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Quantum Search-to-Decision Reduction for the LWE

Problem∗

Kyohei SUDO†,††a), Keisuke HARA†††,††††b), Nonmembers, Masayuki TEZUKA†††††c), Member,
and Yusuke YOSHIDA†††††d), Nonmember

SUMMARY The learning with errors (LWE) problem is one
of the fundamental problems in cryptography and it has many
applications in post-quantum cryptography. There are two vari-
ants of the problem, the decisional-LWE problem, and the search-
LWE problem. LWE search-to-decision reduction shows that the
hardness of the search-LWE problem can be reduced to the hard-
ness of the decisional-LWE problem. The efficiency of the reduc-
tion can be regarded as the gap in difficulty between the prob-
lems.

We initiate a study of quantum search-to-decision reduc-
tion for the LWE problem and propose a reduction that satis-
fies sample-preserving. In sample-preserving reduction, it pre-
serves all parameters even the number of instances. Especially,
our quantum reduction invokes the distinguisher only 2 times to
solve the search-LWE problem, while classical reductions require
a polynomial number of invocations. Furthermore, we give a way
to amplify the success probability of the reduction algorithm.
Our amplified reduction is incomparable to the classical reduc-
tion in terms of sample complexity and query complexity. Our
reduction algorithm supports a wide class of error distributions
and also provides a search-to-decision reduction for the learning
parity with noise problem.

In the process of constructing the search-to-decision reduc-
tion, we give a quantum Goldreich-Levin theorem over Zq where
q is a prime. In short, this theorem states that, if a hardcore pred-
icate a · s (mod q) can be predicted with probability distinctly
greater than 1/q with respect to a uniformly random a ∈ Zn

q ,
then it is possible to determine s ∈ Zn

q .
key words: Learning with errors, Learning parity with noise
, Search-to-decision reduction, Goldreich-Levin theorem, Quan-
tum reduction, Query complexity, Sample complexity

1. Introduction

Quantum algorithms run on a quantum computer and
they have the potential to solve some problems faster
than classical computation, for example, Shor’s algo-
rithm has been shown to solve factorization efficiently.
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In the same way, we can investigate a quantum reduc-
tion algorithm that could be more efficient than the
known classical reduction algorithms. Reduction algo-
rithms play an important role in cryptography to trans-
form one problem into another problem. Intuitively,
problem A is reducible to problem B, if an algorithm
for solving problem B could also be used as a subroutine
to solve problem A. In this sense, search-to-decision re-
duction for the learning with errors (LWE) problem is
to show the decisional-LWE problem is as hard as the
search-LWE problem.

The LWE problem introduced by Regev [26] is one
of the fundamental computational problems in cryp-
tography. The LWE samples consist of a pair (A, y) of
a uniformly random matrix A ∈ Zm×n

q together with
y = A · s + e for randomly chosen error term e ← χm

(small Gaussian noise is commonly used) where m is
the number of samples. LWE has two main varia-
tions: The search-LWE problem asks to find a secret
string s ∈ Zn

q , given a system of noisy linear equations
(A, y), while the decisional-LWE problem asks to dis-
tinguish between the distribution of the LWE samples

{(A, y)|s $←− Zn
q , A

$←− Zm×n
q , e← χm, y := A ·s+e} and

uniformly random distribution {(A, r)|A $←− Zm×n
q , r

$←−
Zm
q }.

There are two standard facts in LWE hardness.
The first is more trivial, which says that there is
a reduction from the decisional-LWE to the search-
LWE: Whenever the pair (A, b) is randomly chosen

A
$←− Zm×n

q , b
$←− Zm

q , then with overwhelming prob-
ability the vector b is going to be far away from the
lattice, thus there does not exist a coordinates vector
s such that A · s is close to b, thus if we can break
search-LWE and find s, we can check whether b is close
to A · s or not, which constitutes an algorithm that
breaks decisional-LWE. The second known fact is less
trivial and says that the search-LWE can be reduced
to the decisional-LWE. These previously known reduc-
tions use a distinguisher for the decisional-LWE to ex-
tract the secret string s and break the search-LWE.
More delicately, the way that these reductions work is
that the search-LWE adversary uses classical oracle ac-
cess to the distinguisher.

There exist hardness proofs based on reduc-
tions from worst-case lattice problems (BDD/gapSVP),
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which are considered to be hard not only for classical
computers but also for quantum computers. As a con-
sequence, the hardness of the decisional-LWE problem
serves as the security source of many post-quantum
cryptographic primitives, such as oblivious transfer
[25], identity-based encryption [3], [12], [16], fully ho-
momorphic encryption [10], etc.

Prior works.

There are various incomparable search-to-decision re-
ductions for the LWE problem [6], [9], [21], [22], [24],
[26]. Regev [26] who introduced the LWE problem
showed search-to-decision reduction in [26]. It imposes
constraints that modulus q must be prime and bounded
by poly(n). Research on search-to-decision reduction
has been conducted in the direction of loosening the re-
striction on modulus q, but they incur some loss in the
LWE parameters. Peikert [24] extends Regev’s reduc-
tion for the case where q can be expressed as a product
of distinct prime numbers in poly(n), but it requires the
error distribution to be Gaussian. Applebaum, Cash,
Peikert, and Sahai [6] give a reduction for the case
where the modulus can be a prime power q = pe. The
above algorithms have the property that the run-time
scales linearly with q in common. It could make the re-
ductions meaningless for large q. Micciancio and Peik-
ert [22] give a reduction that runs in poly(log q). Mic-
ciancio and Mol [21] give a search-to-decision reduction
in another direction. They show a sample-preserving
reduction, which shows that if the pseudorandomness
of the LWE problem holds, the LWE problem with the
same number of samples is invertible. The state-of-the-
art results constitute an adversary that makes polyno-
mially many such classical queries to the distinguisher
in order to break search-LWE, and the extra compu-
tations that the search-LWE adversary makes on the
side (between its queries to the decisional-LWE adver-
sary) are also classical. What this work aims to do
is to use quantum computations and quantum queries
to the decisional-LWE adversary in order to speed up
the reduction - use fewer queries and less computation
time.

Practical importance of quantum search-to-
decision reduction.

The LWE challenge [1] is the foundation for ensuring
the difficulty of the LWE problem. In practice, the
LWE challenge is intended to solve search LWE prob-
lems. Based on the results of the LWE challenge, the
parameter size n is selected, at which we can trust that
the search-LWE problem is hard enough.

Suppose that there is a cryptographic scheme
whose security is reduced to the hardness of the
decisional-LWE problem. Intuitively, if the security
of the scheme is to be ensured based on the LWE
challenge of size n, the size of the scheme should be
losss2d(n) plus the security loss of the scheme itself,

where losss2d(·) is the reduction loss in a search-to-
decision reduction.

When a quantum computer arises, a quantum ver-
sion of the LWE challenge will be held and the parame-
ter nQ (≥ n) will be determined for the LWE problem
to be hard for the quantum computer. Then, should the
size of the scheme be selected based on losss2d(nQ)? If
we know the efficiency lossQs2d(·) of quantum search-
to-decision reduction, we know that we can actually im-
plement the scheme with a size based on lossQs2d(nQ),
which is expected to partially mitigate the effect of the
increase of nQ over n.

1.1 Our contribution

Quantum search-to-decision reduction.

In this work, we investigate a quantum search-to-
decision reduction for the LWE problem and we discuss
the efficiency of our algorithm and classical ones. We
compare the efficiency of our reduction and the clas-
sical ones by three aspects, success probability, query
complexity, and sample complexity. We treat the dis-
tinguisher as a blackbox and the query complexity of an
algorithm is measured by the number of queries to the
distinguisher in the algorithm while it finds the secret
string s of the search-LWE problem. The sample com-
plexity of an algorithm is measured by the number of
LWE instances that it takes. In this paper, we propose
three variations of the reduction algorithms.

• The first one is an algorithm that also serves as the
basis for the other two. It finds s with probabil-

ity at least 4q2ϵ3

27m3(q−1)5 using distinguisher 2 times.

And it is also a sample-preserve reduction, i.e., it
needs m sample of LWE instances to find s where
m is the number of instances required by the dis-
tinguisher to solve the decisional-LWE problem.

• The second algorithm is an evolution of the
sample-preserve one. It amplifies the probability
of success of the first algorithm instead of increas-
ing the complexities. It finds s with probability
Ω( ϵ

qm ) using distinguisher O( qmϵ ) times.

• The third algorithm is a version of a higher prob-
ability of success through further iterations. It
finds s with probability 1−o(1) using distinguisher

O( q
2m2 logn

ϵ2 ) times.

We remark that our reductions have some constraints
on parameters. Our reductions require q to be prime.
The second and third require that we can verify from
the instances of the LWE problem whether it is the
correct answer for the LWE problem given some input
s′ ∈ Zn

q . We believe that this condition does not im-
pose a strong limitation on the use of LWE as a basis
for cryptographic primitives. The existence of more
efficient or less restrictive classical/quantum search-to-
decision reduction is an open problem.
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Table 1 Comparison of the algorithms performance. n is a size of the LWE problem,
m is the number of instances required by the distinguisher to solve the decisional LWE
problem, ϵ is the advantage of the distinguisher.
* The numbers in this line are from a simplified version of the reduction by Regev. The
specific construction of the algorithm is described in Appendix B.
** The success probability and the query complexity of this algorithm are very complex.
The specific values are given in Appendix B.

Success probability Query complexity Sample complexity Classical/Quantum

Reg05*[26] 1− o(1) Õ(nq
ϵ2

) Õ(mnq
ϵ2

) Classical

MM11**[21] 1
poly(n)

poly(n) m Classical

Th.2 4q2ϵ3

27(q−1)5m3 2 m Quantum

Th.3 Ω( ϵ
qm

) O( qm
ϵ
) m+O(n) Quantum

Cor.1 1− o(1) O( q
2m2 logn

ϵ2
) Õ( qm

2

ϵ
) Quantum

Quantum non-uniform search-to-decision reduc-
tion.

A quantum non-uniform algorithm takes a piece of
quantum state as auxiliary input, which only depends
on the security parameter. Oftentimes, it is beneficial
to consider a reduction for non-uniform distinguisher.
Recently, Chardouvelis, Goyal, Jain, and Liu [13] give a
quantum search-to-decision reduction with high success
probability for non-uniform distinguisher with a dedi-
cated analysis. Our sample-preserving reduction, which
is essentially the generalized Goldreich-Levin theorm
is adopted for the case of non-uniform distinguisher.
However our second and third reductions that involve
the success probability amplification remain for uni-
form distinguisher. We leave future work to upgrade
our uniform reductions, or more generally, the process
of probability amplification to the non-uniform case.

Extension of quantum Goldreich-Levin theo-
rem.

The Goldreich-Levin theorem [17] is a cornerstone the-
orem in computer science and has been studied from
various aspects [2], [17], [18], [20], [23]. This theorem
states that any (strong) one-way function f can be eas-
ily transformed into a function of the required form
g(s, a) := (f(s), a) where s, a ∈ Zn

2 and it has a hard-
core predicate a · s (mod 2). Roughly speaking, a
(strong) one-way function is a function that can be effi-
ciently computed but is hard to compute in the reverse
direction, and a hard-core predicate of a function is a
bit that can be efficiently computed from the input to
the function and no efficient algorithm can guess it from
the output of the function with probability distinctly
higher than one-half. Adcock and Cleve investigate a
quantum Goldreich-Levin theorem [2]. Roughly, they
show that the reduction from quantum one-way func-
tions to quantum hard-core predicates is quantitatively
more efficient than the classical version.

In the process of constructing the quantum search-
to-decision reduction, we give a further generalized the-
orem of the quantum Goldreich-Levin theorem by Ad-

cock and Cleve. Namely, we show that if there exists
a predictor that predicts a · s (mod q) where a, s ∈ Zn

q

and q to be prime with probability 1
q +δ over the choice

of a← Zn
q , then we can find s with probability at least

( qδ
q−1 )

2 while accessing the predictor 2 times.

Concurrent work of quantum Goldreich-Levin
theorem.

Recently, Ananth et al. [5] independently investigated
a quantum Goldreich-Levin theorem for the field Zq.
They obtain this result by converting the classical
Goldreich-Levin theorem for the field Zq by Dodis et
al. [14] into quantum reduction, by using the recent
work of Bitansky et al. [8]. Specifically, they show that
a distinguisher, given auxiliary input Aux, can distin-
guish between (a, a·s+e) and (a, r) where s is randomly
chosen from H ⊂ Zn

q can be converted into a quantum
extractor that can extract s given Aux.

While their quantum algorithm relies on the clas-
sical Goldreich-Levin theorem for the field Zq by Dodis
et al. [14], in which the distinguisher with advantage ϵ
is used poly(n, |H|, 1ϵ ) times to extract s and its success

probability is ϵ3

512·n·q2 . On the other hand, our quan-

tum algorithm can find s by accessing the distinguisher

2 times with probability 4q2ϵ3

27(q−1)5 , and there is no need

to make the subset from which s is chosen small.

Improvements from Previous Version.

This paper is the full version of the work published in
Africacrypt2023 [27]. As a significant update, while
the Africacrypt version included the similar method
of a prediction-to-decision reduction as in [7], [15], but
it was found that this method had incomplete proof.
Therefore, we introduce a modified reduction method in
Section 3, Lemma 1, 2, 3. Furthermore, a non-uniform
reduction was provided for the sample-preserve reduc-
tion. In other words, we construct a solver using a
distinguisher that requires an auxiliary.
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1.2 Technical overview

We describe our techniques for proving our results
on quantum search-to-decision reduction for the LWE
problem. Our construction of the search-to-decision
reduction consists of two parts. For the first part,
we construct a predictor from the distinguisher of the
decisional-LWE problem, and for the second part, we
construct an algorithm that finds s using the predic-
tor. This reduction strategy can be interpreted as
making a prediction-to-decision reduction and a search-
to-prediction reduction. We note that the idea of
the search-to-decision reduction via unpredictability is
the same as that of classical reduction by Micciancio
and Mol [21], Applebaum, Ishai, and Kushilevitz [7].
We found a quantum speed-up in the second part of
the reduction and we call it as generalized quantum
Goldreich-Levin theorem. Then we provide an overview
of this theorem. For simplicity, we consider uniform
case.

Quantum Goldreich-Levin theorem.

We first review the quantum Goldreich-Levin theorem
by Adcock and Cleve [2]. We call a unitary operation
UP is a quantum (s, q, ϵ)-predictor, if the last register of
UP |a⟩ |0l⟩ |0⟩ is measured in computational basis, yield-
ing the value P (a), then Pr[P (a) = a·s (mod q)] > 1

q+ϵ

holds where a, s ∈ Zn
q and the probability depends on

over choice of a
$←− Zn

q .
We denote

UP |a⟩ |0l⟩ |0⟩ = αa,0 |ηa,0⟩ |a · s⟩+ αa,1 |ηa,1⟩ |a · s+ 1⟩

where UP is a (s, 2, ϵ)-predictor, αa,0 and αa,1 are
complex number. Since for a random uniformly dis-

tributed a
$←− {0, 1}n, measuring the last register of

UP |a⟩ |0l⟩ |0⟩ yields a · s (mod 2) with probability at
least 1

2 + ϵ, it follows that

1

2n

∑
a∈{0,1}n

|αa,0|2 ≥
1

2
+ ϵ (1)

and

1

2n

∑
a∈{0,1}n

|αa,1|2 <
1

2
− ϵ. (2)

We explain their quantum reduction algorithm
step by step. First, pass the superposition states

1√
2n

∑
a∈{0,1}n

|a⟩ |0l⟩ |0⟩

through the (s, 2, ϵ)-predictor UP , multiply the phase
by (−1)y according to the value of the last register y.
The quantum states is now in a state

|ϕ⟩ := 1√
2n

∑
a∈{0,1}n

∑
b∈{0,1}

(−1)a·s+bαa,b |a⟩ |ηa,b⟩ |a · s+ b⟩

up to this point. Pass the states through conjugate
transpose of the predictor U†

P . By measuring the first
register in Fourier basis, we could obtain s. The prob-
ability of yielding s when the first register is the square
of the inner product of this states |ϕ⟩ and

|ψ⟩ := UPQFT |s⟩ |0l⟩ |0⟩

= UP

 1√
2n

∑
a∈{0,1}n

(−1)a·s |a⟩ |0l⟩ |0⟩


=

1√
2n

∑
a∈{0,1}n

∑
b∈{0,1}

(−1)a·sαa,b |a⟩ |ηa,b⟩ |a · s+ b⟩ ,

which is

| ⟨ψ|ϕ⟩ |2 =

∣∣∣∣∣∣ 12n
∑

a∈{0,1}n

(|αa,0|2 − |αa,1|2)

∣∣∣∣∣∣
2

.

Using the fact of (1) and (2), we can find s with prob-

ability at least
∣∣( 1

2 + ϵ
)
−
(
1
2 − ϵ

)∣∣2 = 4ϵ2.

Difficulty.

Next, we show that naive expansion of the quantum
Goldreich-Levin results in a (s, q, ϵ)-predictor where
q ̸= 2 does not work.

We denote the state obtained by applying UP to
|a⟩ |0l⟩ |0⟩ as follows,

UP |a⟩ |0l⟩ |0⟩ = αa,j |a⟩ |ηa,j⟩ |a · s+ j⟩ .

As in the quantum Goldreich-Levin algorithm,
pass the superposition states

1√
qn

∑
a∈Zn

q

|a⟩ |0l⟩ |0⟩

through the predictor UP , multiply the phase by ωy
q

according to the value of the last register y and we get
the states

|ϕ⟩ := 1√
qn

∑
a∈Zn

q

∑
j∈Zn

q

ωa·s+j
q αa,j |a⟩ |ηa,j⟩ |a · s+ j⟩ .

If we apply U†
P and measure the first register in the

Fourier basis, the probability of yielding s is the square
of the inner product of |ϕ⟩ and

|ψ⟩ := UPQFT |s⟩ |0l⟩ |0⟩

= UP

 1√
qn

∑
a∈Zn

q

ωa·s
q |a⟩ |0l⟩ |0⟩


=

1√
qn

∑
a∈Zn

q

∑
j∈Zq

ωa·s
q αa,j |a⟩ |ηa,j⟩ |a · s+ j⟩ ,
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which is

| ⟨ψ|ϕ⟩ |2 =

∣∣∣∣∣∣ 1qn
∑
a∈Zn

q

∑
j∈Zq

ωj
q |αa,j |2

∣∣∣∣∣∣
2

.

Define Pr(j) as a probability of the gap between the
predictor’s prediction and inner product is j, then this
probability can be written as |

∑
j∈Zq

ωj
q Pr(j)|2. This

value cannot be guaranteed some lower bound unless
the advantage is very high such that ϵ > 1

2 −
1
q .

Solution.

To get around this obstacle, our key idea is to use the
property of cyclic group Z∗

q . For all element j ∈ Z∗
q , j

determines a bijection r 7→ rj on Zq and it maps 0 to
0. Using this property, we can say that

1

q − 1

∑
r∈Z∗

q

ωrj
q Pr(j) =

{
Pr(0) if j = 0
−1
q−1 Pr(j) if j ̸= 0.

(3)

We will use this property to improve the algorithm.
First, prepare the superposition states

1√
qn(q − 1)

∑
a∈Zn

q

∑
r∈Z∗

q

|r⟩ |a⟩ |0l⟩ |0⟩

through the predictor UP (apply the second to the last
register), multiply the last register by the first register r,
multiply the phase by ωy

q according to the value of the
last register y, divide the last register by the first register
r(multiply r−1) and we get the states

|ϕ⟩ := 1√
qn(q − 1)

∑
a,r,j

ωr(a·s+j)
q αa,j |r⟩ |a⟩ |ηa,j⟩ |a · s+ j⟩ .

If we apply the states through conjugate transpose of
the predictor U†

P (apply the second to the last register),
multiply the second register by the first register r(denote
this operation as M), and measure the second register in
Fourier basis, the probability of yielding s is the square
of the inner product of |ϕ⟩ and

|ψ⟩

:= UPM
†QFT

1√
q − 1

∑
r∈Z∗

q

|r⟩ |s⟩ |0l⟩ |0⟩

= UPM
†

 1√
qn(q − 1)

∑
a′∈Zn

q

∑
r∈Z∗

q

ωa′·s
q |r⟩ |a′⟩ |0l⟩ |0⟩


= UPM

†

 1√
qn(q − 1)

∑
a∈Zn

q

∑
r∈Z∗

q

ωra·s
q |r⟩ |ra⟩ |0l⟩ |0⟩


= UP

(
1√

qn(q − 1)

∑
a,r

ωr(a·s)
q |r⟩ |a⟩ |0l⟩ |0⟩

)

=
1√

qn(q − 1)

∑
a,r,j

ωr(a·s)
q |r⟩ |a⟩ |ηa,j⟩ |a · s+ j⟩ .

Finally, we get

Pr[s is measured] = |⟨ψ|ϕ⟩|2

=

∣∣∣∣∣∣ 1

qn(q − 1)

∑
a,r,j

ωrj
q |αa,j |2

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣Pr(0)− 1

q − 1

∑
j ̸=0

Pr(j)

∣∣∣∣∣∣
2

≥
(

qϵ

q − 1

)2

.

This result is consistent with quantum Goldreich-Levin
results and is a successful generalization.

2. Preliminaries

2.1 Notation and definitions

In this paper, we use the following notations and defini-

tions. For a finite set S, s
$←− S denotes choosing an ele-

ment s from S uniformly at random. For a distribution
D, d ← D denotes sampling an element d according
to distribution D. We denote Zq for the cyclic group
{0, 1, ..., q−1} with addition modulo q. We also denote
T for R/Z, in other words, the segment [0, 1) with addi-
tion modulo 1. We use standard asymptotic notations
O(·), o(·), Ω(·), Θ(·), etc. We use Õ (resp. Θ̃) notation
which overlooks quantities poly-logarithmic in appear-
ing arguments, that is, Õ(x) := O(x(log x)Θ(1)) (resp.
Θ̃(x) := Θ(x(log x)Θ(1))). We denote by ωn the com-

plex root of unity of order n: ωn := e
2πi
n . For α ∈ R+

the distribution Ψα is the distribution on T obtained
by sampling from a normal variable with mean 0 and
standard deviation α√

2π
and reducing the result modulo

1 (i.e., a periodization of the normal distribution),

∀r ∈ [0, 1),Ψα(r) =

∞∑
k=−∞

1

α
exp−π

(
r − k
α

)2

.

We define its discretization Ψα as the discrete probabil-
ity distribution obtained by sampling from Ψα, multi-
plying by q, and rounding to the closest integer modulo
q. That is,

Ψα(i) =

∫ (i+ 1
2 )/q

(i− 1
2 )/q

Ψα(x)dx.

2.2 Quantum computing

Let I be the identity operator. We denote U† as the
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Hermitian conjugate of a unitary operation U. For op-
erations that use auxiliary inputs |0l⟩, we often omit
them for simplicity. Quantum Fourier transformation
QFT over Zn

q is a map |x⟩ 7→
∑

y∈Zn
q
ωx·y
q |y⟩. We use

the fact that there is a phase kickback algorithm and
it maps |x⟩ |0l⟩ 7→ ωx

q |x⟩ |0l⟩. This algorithm can be
achieved by controlled-U where unitary U has eigen-
value ωq.

3. Search-to-decision reduction for the learn-
ing with errors problem

The learning with errors (LWE) problem has two main
variants, the search-LWE problem and the decisional-
LWE problem. The search LWEn,m,q,χ problem asks
to find s chosen uniformly random from Zn

q given m

LWE samples LWEn,s,q,χ := {(a, y)|a $←− Zn
q , e ←

χ, y := a · s + e}. The decisional LWEn,m,q,χ problem
asks to distinguish between LWEn,s,q,χ and a uniformly

random distribution R := {(a, r)|a $←− Zn
q , r

$←− Zq}
by using m samples. We often represented samples
from LWEmn,s,q,χ (resp. Rm) in matrix form. For
(A, y) ← LWEmn,s,q,χ, each row of the matrix A and
each row of the vector y correspond to an LWE sam-
ple.

The learning parity with noise (LPN) problem is
the special case of LWEn,m,q,χ problem for q = 2 and the
error distribution χ is the Bernoulli distribution Berµ.

In this section, we show a search-to-decision reduc-
tion using quantum computing. Our construction of
the search-to-decision reduction consists of two parts.
For the first part, we construct a predictor from the
distinguisher of the decisional-LWE problem, and for
the second part, we construct an algorithm that finds s
using a predictor. This reduction strategy can be inter-
preted as making a search-to-prediction reduction and
a prediction-to-decision reduction. We note that the
idea of the search-to-decision reduction via prediction
is the same as that of classical reduction by Miccian-
cio and Mol [21], Applebaum, Ishai, and Kushilevitz [7]
and Dottling [15].

We define a quantum distinguisher for the
decisional-LWE problem.

Definition 1. A quantum ϵ-distinguisher for the de-
cisional LWEn,m,q,χ problem is unitary operation UD

and an auxiliary |aux⟩ such that, the last register of
UD |A, y⟩ |aux⟩ |0⟩ is measured in computational basis,
yielding the value D(A, y) ∈ {0, 1}, then

Pr[D(A, y) = 0|s $←− Zn
q , (A, y)← LWE

m
n,s,q,χ]

− Pr[D(A, r) = 0|(A, y)← Rm]

> ϵ

holds.

As in the definition, the last register of

UD |A, y⟩ |aux⟩ |0⟩ is measured in the computational ba-
sis, in this paper, we denote this as D(A, y).

Next, we define a quantum predictor for the LWE
problem.

Definition 2. A quantum (s, δ)-predictor is unitary
operation UP and an auxiliary |aux⟩ such that, for

a
$←− Zn

q , the last register of UP |a⟩ |aux⟩ |0⟩ is measured
in computational basis, yielding the value P (a), then

Pr[P (a) = a · s (mod q)] >
1

q
+ δ

holds.

3.1 Sample-preserve reduction

In this section, we propose a quantum sample-preserve
reduction between the search-LWE and the decisional-
LWE.

The following Lemma states that there is a
prediction-to-decision reduction for the LWE problem.

We define Xm,j as an intermediate distribu-
tion between the LWE distribution LWEmn,s,q,χ and
Rm. In other words, Xm,j := {(Lm−j , Rj)|Lm−j ←
LWEm−j

n,s,q,χ, Rj ← Rj}. We note that Xm,0 is equal to
LWEmn,s,q,χ, and Xm,m is equal to Rm.

Lemma 1. For j
$←− {0, 1, ...,m− 1},

Pr[D(A, y) = 1|(A, y)← Xm,j ]

− Pr[D(A, y) = 1|(A, y)← Xm,j+1]

>
ϵ

m

holds.

Proof. From the definition of the distinguisher UD,

Pr[D(A, y) = 1|(A, y)← LWEmn,s,q,χ]
− Pr[D(A, r) = 1|(A, y)← Rm]

> ϵ

holds. From the triangular inequalities,

Pr[D(A, y) = 1|(A, y)← LWEmn,s,q,χ]
− Pr[D(A, y) = 1|(A, y)← Rm]

≤
m∑
i=1

(Pr[D(A, y) = 1|(A, y)← Xm,i]

− Pr[D(A, y) = 1|(A, y)← Xm,i+1])

holds. Therefore,

Pr[j = i](Pr[D(A, y) = 1|(A, y)← Xm,i]

− Pr[D(A, y) = 1|(A, y)← Xm,i+1])

=
1

m
(Pr[D(A, y) = 1|(A, y)← Xm,i]
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− Pr[D(A, y) = 1|(A, y)← Xm,i+1])

>
ϵ

m

holds.

Lemma 2. There exists a unitary operation UP

using (UD, |aux⟩) once, it satisfies for j
$←− Zq,

Lm−j−1 ← LWEm−j−1
n,s,q,χ , Rj ← Rj, a

$←− Zn
q ,

c
$←− Zq, e ← χ and r

$←− Zq \ {c}, the
last register of UP |Lm−j−1, (a, c+ e), Rj⟩ |aux⟩ |0⟩ |0⟩
is measured in computational base, yielding the value
P (Lm−j−1, (a, c+ e), Rj), then

Pr[P (Lm−j−1, (a, c+ e), Rj) = a · s] > 1

q
+

ϵ

(q − 1)m

holds.

In the following, if the last qubit of

UP |Lm−j−1, (a, c+ e), Rj⟩+ |aux⟩ |0⟩ |0⟩

is measured in computational base, we denote this as
P (Lm−j−1, (a, c+ e), Rj).

Proof. UP |Lm−j−1, (a, c+ e), Rj⟩ |aux⟩ |0⟩ |0⟩ is a uni-
tary operation of the following procedure.

1. Compute (UD |(Lm−j−1, (a, c+ e), Rj)⟩ |aux⟩ |0⟩) |0⟩.
2. Apply a control unitary operation as follows; if the

second-to-last register is in state |1⟩, output c to
the last register, else if it is in state |0⟩, output
r ̸= c to the last register.

Let us analyze the behavior of UP . Since

Pr[P (Lm−j−1, (a, c+ e), Rj) = a · s ∧ c = a · s]
= Pr[c = a · s] Pr[D(Lm−j−1, (a, c+ e), Rj) = 1|c = a · s]

=
1

q
Pr[D(Lm−j , Rj) = 1]

and

Pr[P (Lm−j−1, (a, c+ e), Rj) = a · s ∧ c ̸= a · s]
= Pr[r = a · s](Pr[D(Lm−j−1, (a, c+ e), Rj) = 0]

− Pr[D(Lm−j−1, (a, c+ e), Rj) = 0 ∧ c = a · s])

=
1

q − 1
{(1− Pr[D(Lm−j−1, Rj+1) = 1])

− 1

q
(1− Pr[D(Lm−j , Rj) = 1])}

holds,

Pr[P (Lm−j−1, (a, c+ e), Rj) = a · s]
= Pr[P (Lm−j−1, (a, c+ e), Rj) = a · s ∧ c = a · s]
+ Pr[P (Lm−j−1, (a, c+ e), Rj) = a · s ∧ c ̸= a · s]

=
1

q
Pr[D(Lm−j , Rj) = 1]

+
1

q − 1
{(1− Pr[D(Lm−j−1, Rj+1) = 1])

− 1

q
(1− Pr[D(Lm−j , Rj) = 1])}

=
1

q
+

1

q − 1
(Pr[D(A, y) = 1|(A, y)← Xm,j ]

− Pr[D(A, y) = 1|(A, y)← Xm,j+1])

>
1

q
+

ϵ

(q − 1)m

holds. The last inequality follows from Lemma 1. In
conclusion, we get

Pr[P (Lm−j−1, (a, c+ e), Rj) = a · s] > 1

q
+

ϵ

(q − 1)m
.

(4)

Next, let’s consider the probability of outputting
a · s for a given input x when the random coins used in
the prediction algorithm is fixed. The following lemma
states that, when the random coins used in the predic-
tion algorithm is fixed, then the random coins are good,
in a seance that, the predictor predicts inner product
for significantly exceeds the 1

q of inputs a ∈ Zn
q , with

some probability. Define the U′
P to be the same as the

one construct in Lemma 2, except for some variables,
such as j, L,R, c, e, r, are hardwired. The last reg-
ister of UP |Lm−j−1, (a, c+ e), Rj⟩ |aux⟩ |0⟩ |0⟩ is mea-
sured in the computational basis, we denote this as
P ′(a).

Lemma 3. U′
P is a (s, 2ϵ

3(q−1)m )-predictor with proba-

bility at least ϵ
3(q−1)m over choice of the random coins.

Proof. A (s, 2ϵ
3(q−1)m )-predictor satisfies the follow-

ing (5).

Pr[P ′(a) = a · s|a $←− Zn
q ] >

1

q
+

2ϵ

3(q − 1)m
. (5)

Define a setG = {(s, j, L,R, c, e, r)|Inequality (5) holds}.
By the definition of G, when s

$←− Zn
q , j

$←−, L ←
LWEm−j−1

n,s,q,χ , R← Rj and x
$←− Zn

q , c
$←− Zq and e← χ,

r
$←− Zq \ {c}, then

Pr[P (L, (a, c+ e), R) = a · s]
= Pr[P (L, (a, c+ e), R) = a · s ∧ (s, j, L,R, c, e, r) ∈ G]
+ Pr[P (L, (a, c+ e), R) = a · s ∧ (s, j, L,R, c, e, r) /∈ G]

≤ Pr[(s, j, L,R, c, e, r) ∈ G] + 1

q
+

2ϵ

3(q − 1)m

holds. From Lemma 2,

Pr[P (L, (a, c+ e), R) = a · s] > 1

q
+

ϵ

(q − 1)m
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holds. Therefore

Pr[(s, j, L,R, c, e, r) ∈ G] ≥ ϵ

3(q − 1)m

holds.

We next show a prediction-to-decision reduc-
tion, that is, the expansion version of the quantum
Goldreich-Levin theorem.

Theorem 1 (Expansion version of quantum Goldre-
ich-Levin theorem). Let q be a prime. If there is a
quantum (s, δ)-predictor (UP , |aux⟩), then there is a
quantum algorithm that finds s with probability at least
( qδ
q−1 )

2. It invokes UP and U†
P once each and uses an

auxiliary |aux⟩.

Proof. We construct a quantum algorithm that finds s
using a quantum (s, δ)-predictor UP .

We denote the state obtained by applying UP to
|a⟩ |aux⟩ |0⟩ as follows,

UP |a⟩ |aux⟩ |0⟩ =
∑
j∈Zq

αa,j |a⟩ |ηa,j⟩ |a · s+ j⟩ .

First, prepare the superposition states

1√
qn(q − 1)

∑
a∈Zn

q

∑
r∈Z∗

q

|r⟩ |a⟩ |aux⟩ |0⟩

through the predictor UP (apply the second to the last
register), multiply the last register by the first register
r, multiply the phase by ωy

q according to the value of
the last register y, divide the last register by the first
register r(multiply r−1), pass the states through con-
jugate transpose of the predictor and we get the states

|ϕ⟩ := 1√
qn(q − 1)

∑
a,r,j

ωr(a·s+j)
q αa,j |r⟩ |a⟩ |ηa,j⟩ |a · s+ j⟩ .

If we apply the states through conjugate transpose of
the predictor U†

P (apply the second to the last register),
multiply the second register by the first register(denote
this operation asM), and measure the second register in
Fourier basis, the probability of yielding s is the square
of the inner product of this state |ϕ⟩ and

|ψ⟩

:= UPM
†QFT

1√
q − 1

∑
r∈Z∗

q

|r⟩ |s⟩ |aux⟩ |0⟩

= UPM
†

 1√
qn(q − 1)

∑
b∈Zn

q

∑
r∈Z∗

q

ωb·s
q |r⟩ |b⟩ |aux⟩ |0⟩


= UPM

†

 1√
qn(q − 1)

∑
a∈Zn

q

∑
r∈Z∗

q

ωr(a·s)
q |r⟩ |ra⟩ |aux⟩ |0⟩



= UP

(
1√

qn(q − 1)

∑
a,r

ωr(a·s)
q |r⟩ |a⟩ |aux⟩ |0⟩

)

=
1√

qn(q − 1)

∑
a,r,j

ωr(a·s)
q |r⟩ |a⟩ |ηa,j⟩ |a · s+ j⟩ .

Finally, we get

Pr[s is measured]

= |⟨ψ|ϕ⟩|2

=

∣∣∣∣∣∣ 1

qn(q − 1)

∑
a,r,j

ωrj
q |αa,j |2

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ 1qn |αa,0|2 +
1

qn(q − 1)

∑
j∈Z∗

q

(
−|αa,j |2

)∣∣∣∣∣∣
2

>

∣∣∣∣(1

q
+ δ

)
− 1

q − 1

(
1−

(
1

q
+ δ

))∣∣∣∣2
=

(
qδ

q − 1

)2

.

The second equality follows by the fact that for all el-
ements j ∈ Z∗

q , j determines a bijection r 7→ rj on Zq

and it maps 0 to 0. This result is consistent with the
quantum Goldreich-Levin result where q = 2 and is a
successful generalization.

Theorem 2. Let q be a prime. If there is a quantum ϵ-
distinguisher (UD, |aux⟩) for the decisional LWEn,m,q,χ

problem, then there is a quantum algorithm that solves
the search LWEn,m,q,χ problem with probability at least

4q2ϵ3

27(q−1)5m3 using UD and U†
D once each and an auxiliary

|aux⟩.

Proof. This theorem follows immediately from Lemma 3
and Theorem 1.

We stress that Theorem 2 gives a quantum sample-
preserving search-to-decision reduction for the LWE
problem, i.e., we can find s with some polynomial prob-
ability with sample complexity m, where m is the num-
ber of instances required by the distinguisher to solve
the decisional-LWE problem. Next, we consider the
complexity of obtaining s with high probability using
this algorithm in the following section. We use this
algorithm as a basic building block of the amplified re-
duction algorithms.

3.2 Amplify the success probability

We show how to amplify the success probability of the
reduction algorithm given in Section 3.1. However, this
process increases query complexity and sample com-
plexity.

We only consider a uniform distinguisher. This
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means that the auxiliary |aux⟩ is simply the computa-
tion space |0l⟩.

We propose an algorithm, Verify, that tests a can-
didate solution for the LWE problem. We first sample
(ai, yi)i∈[O(n)] ← LWEO(n)

n,s,q,χ and construct Verify to
test a candidate s′ by simply checking that ai · s ≈ yi.
Here, we present the case where the error distribution
is the discrete Gaussian distribution Ψα where α < 1

8 .

Lemma 4. Let χ = Ψα where α < 1
8 , we can con-

struct an algorithm Verify using O(n) samples, and it
satisfies the following functionality (6) with probability
1− negl(n)(resp. any desired constant 0 < p < 1)

Verify(s′) =

{
1 if s′ = s

0 if s′ ̸= s.
(6)

The description of the algorithm Verify that satis-
fies the conditions of (6) can be given as follows:
Initially, sample (ai, yi)i∈[cn] ← LWEcnn,s,q,χ. Upon re-
ceiving input s′ ∈ Zn

q , Verify works as follows.

Verify(s′) :

count = 0

for i ∈ {1, 2, . . . , cn}

if |ai · s′ − yi| > q
8
, add 1 to count

if count < cn
2

output 1

else output 0.

Proof. Let us analyze the probability that the Verify
satisfies the condition (6).
Let β = Pr[|χ| ≥ q

8 ](<
1
2 ), δ =

1
2β − 1.

Pr[Verify satisfies (6)]

= Pr[Verify(s) = 1 ∧ ∀s′ ̸= s,Verify(s′) = 0]

≥ Pr[Verify(s) = 1] · Pr[∀s′ ̸= s,Verify(s′) = 0]

≥ (1− Pr[Verify(s) ̸= 1]) ·

1−
∑
s′ ̸=s

Pr[Verify(s′) = 1]


≥ (1− e−

δ2βcn
2+δ ) ·

(
1− (qn − 1)e−

cn
24

)
= 1− negl(cn)

The third inequality follows from Chernoff bound.
Therefore, Verify satisfies (6) with probability 1 −
negl(n) for sufficiently large constant c. In addition,
by choosing c to be sufficiently large, the success prob-
ability of the algorithm can be increased to any desired
constant level regardless of n.

We can use this Verify to amplify the success prob-
ability of the sample-preserving reduction algorithm

by repetition. However, the success probability of
our reduction can be increased more efficiently by the
quantum-specific repetition technique “amplitude am-
plification [11]” than by simply judging the answer each
time. We define a unitary UReflection, referred to as a
reflection oracle in the context of amplitude amplifica-
tion.

Definition 3. A quantum reflection algorithm is a
unitary operation UReflection such that the following
holds (7)

UReflection=I−|s⟩|0l⟩⟨s|⟨0l| (7)

holds.

Lemma 5. We can construct a quantum algorithm
UReflection from Verify that satisfies the condition (6).

Proof. This lemma can be achieved by phase kickback.
From Lemma 4 there exists a verification algorithm sat-
isfying (6), then there exist an unitary operation such
that

UVerify |x⟩ |y⟩ |0⟩ =

{
|x⟩ |y⟩ |1⟩ if x = s ∧ y = 0l

|x⟩ |y⟩ |0⟩ if x ̸= s ∨ y ̸= 0l
(8)

holds.
Consider the following quantum operation UReflection.

When given |x⟩ |y⟩ |0⟩, apply UVerify, multiply the phase
by (−1)z according to the value of the last register z

and apply U†
Verify. We get − |x⟩ |y⟩ |0⟩ when x = s and

y = 0l otherwise we get |x⟩ |y⟩ |0⟩. This operator is
indeed a quantum reflection algorithm.

Theorem 3. Let q be a prime and χ = Ψα where
α < 1

8 . If there is a quantum ϵ-distinguisher UD for
the decisional LWEn,m,q,χ problem, then there is a quan-
tum algorithm that solves the search LWEn,m′,q,χ prob-

lem with probability Ω( ϵ
qm ) using UD and U†

D O(
qm
ϵ )

times, where m′ = m+O(n).

Proof. Initially, s is chosen uniform random from Zn
q ,

we get (A, y)← LWEmn,s,q,χ and samples random coins.
From Lemma 1 and Theorem 2 we can construct a
quantum algorithm US using UD and U†

D once each,
and that satisfies

| ⟨s| ⟨0l|US |0n⟩ |0l⟩ |2 >
4q2ϵ2

9(q − 1)4m2
(9)

with probability ϵ
3m(q−1) over choice of s

$←− Zn
q ,

(A, y) ← LWEmn,s,q,χ and random coins. From
Lemma 4 and Lemma 5 we can construct a verification
algorithm Verify (resp. a quantum algorithm UReflection)
that satisfies (6) (resp. (7)) with constant probability
using O(n) samples of LWEn,s,q,χ.
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Assuming that US satisfies (9), Verify satisfies (6),
and UReflection satisfies (7), consider the following proce-
dure. The procedure is to compute

(−US(I− |0n⟩ |0l⟩ ⟨0n| ⟨0l|)U†
SUReflection)

kUS |0n⟩ |0l⟩ ,

measures states in the computational basis, test it by
Verify. As shown in [11], if this is carried out for a
suitably generated sequence of values of k, we can find
s with the expected total number of executions of US

and U†
S until a successful verification occurs is O( qmϵ ).

From the construction of US , we get the following con-
clusions. We can find s with probability Ω( ϵ

qm ) using

UD and U†
D O(

qm
ϵ ) times, and with sample complexity

m+O(n).

We remark that our reduction holds for a variety
of other error distributions. It simply requires that we
can verify from the samples whether it is the correct
answer or not given some input s′ ∈ Zn

q . For example,
the verification algorithm for the case where q = 2 and
the error distributed from the Bernoulli distribution is
given in Appendix A.

Next, we consider how we can raise the success
probability of our reduction algorithm to 1−o(1). Sim-
ply repeating the algorithm does not efficiently increase
the success probability. There are two reasons why we
cannot simply repeat the algorithm given in Section 3.1.

• Whether the predictor UP has desired prop-

erty(condition (5)) depends on the choice of s
$←−

Zn
q (see Lemma 1).

• And the amplitude amplification algorithm would
keep running until it finds s in time inversely pro-
portional to the advantage of UP .

We can overcome the first problem by re-

randomize the secret s. By sampling s∗
$←− Zn

q and
using (A, y′) := (A, y+A·s∗), easily follows that, (A, y′)
can be regarded as the samples of LWEn,s+s∗,q,χ. The
second problem can be overcome by parallel computing.
For example, if we produce ⌈ 3qm logn

ϵ ⌉ of predictors,
then there exist a predictor UP,i that has advantage

2ϵ
3(q−1)m with probability at least 1 − 1

n . If any part

of the parallel computation has an output that passes
the verification algorithm, it is the answer. Hence we
can find s with probability 1 − o(1) by computing in
parallel. This algorithm is described in the following
Fig. 1.

From Lemma 4, we can construct a verification al-
gorithm Verify that satisfies (6) with probability 1−o(1)
using Õ(n) samples of LWEn,s,q,χ. Hence, The above
algorithm has success probability 1− o(1), invokes UD

O( q
2m2 logn

ϵ2 ) times, and using Õ( qm
2

ϵ ) = O( qm
2 logn
ϵ )+

O(n) samples of LWEn,s,q,χ. We get the following
corollary.

Corollary 1. Let q be a prime and χ = Ψα where

Reduction Algorithm with high success probability

Choose Õ(n) samples from LWEn,s,q,χ, and construct Verify.

for i = 1, . . . , ⌈ 3q logn
ϵ
⌉ :

Choose m samples of LWE instances (Ai, yi).

Sample a random vector s∗i ← Zn
q ,

set (Ai, y
′
i) := (Ai, yi +Ai · s∗i ), and construct UP,i

Construct Verifyi(x) := Verify(x− s∗i ) and UVerify,i.

Run the second reduction algorithm in parallel.

If there is a sj that passes the j-th verification test Verifyj ,

then output s = sj − s∗j .

Fig. 1 Reduction Algorithm with high success probability

α < 1
8 . If there is a quantum ϵ-distinguisher UD for the

decisional LWEn,m,q,χ problem, then there is a quantum
algorithm that solves the search LWEn,m′,q,χ problem

with probability 1−o(1) using UD and U†
D O(

q2m2 logn
ϵ2 )

times, where m′ = Õ( qm
2

ϵ ).

4. Conclusion

In this section, we display the efficiency of our reduction
algorithms. We also give the comparisons listed in Ta-
ble 1. The sample-preserve one shows that we can find

s with a probability at least 4q2ϵ3

27(q−1)5m3 and query com-

plexity 2. Compared to the previous sample-preserve
reduction by [21], it dramatically reduces query com-
plexity. The second algorithm give by Theorem 3 per-

forms amplitude amplification and has O( q
2m2

ϵ2 ) times
higher success probability than the sample-preserve
one, but the query complexity is O( qmϵ ) times higher
and the sample complexity increases by O(n). We
stress that this trade-off is specific to quantum com-
putation. Additionally, we get the reduction algorithm
that has success probability 1 − o(1) with query com-

plexity O( q
2m2 logn

ϵ2 ) and sample complexity Õ( qm
2

ϵ ).
Unfortunately, when amplifying the success probability
to 1−o(1), the advantage in the query/sample complex-
ity compared to classical reductions seems diminishes
and the distinguisher needs to be uniform.
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Appendix A: Search-to-decision reduction for
the LPN problem

We show that there is a quantum search-to-decision
reduction for the learning parity with noise prob-
lem(Table A· 1). First, from Theorem 2 we immediately
obtain the following corollary.

Corollary 2. If there is a quantum ϵ-distinguisher UD

for the decisional LWEn,m,2,Berµ problem, then there is a
quantum algorithm that solves the search LWEn,m,2,Berµ

problem with probability at least 16ϵ3

27m3 using UD and U†
D

once each.

As in the case of the LWE problem, we can amplify
the success probability by constructing an algorithm
Verify that judges the solution.

Lemma 6. We can construct an algorithm VerifyLPN ,
and it satisfies the following functionality (A· 1) with
desired probability 0 < c < 2n−1

2n .
For all x ∈ {0, 1}n,

VerifyLPN (x) =

{
1 if x = s

0 if x ̸= s.
(A· 1)

(1) Proof of Lemma 6.

Initially, sample (A, y) ← LPN l
s,µ, where A ∈

{0, 1}l×n is a random Boolean matrix, l =⌈
−
(

6

( 1
2−µ)

2 loge(
1
2 (

1
2n −

c
2n−1 ))

)⌉
= O(n) and y =

A · s⊕ e is a noisy inner products, note that e ∈ {0, 1}l
is errors distributed from Berlµ. Upon receiving input
x ∈ {0, 1}n, VerifyLPN works as follows.

VerifyLPN (x) :

if |weight(A · x+ y)− µl| < 1
2
( 1
2
− µ)l

then output 1

else output 0.

Note that the function weight(·) outputs the Ham-
ming distance. If x = s, since A ·x+e = y, A ·x+y = e.
Since e is distributed from the Bernoulli distribution
Berlµ, E(weight(A · x + y)) = E(weight(e)) = µl. If
x ̸= s, A ·x+y is uniformly random, since A is sampled
uniformly random. Therefore E(weight(A·x+y)) = 1

2 l.
Let us analyze the probability that the VerifyLPN sat-
isfies the condition (A· 1).

Pr[VerifyLPN satisfies (A· 1)]
= Pr[VerifyLPN (s) = 1 ∧ ∀s′ ̸= s,VerifyLPN (s′) = 0]

≥ Pr[VerifyLPN (s) = 1] · Pr[∀s′ ̸= s,VerifyLPN (s′) = 0]

≥ Pr[VerifyLPN (s) = 1]

×

1−
∑
s′ ̸=s

Pr[VerifyLPN (s′) = 1]


≥
(
1− 2e−

l
12µ (

1
2−µ)

2)(
1− (2n − 1)

(
2e−

l
6 (

1
2−µ)

2))
≥

(
1−

(
1

2n
− c

2n − 1

) 1
2µ

)

×
(
1− (2n − 1)

(
1

2n
− c

2n − 1

))
≥
(
1−

(
1

2n
− c

2n − 1

))(
1− 2n

(
1

2n
− c

2n − 1

))
≥
(
1− 1

2n

)
2nc

2n − 1

= c

The second inequality follows from union bound, and
the third inequality follows from Chernoff bound.

Corollary 3. If there is a quantum ϵ-distinguisher UD

for the decisional LWEn,m,2,Berµ problem, then there is a
quantum algorithm that solves the search LWEn,m′,2,Berµ

problem with probability Ω( ϵ
m ) using UD and U†

D O(
m
ϵ )

times, where m′ = m+O(n).

The proof of this corollary is given in the same way
as in Theorem 3.
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Table A· 1 Comparison of the algorithms performance. n is a size of the LPN problem,
m is the number of instances required by the distinguisher to solve the decisional LPN
problem, ϵ is the advantage of the distinguisher.

Success probability Query complexity Sample complexity Classical/Quantum

(at least)

KS06[19] ϵ
4

O(n logn
ϵ2

) O(mn logn
ϵ2

) Classical

AIK07[7] Ω( ϵ
3

n
) O(n

2

ϵ2
) m Classical

Cor.2 16ϵ3

27m3 2 m Quantum

Cor.3 Ω( ϵ
m
) O(m

ϵ
) m+O(n) Quantum

Appendix B: Classical search-to-decision re-
duction for the LWE problem

B.1 A simple reduction

In this section we give a simple classical search-to-
decision reduction by [28]. It is based on the reduc-
tion given by Regev [26] and is useful for comparing
efficiency.

Definition 4. A (classical) algorithm D said to be a
ϵ-distinguisher for the decisional LWEn,m,q,χ problem if

|Pr[D(A, y) = 1|s $←− {0, 1}n, (A, y) ← LWEmn,s,q,χ] −
Pr[D(A, r) = 1|A $←− Zm×n

q , r
$←− Zm

q ]| > ϵ holds.

The algorithm described in Fig. A· 1 solves the
search LWEn,m′,q,χ problem with probability 1 − o(1)

using D Õ(nqϵ2 ) times where m′ = Õ(nmq
ϵ2 ). For a de-

tailed analysis, please refer to [28].

Classical reduction algorithm

for i = 1, . . . , n :

for j = 0, . . . , q − 1 :

for l = 1, . . . , L = Õ( 1
ϵ2

) :

Choose a fresh block of LWE instances (Al, yl).

Sample a random vector cl ← Zm
q ,

and let Cl ∈ Zm×n
q be the matrix whose

i-th row is cl, and whose other entries are all zero.

Let A′
l := Al + Cl, and y′l := yl + j · cl.

Run the distinguisher D(A′
l, b

′
l)

and let the output be called dl.

If maj(d1, ..., dL) = 1 (meaning that the distinguisher

guesses LWE) then set si = j.

Else, continue to the next iteration of the loop.

Output s = s1 . . . sn.

Fig.A· 1 Reduction Algorithm with high success probability

B.2 Complexity of MM11 [21]

In this section, we give a brief analysis of the search-to-

decision reduction by Micciancio and Mol [21]. Their
search-to-decision reduction for LWE is shown via
search-to-decision reduction for the knapsack functions.
This induces a negligible fraction of loss in the success
probability. Let δ be an advantage of the distinguisher.
From ([21], Proposition3.9 and Lemma3.4) the success
probability of the search-to-decision reduction for the

knapsack functions is ϵ
3 where ϵ ≥

(
d∗3δ̃

d̃3(d∗−1)

)
(2− π2

6 )

and δ̃ is some noticeable such that δ̃ ≤ δ. Using
the fact that d∗ ≥ s and d̃ ≤ 2ms2, we have ϵ

3 =

Ω( δ̃
m3s4 ). Substituting q for s, we get the success prob-

ability of their search-to-decision reduction for LWE

Ω( δ̃
m3q4 )− negl(n).

In ([21], Lemma3.4), they use Significant Fourier

Transform [4] with τ = ϵ2

4 , N = |Zl
d∗ | and ∥f∥2 =

∥f∥∞ = 1. The running time of Significant Fourier

Transform is at most Θ̃(logN(
∥f∥2

2

τ )1.5(
∥f∥2

∞
η2 )2 lg 1

µ ) for

η = Θ(min{τ,
√
τ , τ

∥f∥∞
}) and µ = 1/O((∥f∥

2
∞

τ )1.5 logN).

Substituting τ = ϵ2

4 , N = d∗m and ∥f∥2 = ∥f∥∞ = 1,

we get Θ̃(logN(
∥f∥2

2

τ )1.5(
∥f∥2

∞
η )2 lg 1

µ ) = Õ( log(d
∗l)

ϵ11 ).

Hence From ([21], Proposition3.9 and Lemma3.4), the
query complexity of the search-to-decision reduction

for LWE is Θ̃( log(d
∗m)

ϵ11 )O(1) = Õ( log(d
∗m)

ϵ11 ) where d∗

is some polynomial such that d∗ ≥ q.
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