤 | 𝑤 ∈ W}.

S(𝑋) can derive 264 (264 − 1)/2 ≃ 2127 pairs satisfying (6).
2129 distinct S(𝑋)sets are enough to get 2256 pairs. We
expect one of the pairs to satisfy (7), (8), and (9) on average.

The complexity 𝐶1 of Step 1 is estimated as follows.
Step 1 uses 2129 S(𝑋) sets. Each element in S(𝑋) incurs
eight Alzette operations (𝐴2

𝑖
for 0 ≤ 𝑖 ≤ 3 and 𝐴3

𝑗
for 4 ≤

𝑗 ≤ 7) and one 𝜎 operation. Additionally, we anticipate that
among all tried pairs, 2128 will satisfy (7), and among the
surviving pairs, we expect 264 to fulfill (8), with one pair
among the last survivors expected to meet (9). Therefore,
𝐶1 is estimated as

𝐶1 = 2129+64 · 4𝐴 + 2128 · 4𝐴 + 264 · 4𝐴
≃ 2195𝐴.

Let the determined differences Δ𝑧3
1, Δ𝑥3

1, and Δ𝑥3
2 be

𝛾0, 𝛿0, and 𝛿1, respectively.

Fig. 8 Situation in Rounds 2 and 3 after Steps 2 and 3 in finding a right
pair for the differential of Sparkle5127

Step 2: For 𝐴3
1, we try all 264 possible input pairs with the

input difference 𝛾0 to find one satisfying the output differ-
ence 𝛿0. If we fail to find it, we go back to Step 1. The
complexity 𝐶2 of Step 2 is estimated as 𝐶2 = 265𝐴.

Step 3: The pair found in Step 1 determines the values of
𝑥2

3⊕𝜎(𝑡
2). Let 𝑘 and 𝑘 ′ be the values. We try all 264 possible

pairs (𝑧2
7, 𝑧

2
7
′) with 𝑧2

7 ⊕ 𝑧2
7
′
= 𝛽 to find one satisfying

𝐴3
2 (𝐴

2
7 (𝑧

2
7) ⊕ 𝑘) ⊕ 𝐴3

2 (𝐴
2
7 (𝑧

2
7
′) ⊕ 𝑘 ′) = 𝛿1.

If we fail to find it, we go to Step 1. The complexity 𝐶3 of
Step 3 is estimated as 𝐶3 = 266𝐴. Fig. 8 shows the situation
after Steps 2 and 3 succeed.

Step 4: If the previous steps are successful, the input word
variables for Round 3, excluding 𝑧3

0 and 𝑧3
3, are determined.

The only undetermined words 𝑥3
0 = 𝐴3

0 (𝑧
3
0) and 𝑥3

3 = 𝐴3
3 (𝑧

3
3)

are related to the other undetermined words in whole rounds.
We use 128 degrees of freedom of (𝑥3

0, 𝑥
3
3) to make Δ𝑥5

0 =

Δ𝑥5
1 and Δ𝑥6

0 = Δ𝑥6
3. It requires 2128 trials on average. From

previous steps, we have (𝑥3
𝑖
, 𝑥3

𝑖

′) for 𝑖 = 1, 2, 4, 5, 6, and
7. For each of (𝑥3

0, 𝑥
3
3), we check whether Δ𝑥5

0 = Δ𝑥5
1 by

computing the followings:

𝑡3 = 𝑥3
0 ⊕ 𝑥3

1 ⊕ 𝑥3
2 ⊕ 𝑥3

3;
𝑥4
𝑖
= 𝐴4

𝑖
(𝑥3

𝑖+1 mod 4 ⊕ 𝜎(𝑡3)) for 0 ≤ 𝑖 ≤ 3;
𝑡4 = 𝑥4

0 ⊕ 𝑥4
1 ⊕ 𝑥4

2 ⊕ 𝑥4
3;

𝑥5
0 = 𝐴5

0 (𝐴
4
5 (𝑥

3
1) ⊕ 𝑥4

1 ⊕ 𝜎(𝑡4));
𝑥5

0
′
= 𝐴5

0 (𝐴
4
5 (𝑥

3
1
′) ⊕ 𝑥4

1 ⊕ 𝜎(𝑡4));
𝑥5

1 = 𝐴5
1 (𝐴

4
6 (𝑥

3
2) ⊕ 𝑥4

2 ⊕ 𝜎(𝑡4));
𝑥5

1
′
= 𝐴5

1 (𝐴
4
6 (𝑥

3
2
′) ⊕ 𝑥4

2 ⊕ 𝜎(𝑡4)).



CHANG et al.: NEW DISTINGUISHING ATTACKS ON ROUND-REDUCED SPARKLE384 AND SPARKLE512 PERMUTATIONS
7

Fig. 9 Forward propagation from Round 3 to Round 6 after Step 4 in
finding a right pair for the differential of Sparkle5127

On average, we expect 264 values of (𝑥3
0, 𝑥

3
3) survive.

Since Δ𝑥5
2 = Δ𝑥5

3 = 0, Δ𝑥5
0 = Δ𝑥5

1 implies Δ𝑡5 = 0. For the
surviving values of (𝑥3

0, 𝑥
3
3), we check whether Δ𝑥6

0 = Δ𝑥6
3

by computing the followings:

𝑥5
2 = 𝐴5

2 (𝐴
4
4 (𝑥

3
0) ⊕ 𝑥4

0 ⊕ 𝜎(𝑡4));
𝑥5

3 = 𝐴5
3 (𝐴

4
7 (𝑥

3
3) ⊕ 𝑥4

3 ⊕ 𝜎(𝑡4));
𝑡5 = 𝑥5

0 ⊕ 𝑥5
1 ⊕ 𝑥5

2 ⊕ 𝑥5
3;

𝑥6
0 = 𝐴6

0 (𝐴
5
5 (𝑥

4
1) ⊕ 𝑥5

1 ⊕ 𝜎(𝑡5));
𝑥6

0
′
= 𝐴6

0 (𝐴
5
5 (𝑥

4
1) ⊕ 𝑥5

1
′ ⊕ 𝜎(𝑡5));

𝑥6
3 = 𝐴6

3 (𝐴
5
4 (𝑥

4
0) ⊕ 𝑥5

0 ⊕ 𝜎(𝑡5));
𝑥6

3
′
= 𝐴6

3 (𝐴
5
4 (𝑥

4
0) ⊕ 𝑥5

0
′ ⊕ 𝜎(𝑡5)).

Therefore, the complexity 𝐶4 of Step 4 is estimated as 𝐶4 =

2128 · 12𝐴 + 264 · 12𝐴 ≈ 2128 · 12𝐴.
If we find such a value of (𝑥3

0, 𝑥
3
3), the propagation to the

other undetermined words is easily computed – the forward
propagation from (𝑧3

0, ..., 𝑧
3
7) to the output difference Δ𝑂

as depicted in Fig. 9 and the backward propagation from
(𝑧2

0, ..., 𝑧
2
7) to the input difference Δ𝐼 as depicted in Fig. 10.

By letting Δ𝑥5
0 = 𝜀, Δ𝑥6

0 = 𝜁 , Δ𝑥6
0 ⊕ Δ𝑥6

4 = 𝜂, Δ𝑥6
5 = 𝜉 and

Δ𝑧0
3 = 𝛼, it is easy to see that the found pair satisfies (1).

Fig. 10 Backward propagation from Round 1 to Round 0 after Step 4 in
finding a right pair for the differential of Sparkle5127

3.4 Complexity

The right-pair-finding methods explained in both Sections
3.2 and 3.3 consist of Steps 1, 2, 3, and 4. The flow from Step
1 to Step 4 is depicted in Fig. 11. The success probabilities
of Steps 2 and 3 are 𝑝 and 𝑞, explained in Section 3.1.
Therefore, the total complexity C is computed as

C = ((𝐶1 + 𝐶2)𝑝−1 + 𝐶3)𝑞−1 + 𝐶4. (10)

Fig. 11 Flow from Step 1 to Step 4 in finding a right pair for Sparkle per-
mutations

Based on the conjecture and observation explained in
Section 3.1, we let 𝑝 = 0.36 and 𝑞 = 0.62. Then, for
Sparkle3846, 𝐶 is estimated as follows.

𝐶 = ((266 · 3𝐴 + 265𝐴)𝑝−1 + 266𝐴)𝑞−1 + 264 · 11𝐴
= 264 ((14/0.36 + 4)/0.62 + 11)𝐴
= 264+6.3𝐴 = 270.3𝐴.

Since one Sparkle3846 operation requires 36 Alzette opera-
tions, 𝐶 is converted into 𝐶 ≃ 265.1.

In the case of Sparkle5127, we have C ≈ 𝐶1𝑝
−1𝑞−1 be-

cause 𝐶1 is much larger than 𝐶2, 𝐶3, and 𝐶4. By substituting
2195𝐴, 0.36, and 0.62 to 𝐶1, 𝑝, and 𝑞, respectively, 𝐶 is
estimated as 𝐶 ≃ 2197.2𝐴. Since one Sparkle5127 operation
requires 56 Alzette operations,𝐶 is converted into𝐶 ≃ 2191.4.

We computed the time complexities based on the obser-
vation through our experiments in Section 3.1, and recognize
that the real values of 𝑝 and 𝑞 can be slightly different from



8
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

the conjectured ones. So, we address that the time complexi-
ties should be regarded as 𝑂 (265.1) and𝑂 (2191.4) rather than
265.1 and 2191.4. The attacks explained in Sections 3.2, 3.3,
4.1, and 4.2 require memory of 264 because each of them
uses 64-dimensional linear subspaces over 𝐺𝐹 (2) to collect
pairs.

4. Generic Attacks on Random Permutations

In this section, we describe two generic attacks correspond-
ing to the right-pair-finding ones described in Sections 3.2
and 3.3. One targets the random permutation with 384-bit
block as the ideal version of Sparkle3846, and the other one
targets the random permutation with 512-bit block as the
ideal version of Sparkle5127. Although each generic attack
was devised to require as few queries as possible, its query
complexity is much more than the time complexity of the
corresponding one. It implies that the methods in Section 3
are more efficient and work as valid distinguishing attacks.

4.1 Random Permutations on {0, 1}384

We defineP384 as the set of all permutations on {0, 1}384. Let
𝑃 is a permutation randomly chosen from P384. Assuming
that we have access to 𝑃 and 𝑃−1 oracles, we describe how
to find a right pair satisfying (1) for 𝑃. We consider the input
difference Δ𝐼 and output difference Δ𝑂 in (1).

For any two different 384-bit values 𝑋 and 𝑋 ′, the prob-
ability that 𝑃(𝑋) ⊕𝑃(𝑋 ′) = Δ𝑂 is 2−320, whatever 𝑋 ⊕ 𝑋 ′ is.
So, we need 2320 input pairs satisfying Δ𝐼 to expect a right
pair. We can efficiently collect them based on the fact that
the only requirements for 𝛼 in Δ𝐼 and 𝜀 in Δ𝑂 are ’nonzero’.

The set A(𝑋) is defined with a 384-bit value 𝑋 and
U = {0, 1}64 as follows.

W = {(0, 0, 0, 𝑎, 0, 0) | 𝑎 ∈ U};
A(𝑋) = 𝑋 ⊕W = {𝑋 ⊕ 𝑤 | 𝑤 ∈ W}.

W is a 64-dimensional linear subspace ofV = {0, 1}384 and
A(𝑋) is a coset ofW. Namely, A(𝑋) ∈ V/W and there
are 2320 distinct A(𝑋) sets in V/W. Each A(𝑋) has 264

elements and any two different elements 𝑋 ⊕ 𝑤 and 𝑋 ⊕ 𝑤′

in A(𝑋) satisfies Δ𝐼 : (𝑋 ⊕ 𝑤) ⊕ (𝑋 ⊕ 𝑤′) = 𝑤 ⊕ 𝑤′ ∈ W.
It is trivial that 𝑋 ⊕ 𝑤 ∈ A(𝑋) and 𝑋 ′ ⊕ 𝑤′ ∈ A(𝑋 ′)
does not satisfy Δ𝐼 if A(𝑋) ≠ A(𝑋 ′). We can use 2127 (≈
264 (264−1)/2) pairs for eachA(𝑋). 2193 distinctA(𝑋) sets
are enough to collect 2320 pairs. Therefore, the complexity
is 2193+64 = 2257 𝑃-queries.

Likewise, for any two different 384-bit values𝑌 and𝑌 ′,
the probability that 𝑃−1 (𝑌 ) ⊕ 𝑃−1 (𝑌 ′) = Δ𝐼 is 2−320. So,
we need 2320 pairs, and collect them efficiently by using the
set B(𝑌 ) defined with a 384-bit value 𝑌 andU = {0, 1}64 as
follows.

W = {(0, 𝑏, 𝑏, 𝑏, 0, 𝑏) | 𝑏 ∈ U};
B(𝑌 ) = 𝑌 ⊕W = {𝑌 ⊕ 𝑤 | 𝑤 ∈ W}.

Each B(𝑌 ) ∈ V/W has 264 elements and derives 2127 pairs

satisfying the difference Δ𝑂. Therefore, we use 2193 distinct
B(𝑌 ) sets to expect a right pair. The complexity is 2193+64 =

2257 𝑃−1-queries.

4.2 Random Permutations on {0, 1}512

We define P512 as the set of all permutations on {0, 1}512.
Let 𝑃 be a permutation randomly chosen from P512. We
consider the input difference Δ𝐼 and output difference Δ𝑂

of (5). For any two different 512-bit values 𝑋 and 𝑋 ′, the
probability that 𝑃(𝑋) ⊕ 𝑃(𝑋 ′) = Δ𝑂 is 2−320, whatever
𝑋 ⊕ 𝑋 ′ is. So, we need 2320 input pairs satisfying Δ𝐼 to
expect a right pair. We can efficiently collect them based on
the fact that the only requirements for 𝛼, 𝜁 , 𝜂, and 𝜉 in Δ𝐼

and Δ𝑂 are nonzero.
The set A(𝑋) is defined with a 512-bit value 𝑋 and

U = {0, 1}64 as follows.

W = {(0, 0, 0, 0, 𝑎, 0, 0, 0) | 𝑎 ∈ U};
A(𝑋) = 𝑋 ⊕W = {𝑋 ⊕ 𝑤 | 𝑤 ∈ W}.

W is a 64-dimensional linear subspace of V = {0, 1}512,
and there are 2488 distinct A(𝑋) sets in V/W. Each
A(𝑋) ∈ V/W has 264 elements and derives around 2127

pairs satisfying difference Δ𝐼 . Therefore, we use 2193 dis-
tinct A(𝑋) sets to expect a right pair. The complexity is
2193+64 = 2257 𝑃-queries.

Likewise, for any two different 512-bit values𝑌 and𝑌 ′,
the probability that 𝑃−1 (𝑌 ) ⊕ 𝑃−1 (𝑌 ′) = Δ𝐼 is 2−448. So,
we need 2448 pairs, and collect them efficiently by using the
set B(𝑌 ) defined with a 512-bit value 𝑌 andU = {0, 1}64 as
follows.

W = {(𝑏, 0, 𝑐, 𝑑, 𝑐, 0, 0, 𝑐) | 𝑏, 𝑐, 𝑑 ∈ U};
B(𝑌 ) = 𝑌 ⊕W = {𝑌 ⊕ 𝑤 | 𝑤 ∈ W}.

Each B(𝑌 ) ∈ V/W has 2192 elements and derives 2383 (≈
2192 (264 −1) (264 −1) (264 −1)/2) pairs satisfying the differ-
ence Δ𝑂. Therefore, we use 265 distinct B(𝑌 ) sets to expect
a right pair. The complexity is 265+192 = 2257 𝑃−1-queries.

5. Conclusion

In this paper, we presented divide-and-conquer distinguish-
ing attacks on 6-round Sparkle384 and 7-round Sparkle512.
Our attacks were devised based on the fact that Sparkle per-
mutations are keyless, differently from designers’ approaches
on design and analysis. Our attack on Sparkle384 requires
much lower time complexity than the best existing attack,
and our attack on Sparkle512 is best in terms of the number
of attacked rounds, as far as we know. However, our results
do not controvert the security claim of Sparkle designers.

Acknowledgements

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIT) (No. 2021R1A2C1005946). We greatly appreciate



CHANG et al.: NEW DISTINGUISHING ATTACKS ON ROUND-REDUCED SPARKLE384 AND SPARKLE512 PERMUTATIONS
9

Meltem Sönmez Turan for providing valuable advices.

References

[1] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann
Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and
Qingju Wang. Schwaemm and Esch: Lightweight Authenticated
Encryption and Hashing using the Sparkle Permutation Family (Ver-
sion 1.2). Submission to the NIST Lightweight Cryptography Stan-
dardization Process, 2021. https://csrc.nist.gov/Projects/
lightweight-cryptography/finalists.

[2] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data
Encryption Standard. Springer, 1993.

[3] Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov,
Johann Großschädl, and Alex Biryukov. Design strategies for ARX
with provable bounds: Sparx and LAX. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December
4-8, 2016, Proceedings, Part I, volume 10031 of Lecture Notes in
Computer Science, pages 484–513, 2016.

[4] Mingjiang Huang, Zhen Xu, and Liming Wang. On the probability
and automatic search of rotational-xor cryptanalysis on ARX ciphers.
Comput. J., 65(12):3062–3080, 2022.

[5] Jinkeon Kang. Finding Right Pairs for Sparkle Permutations. GitHub
repository. https://github.com/JinkeonKang/Sparkle.

[6] Yunwen Liu, Siwei Sun, and Chao Li. Rotational cryptanalysis from
a differential-linear perspective - practical distinguishers for round-
reduced friet, xoodoo, and alzette. In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT
2021 - 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October
17-21, 2021, Proceedings, Part I, volume 12696 of Lecture Notes in
Computer Science, pages 741–770. Springer, 2021.

[7] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In
Tor Helleseth, editor, Advances in Cryptology - EUROCRYPT ’93,
Workshop on the Theory and Application of of Cryptographic Tech-
niques, Lofthus, Norway, May 23-27, 1993, Proceedings, volume
765 of Lecture Notes in Computer Science, pages 386–397. Springer,
1993.

[8] Zhongfeng Niu, Siwei Sun, Yunwen Liu, and Chao Li. Rotational
differential-linear distinguishers of ARX ciphers with arbitrary out-
put linear masks. In Yevgeniy Dodis and Thomas Shrimpton, editors,
Advances in Cryptology - CRYPTO 2022 - 42nd Annual International
Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA,
August 15-18, 2022, Proceedings, Part I, volume 13507 of Lecture
Notes in Computer Science, pages 3–32. Springer, 2022.

[9] André Schrottenloher and Marc Stevens. Simplified MITM Modeling
for Permutations: New (Quantum) Attacks. In Yevgeniy Dodis and
Thomas Shrimpton, editors, Advances in Cryptology - CRYPTO 2022
- 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part III,
volume 13509 of Lecture Notes in Computer Science, pages 717–747.
Springer, 2022.

[10] Ties Speel. Cryptanalysis of sparkle’s arx-box alzette. Bachelor
Thesis, Radboud University, June 2022. https://www.cs.ru.nl/
bachelors-theses/2022/Ties_Speel___1020150___Cryptan

alysis_of_SPARKLE_ARX-Box_Alzette.pdf.
[11] Meltem Sönmez Turan, Kerry McKay, Donghoon Chang,

Lawrence E. Bassham, Jinkeon Kang, Noah D. Waller, John M.
Kelsey, and Deukjo Hong. Status report on the final round of the nist
lightweight cryptography standardization process. NIST IR 8454,
June 2023. https://doi.org/10.6028/NIST.IR.8454.

[12] Zheng Xu, Yongqiang Li, Lin Jiao, Mingsheng Wang, and Willi
Meier. Do NOT misuse the markov cipher assumption - automatic
search for differential and impossible differential characteristics in
ARX ciphers. IACR Cryptol. ePrint Arch., page 135, 2022.

Donghoon Chang received B.S. degree in
mathematics from Korea University in 2001, and
M.S. and Ph.D. degrees in information security
from Korea University in 2003 and 2008, re-
spectively. From 2009 to 2012, he was a guest
researcher of NIST, USA. He was an assistant
professor (2012-2016) and is an associate pro-
fessor (2017-present) of Indraprastha Institute of
Information Technology Delhi (IIIT-Delhi), In-
dia. From May 2019 to July 2021, he was a guest
researcher of NIST, USA. Since August 2021, he

has been working as a research scientist at Strativia, USA. His research in-
terests are cryptanalysis, provable security of cryptographic algorithms, and
biometric security.

Deukjo Hong received B.S. and M.S. de-
grees in mathematics from Korea University in
1999 and 2002, respectively, and a Ph.D. degree
in information security from Korea University in
2006. From 2007 to 2015, he was employed at
ETRI. He currently holds the position of Asso-
ciate Professor in the Department of Information
Technology & Engineering at Jeonbuk National
University. He has been a guest researcher of
NIST from September 2021 to February 2023.
His research interests are cryptography and net-

work & system security.

Jinkeon Kang received B.S. degrees in in-
dustrial engineering from Korea University in
2007, and a Ph.D. degree in information secu-
rity from Korea University in 2021. He is a
guest researcher of NIST since October 2019.
His research interests include symmetric cryp-
tography.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

