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PAPER
Feistel Ciphers Based on a Single Primitive∗

Kento TSUJI†a), Student Member and Tetsu IWATA†b), Member

SUMMARY We consider Feistel ciphers instantiated with tweakable
block ciphers (TBCs) and ideal ciphers (ICs). The indistinguishability
security of the TBC-based Feistel cipher is known, and the indifferentiability
security of the IC-based Feistel cipher is also known, where independently
keyed TBCs and independent ICs are assumed. In this paper, we analyze the
security of a single-keyed TBC-based Feistel cipher and a single IC-based
Feistel cipher. We characterize the security depending on the number of
rounds. More precisely, we cover the case of contracting Feistel ciphers that
have d ≥ 2 lines, and the results on Feistel ciphers are obtained as a special
case by setting d = 2. Our indistinguishability security analysis shows that
it is provably secure with d + 1 rounds. Our indifferentiability result shows
that, regardless of the number of rounds, it cannot be secure. Our attacks
are a type of a slide attack, and we consider a structure that uses a round
constant, which is a well-known countermeasure against slide attacks. We
show an indifferentiability attack for the case d = 2 and 3 rounds.
key words: feistel cipher, tweakable block cipher, ideal cipher, provable
security

1. Introduction

(1) Background.

A Feistel structure is one of the widely used structures of
a block cipher, and its security proof was given by Luby
and Rackoff [2]. It is shown that the 3-round Feistel struc-
ture instantiatedwith 3 independent pseudorandom functions
(PRFs), which we call the Feistel cipher, is a pseudorandom
permutation (PRP), a block cipher that is indistinguishable
from a random permutation against adversaries in a chosen
plaintext attack (CPA) setting. Similarly, the 4-round Feistel
cipher is a strong PRP (SPRP), where the adversary is in a
chosen ciphertext attack (CCA) setting.

A question of whether one can securely reduce the num-
ber of independent PRFs has been studied, as reducing the
number of PRFs implies the reduction of the key length,
and hence it reduces the cost of maintaining, exchanging,
and updating the secret key. Let Φ[F1,F2, . . . ,Fr ] be the
r-round Feistel cipher, where the PRF Fi is used in the i-
th round. The structure that simply replaces all the PRFs
with a single-keyed PRF F, i.e., Φ[F,F, . . . ,F], is easily
distinguishable from a random permutation regardless of the
number of rounds [3]. Pieprzyk showed that Φ[F1,F1,F1,F2]

Manuscript received January 16, 2024.
Manuscript publicized March 29, 2024.
†Dept. of Information and Communication Engineering, Na-

goya University, Nagoya-shi, 464-8603 Japan.
∗A preliminary version of this paper was presented at

IMACC 2023 [1]. Sect. 6 was improved to cover general cases.
a) E-mail: tsuji.kento.y1@s.mail.nagoya-u.ac.jp
b) E-mail: tetsu.iwata@nagoya-u.jp
DOI: 10.1587/transfun.2024EAP1006

and Φ[F1,F1,F1,F1 ◦ F1] are PRPs [4]. Patarin showed
that Φ[F1,F2,F1,F2] is an SPRP [5]. Additionally, Patarin
pointed out that Φ[F,F,F,F◦ζ ◦F] is an SPRP, where it uses
1-bit cyclic rotation ζ . Nandi proved that Φ[ζ ◦ F,F,F,F] is
an SPRP and has the optimal number of PRF calls [6]. See
also [7] for a related result that uses a mask.

A tweakable block cipher (TBC), formalized by Liskov
et al. [8], is the generalization of a block cipher to take
an additional input called a tweak. Minematsu pointed out
that TBCs can be used as a primitive for constructing block
ciphers, and instantiated a concrete structure by combining
TBCs and universal hash functions [9]. By replacing the
PRFs and XORs in the Feistel cipher with TBCs, Coron
et al. formalized a TBC-based Feistel cipher and proved its
indistinguishability security [10].

Indifferentiability, formalized by Maurer et al. [11], is
one of the security definitions for cryptographic permuta-
tions, a key-less permutation. This definition captures the
hardness to distinguish a cryptographic permutation from a
random permutations, where the cryptographic permutation
makes oracle calls to an ideal primitive. Some instances of
random oracle (RO) based Feistel ciphers are analyzed with
the indifferentiability notion. See [12]–[14] for the results
on this line of research. The TBC-based Feistel cipher [10]
can be seen as a cryptographic permutation by regarding the
TBC as the ideal cipher (IC), which models an ideally secure
block cipher, and its indifferentiability analysis is presented
in [10], where independent ICs are used in the construction.
Bhaumik et al. later improved the security bound [15].

Contracting Feistel structures are derivations of the
Feistel structure, and we consider the TBC-based counter-
part [16]. These structures have d lines, where d ≥ 2, and
d − 1 lines are used as the tweak of the TBC to update
the remaining line. See Fig. 1 for the structure. The secu-
rity of the structure is known in the indistinguishability no-
tion [16], [17], and in the indifferentiability notion [18], [19],
where we consider the IC with key length of d − 1 lines in-
stead of a TBC.

(2) Our Contributions.

The indistinguishability results on the TBC-based Feistel
ciphers [10] and on the TBC-based contracting Feistel ci-
phers [16], [17] assume independent TBCs, and the indiffer-
entiability results on the IC-based Feistel ciphers [10], [15]
and on the IC-based contracting Feistel ciphers [18], [19]
assume independent ICs. In this paper, we investigate the
security of the single primitive-based counter parts, which

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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Table 1 Summary of previous results and our results (d = 2) on Feistel ciphers.

replace the TBCs or the ICs with a single primitive, i.e., a
single-keyed TBC or a single IC. Our target is the n-bit block
and (d − 1)n-bit tweak single-keyed TBC-based Feistel ci-
pher for indistinguishability, and the n-bit block, (d−1)n-bit
key single IC-based Feistel cipher for indifferentiability. We
remark that by setting d = 2, our results cover the case of
regular Feistel ciphers of 2 lines. We present the following
results:

(3) Indistinguishability Results.

Let Φr be the r-round single-keyed TBC-based Feistel cipher
with d lines. We show that for any r ≤ d, Φr can be
distinguished from a random permutation with O(1) queries.
We then show that Φd+1 is secure in the indistinguishability
notion, where the security bound is O(q2/2n) for adversaries
making q queries. This makes a sharp difference to the
PRF-based Feistel cipher, which is insecure regardless of the
number of rounds. Next, for any r ≥ d + 1, we show that
Φr can be distinguished from a random permutation with
O(2n/2) queries, with a type of slide attack [20]. On one
hand, this shows the tightness of the security bound of the
case r = d + 1, i.e., it is impossible to show a better security
bound for this case. This also shows that, even if we increase
the number of rounds beyond d + 1 rounds, the security of

Φr does not improve, showing an impossibility of improving
the security by increasing the number of rounds.

These results show that the (d + 1)-round structure can
be practically used in applications that are sufficient with
O(2n/2) security, however, it cannot be used if higher security
is needed, regardless of the number of rounds.

(4) Indifferentiability Results.

Let Φ̂r be the r-round single IC-based Feistel cipher with
d lines. We show that for any r , Φ̂r is not secure in the
indifferentiability notion. The attack is the straightforward
application of the attacks against Φr , and theyworkwithO(1)
queries. The attack can be seen as a type of slide attack [20].
Using a round constant is a well-known countermeasure, and
one may hope that a round constant can prevent the attack.
We consider a variant of Φ̂r that uses a round constant,
and demonstrate that the round constant cannot prevent the
indifferentiability attack for the case r = 2d − 1.

These results show that single IC based structures
should not be used in practice.

Table 1 and Table 2 summarize the previous results and
our results. Table 1 shows the results for d = 2 and Table 2
shows the results for d ≥ 2.
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Table 2 Summary of previous results and our results on contracting Feistel ciphers. d denotes the
number of lines, l is a constant value s.t. 1 ≤ l ≤ d − 1. In “Security”, the maximum number of queries
is additionally noted if exists.

(5) Further Related Works.

A problem of whether one can securely reduce the number
of independent keys/primitives has been studied in various
other constructions. See, e.g., [21]–[26]. With respect to
slide attacks, key-reduced Feistel ciphers have been actively
analyzed. See, e.g., [27]–[31]. Compared to these results,
our attacks follow a fundamentally similar approach, while
our targets employ stronger primitives, TBCs/ICs, instead of
PRFs/ROs.

2. Preliminaries

2.1 Notation

For a positive integer n, let {0,1}n be the set of all n-bit
strings. For two strings X and Y , let X ‖ Y denote their
concatenation. For d string X1,X2, . . . ,Xd , we denote their
concatenation X1 ‖ X2 ‖ · · · ‖ Xd by X [1..d]. For a finite set
S, s

$
←− S is the operation of uniformly sampling an element

from S and assigning it to s.

2.2 (Tweakable) Block Cipher

A block cipher E : K ×M → M is a keyed permutation.
For key K ∈ K, plaintext M ∈ M, and ciphertext C ∈ M,
we write the encryption asC = EK (M) and the decryption as
M = E−1

K (C). IfM = {0,1}
n, we say that it is an n-bit block

cipher. Let Perm(n) be the set of all n-bit permutations, and
a random permutation is an element selected from Perm(n)
uniformly at random.

A tweakable block cipher Ẽ : K × T × M → M is
a keyed permutation that takes an additional input called
a tweak [8]. For key K ∈ K, tweak T ∈ T , plaintext
M ∈ M, and ciphertext C ∈ M, we write the encryption
as C = ẼK (T,M) and the decryption as M = Ẽ−1

K (T,C). If
T = {0,1}t andM = {0,1}n, we say that it is an (t,n)-bit
TBC. Let �Perm(t,n) be the set of all the functions P̃ : {0,1}t×
{0,1}n → {0,1}n s.t. for any T ∈ {0,1}t , P̃(T, ·) ∈ Perm(n),
and a tweakable random permutation (TRP) is an element
selected from �Perm(t,n) uniformly at random, which we call
an (t,n)-bit TRP.

The ideal cipher Ê : K ×M →M is the set of random
permutations that idealizes a block cipher. For each K ,
Ê(K, ·) is a random permutation overM. For key K ∈ K,
plaintext M ∈ M, and ciphertext C ∈ M, we write the
encryption as C = Ê(K,M) and the decryption as M =

Ê−1(K,C). IfK = {0,1}k andM = {0,1}n, we say that it is
an (k,n)-bit IC.

2.3 Security Definitions

We consider the security of block cipher E as a keyed prim-
itive and as a cryptographic permutation. As a keyed primi-
tive, we consider the indistinguishability notion [2], i.e., the
notion of a pseudorandom permutation (PRP) and a strong
pseudorandom permutation (SPRP). A PRP-adversary has
oracle access to a cryptographic permutation oracle EK in
the real world, and random permutation π in the ideal world.
For an adversary A that makes a maximum of q oracle
queries, we define the PRP-advantage and SPRP-advantage
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as follows:

Advprp
E (A) = | Pr[AEK (·) ⇒ 1] − Pr[Aπ(·) ⇒ 1]|

Advsprp
E (A)

= | Pr[AEK (·),E
−1
K (·) ⇒ 1] − Pr[Aπ(·),π−1(·) ⇒ 1]|

Next, as a cryptographic permutation, we consider the
indifferentiability notion [11]. Let C be a cryptographic
permutation that is built on the ideal cipher Ê , i.e., C makes
oracle calls to Ê to compute its output, and we write CÊ for
this. In the real world, an adversary A has oracle access to
Ê and CÊ . In the ideal world,A makes queries to a random
permutation π and a simulator Simπ , where the simulator
Sim has oracle access to π. We call a query to CÊ or π as a
construction query, and a query to E or Simπ as a primitive
query. For an adversary A that makes a maximum of q
oracle queries in total, we define the advantage as follows:

Advindiff
C ,Sim(A)

= | Pr[AC Ê (·),Ê(·) ⇒ 1] − Pr[Aπ(·),Simπ (·) ⇒ 1]|

2.4 Coefficient-H Technique [32], [33]

Our security proof is based on the coefficient-H technique.
Let R and R−1 be the real world oracles that internally call
a block cipher EK and its inverse E−1

K . Similarly, let I and
I−1 be the ideal world oracles that internally call a random
permutation π and its inverse π−1. For an adversary A
that makes a maximum of q oracle queries, a transcript θ
denotes a tuple that records all the interactions between A
and the oracles. LetΘR be the random variable of θ whenA
interacts with R and R−1, and ΘI be the random variable of
θ whenA interacts with I and I−1. An attainable transcript
is a transcript θ such that Pr[ΘI = θ] > 0. Then, the
coefficient-H technique states the following result:

Lemma 1: Consider a deterministic adversaryA. Partition
all the attainable transcripts into two disjoint sets Tgood and
Tbad. Suppose that there exists ε1 such that Pr[ΘI ∈ Tbad] ≤
ε1, and there exists ε2 such that, for all θ ∈ Tgood, Pr[ΘR =
θ]/Pr[ΘI = θ] ≥ 1−ε2. Thenwe haveAdvsprp

E (A) ≤ ε1+ε2.

We remark that although Lemma 1 is modified specifi-
cally for an SPRP adversary, the coefficient-H technique can
be applied to general security definitions. See e.g., [32], [33].

3. Constructions

3.1 Block Ciphers

Fix d ≥ 2. Let Ẽ be a ((d − 1)n,n)-bit TBC and K be a key
of Ẽ . First, we define an encryption round function φ as

φ[ẼK ](X [1..d]) = X [2..d] ‖ ẼK (X [2..d],X1) ,

where X [1..d] ∈ {0,1}dn is the input. See Fig. 1(a). Then, the

Fig. 1 (a) φ[ẼK ](X
[1. .d]) = X[2. .d] ‖ Y , where Y = ẼK (X

[2. .d], X1),
(b) φ[Ê](X[1. .d]) = X[2. .d] ‖ Y , where Y = Ê(X[2. .d], X1), and (c)
φi [Ê](X

[1. .d]) = X[2. .d] ‖ Y , where Y = Ê(X[2. .d] ⊕ c
[2. .d]
i , X1).

r-round single-keyed TBC-based Feistel cipher Φr is defined
by iterating the round function φ for r times as follows:

Φr [ẼK ](M [1..d])

= φ[ẼK ] ◦ φ[ẼK ] ◦ · · · ◦ φ[ẼK ]︸                                ︷︷                                ︸
r times

(M [1..d])

It takes M [1..d] ∈ {0,1}dn as input.
Likewise, we define a decryption round function φ−1 as

φ−1[ẼK ](X [1..d]) = Ẽ−1
K (X

[1..d−1],Xd) ‖ X [1..d−1] ,

where X [1..d] ∈ {0,1}dn is the input. Next, the decryption
of Φr , which we write Φ−1

r , is defined by repeating φ−1 for r
times as follows:

Φ−1
r [ẼK ](C[1..d])

= φ−1[ẼK ] ◦ φ
−1[ẼK ] ◦ · · · ◦ φ

−1[ẼK ]︸                                         ︷︷                                         ︸
r times

(C[1..d])

It takes C[1..d] ∈ {0,1}dn as input.

3.2 Cryptographic Permutations

Let Ê be a ((d − 1)n,n)-bit IC. Cryptographic permutations
can be defined from an ideal cipher similarly to block ciphers.

With round functions φ[Ê] and φ−1[Ê] shown in
Fig. 1(b), where the key of Ê is regarded as a tweak of ẼK

in φ[ẼK ], the r-round single IC-based Feistel cipher, which
we write Φ̂r , is defined as follows:

Φ̂r [Ê](M [1..d]) = φ[Ê] ◦ φ[Ê] ◦ · · · ◦ φ[Ê]︸                          ︷︷                          ︸
r times

(M [1..d])

Φ̂−1
r [Ê](C

[1..d])
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= φ−1[Ê] ◦ φ−1[Ê] ◦ · · · ◦ φ−1[Ê]︸                                   ︷︷                                   ︸
r times

(C[1..d])

Cryptographic permutations with round constants are
defined by introducing round constants to the key of φ. We
define an encryption round function φi and a decryption
round function φ−1

i as follows:

φi[Ê](X [1..d]) = X [2..d] ‖ Ê(X [2..d] ⊕ c[2..d]i ,X1)

φ−1
i [Ê](X

[1..d])

= Ê−1(X [1..d−1] ⊕ c[2..d]i ,Xd) ‖ X [1..d−1] ,

where c2
i , . . . , c

d
i is an n-bit constant. See Fig. 1(c). Then the

r-round single IC-based Feistel cipher with round constants
Φ̂′r is defined as follows:

Φ̂′r [Ê](M [1..d])

= φr [Ê] ◦ φr−1[Ê] ◦ · · · ◦ φ1[Ê](M [1..d])

Φ̂′−1
r [Ê](C

[1..d])

= φ−1
1 [Ê] ◦ φ

−1
2 [Ê] ◦ · · · ◦ φ

−1
r [Ê](C

[1..d])

4. Security of Φr

We present three results on Φr . In Theorem 1, we first show
an efficient distinguisher on Φr with r ≤ d. Next, with
an additional round, in Theorem 2, we prove that Φr with
r = d is provably secure up to O(2n/2) queries. Finally, in
Theorem 3, we present a distinguisher that makes O(2n/2)
queries against Φr for any r ≥ d+1. This shows the tightness
of Theorem 2, and this also shows that increasing the number
of rounds beyond r = d + 1 does not increase the security.

We remark that we use a TRP Ẽ as the underlying TBC,
and we thus omit writing the key K , while Ẽ and Φr = Φr [Ẽ]
are still keyed primitives.

4.1 Attack on Φr for r ≤ d

We have the following theorem for Φr for r ≤ d.

Theorem 1: Fix d ≥ 2. Let Ẽ be the ((d − 1)n,n)-bit TRP,
and Φr = Φr [Ẽ] be the r-round single-keyed TBC-based
Feistel cipher. Then there exists an adversary A against Φr

with r ≤ d such that Advprp
Φr
(A) = O(1), where A makes

O(1) queries.

Proof : LetO be the oracle, which is either the block cipher
Φr or the random permutation π.

(1) The Attack on Φr for r ≤ d − 1.

We first introduce A on Φr for r ≤ d − 1.
A makes an encryption query using an arbitrary mes-

sage M [1..d] ∈ {0,1}dn to obtain the corresponding cipher-
text C[1..d] ∈ {0,1}dn, and returns 1 iff Cd−r = Md . In Φr ,
Md never goes through Ẽ , and it directly appears as Cd−r .
In π, Cd−r is a part of a uniformly random output of π, thus

Fig. 2 Structure of Φ4 for d = 5. M5 directly appears asC1.

Fig. 3 Structure of Φ5 for d = 5. (a) step 1, (b) step 2.

A outputs 0 except for a negligible probability of an n-bit
collision. Therefore A can distinguish Φr from π with 1
query.

An example of Φ4 with d = 5 is shown in Fig. 2.

(2) The Attack on Φd .

We introduce our adversary A on Φd .
A first makes an encryption query M to obtain C, and

thenmakes an encryption query M ′ to obtainC ′, where M ′ =
M [1..d−1] ‖ C ′1. Then A outputs 1 iff C[2..d] = C ′[1..d−1].
In Φd , the first round of the second query reproduces the
second round of the first query. This state collision continues
in the subsequent rounds, and eventually, C[2..d] = C ′[1..d−1]

always holds. In π, C[2..d] and C ′[1..d−1] are the outputs of
random permutation π, and hence A outputs 0 except for a
negligible probability of a (d − 1)n-bit collision. Therefore,
A can distinguish Φd from π with O(1) queries.

An example of Φ5 with d = 5 is shown in Fig. 3. �

4.2 Security of Φd+1

We have the following theorem for Φd+1.

Theorem 2: Fix d ≥ 2. Let Ẽ be the (n, (d − 1)n)-bit TRP,
andΦd+1 = Φd+1[Ẽ] be the r-round single-keyedTBC-based
Feistel cipher, where r = d + 1. Then for any adversary A
that makes at most q queries, we have

Advsprp
Φd+1
(A) ≤

(4d + 1)q2

2n
+

0.5q2

2dn
.

We present the outline of the proof. The detailed proof
is given in Appendix.

Outline of Proof : In Φd+1 = Φd+1[Ẽ], we use a single
TRP Ẽ , and we write Ẽ i to indicate Ẽ in the i-th round. Note
that Ẽ i = Ẽ for all i.

Let S = Ẽ1(M [2..d],M1), an output of the TRP in the
1st round. We regard S as the internal state, and we see that,
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Fig. 4 Structure of Φ6 for d = 5. S appears in all the tweaks from Ẽ2 to
Ẽ5, and is used as an output in Ẽ1 and an input in Ẽ6.

for each of the TRP calls, S appears as the output block of
the TRP (as Ẽ1), or as a tweak (as Ẽ2, . . . , Ẽd), or as the
input block (as Ẽd+1). See Fig. 4 for an example of Φ6 for
d = 5.

Our proof is based on the coefficient-H technique. Let
M [1..d]i , Si , and C[1..d]i be the message, internal state, and the
ciphertext of the i-th query, respectively. We define the bad
conditions as follows:

1. {M1
1 , . . . ,M

d
1 , . . . ,M

1
q, . . . ,M

d
q } ∩ {S1, . . . ,Sq} , ∅

2. {C1
1 , . . . ,C

d
1 , . . . ,C

1
q, . . . ,C

d
q } ∩ {S1, . . . ,Sq} , ∅

3. |{S1, . . . ,Sq}| < q

Namely, if any of the Si collides with other variables, then
the transcript is bad.

If Si is a unique value, then all the tweaks of Ẽ2, . . . , Ẽd

in the i-th query are unique. For example, in Ẽ2 in Fig. 4, Si
appears in the 4th line of the tweak. It never appears on the
same line in other TRPs. Because of this, if Si is unique, the
tweak of Ẽ2 never collides with other tweaks. Furthermore,
an output of Ẽ1 and an input of Ẽd+1 are clearly unique.

Intuitively, without the bad conditions and with an
assumption that the adversary does not make redundant
queries, we can show that every TRP has at least one unique
element in the output block, tweak, or in the input block.
This is sufficient to show that all the TRPs, which is ac-
tually a single TRP, can interpolate them with a non-zero
probability.

The good probabilities are almost the same in Φd+1 and
π, and from the coefficient-H technique, we obtain the upper
bound of the distinguishing advantage.

4.3 Attack on Φr for r ≥ d + 1

We have the following theorem for Φr for r ≥ d + 1.

Theorem 3: Fix d ≥ 2. Let Ẽ be the ((d − 1)n,n)-bit TRP,
and Φr = Φr [Ẽ] be the r-round single-keyed TBC-based
Feistel cipher. Then there exists an adversary A against Φr

with r ≥ d+1 such that Advprp
Φr
(A) = O(1), whereA makes

O(2n/2) queries.

Proof : Wepresent our adversaryA for d ≥ 3 and r ≥ d+1.
We later cover the case d = 2.

1. Fix M [2..d] ∈ {0,1}(d−1)n arbitrarily.
2. For i = 1, . . . ,2n/2, choose M1

i uniformly at random
without overlaps, i.e., M1

i , M1
i′ holds for any 1 ≤

i < i′ ≤ 2n/2. Then make 2n/2 encryption queries
C[1..d]i ← O(M1

i ‖ M [2..d]) for i = 1, . . . ,2n/2.

Fig. 5 Structure of Φ6 for d = 5. (a): i-th query, (b) j-th query satisfying
S′j = Si .

3. For j = 1, . . . ,2n/2, choose S′j uniformly at random
without overlaps. Then make 2n/2 encryption queries
C ′[1..d]j ← O(M [2..d] ‖ S′j) for j = 1, . . . ,2n/2.

4. If there exists (i, j) s.t. C[2..d]i = C ′[1..d−1]
j , then output

1, else output 0.

This algorithm adopts the same approach as the one for
Φd . However, the internal states Si = Ẽ(M [2..d],Mi) cannot
be directly observed. We make O(2n/2) queries so that we
have the dn-bit state collision with a high probability. Let
q = 2n/2. The collision probability among the q values of Si
and q values of S′j can be evaluated as follows:

Pr[{S1, . . . ,Sq} ∩ {S′1, . . . ,S
′
q} , ∅]

≥

(
1 −

1
e

)
q(q − 1)

2n
≈ 0.632

Here, e is the base of the natural logarithm and the last
approximation follows from q = 2n/2.

As for the random permutation, the probability of the
collision among C[2..d]i and C ′[1..d−1]

j can be evaluated in a
similar way by regarding them as (d−1)n-bit random values.
We obtain

Pr[{C[2..d]1 , . . . ,C[2..d]q }

∩ {C ′[1..d−1]
1 , . . . ,C ′[1..d−1]

q } , ∅]

≤
0.5q2

2(d−1)n =
0.5

2(d−2)n ,

where we used q = 2n/2 for the last equality.
From the discussion above, we obtain the lower bound

of the distinguishing advantage as

Advprp
Φr
(A) ' 0.5

(
1 −

1
2(d−2)n

)
.

An example of Φ6 for d = 5 is shown in Fig. 5.
If d = 2, this algorithm does not work because in π, we

have an n-bit output collision in step 4 with a high probabil-
ity. To deal with this problem, we modify the algorithm as
follows:

4′. If there exists no (i, j) satisfying C2
i = C ′1j , then output

0.
5′. For (i, j) s.t. C2

i = C ′1j , make encryption queries
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X [1..2] ← O(C[1..2]i ) and X ′[1..2] ← O(C ′[1..2]j ).
6′. If X2 = X ′1 holds, then output 1, else output 0.

Steps with a prime symbol are modified or added for d = 2.
In both Φr and π, this algorithm aborts in step 4 with almost
the same probability, and we see that the algorithm proceeds
to steps 5′ and 6′ with a high probability.

Extra steps (steps 5′ and 6′) are based on the distin-
guisher on Φd . If Si = S′j holds for some (i, j) in Φr , then we
see that C[1..2]i and C ′[1..2]j in step 5′ are the input and output
of the r-th round of the encryption of (M2,S′j). Therefore,
this algorithm outputs 1 with a high probability in Φr and
outputs 0 in π with a similar discussion for Φd . �

5. Security of ̂Φr

We have the following theorem for Φ̂r .

Theorem 4: Fix d ≥ 2. Let Ê be the ((d−1)n,n)-bit IC, and
Φ̂r = Φ̂r [Ê] be the r-round single IC-based Feistel cipher.
Then for any r ≥ 1, Φ̂r is not indifferentiable from a random
permutation.

Proof : We first consider the case r ≤ d. Now we see that
the same adversary against Φr for r ≤ d in Sect. 4.1 works
as the adversary against Φ̂r , since the adversary against Φr

can be regarded as the adversary against Φ̂r in the indifferen-
tiability notion that makes only construction queries without
making any primitive queries. Although the simulator can
make queries to a random permutation π, the simulator can-
not control π’s entries at all, so that any simulator does not
affect the success probability of the adversary.

Next, we consider the case r ≥ d + 1. We take the
approach of the adversary against Φr with r ≥ d+1 presented
in Sect. 4.3. For an arbitrary message M [1..d] ∈ {0,1}dn,
A first obtains the output of the 1st round IC by using a
primitive query S ← Ê(M [2..d],M1). Next, A makes two
construction queries with messages M [1..d] and M [2..d] ‖ S
to obtain ciphertexts C[1..d] and C ′[1..d]. Then A outputs 1
if C[2..d] = C ′[1..d−1]. Otherwise, A outputs 0.

In Φ̂r , the ciphertexts C[1..d] and C ′[1..d] always satisfy
C[2..d] = C ′[1..d−1]. Observe that the complexity to search
for the internal state S is replaced with a primitive query, and
hence A runs with O(1) queries. On the other hand, in π,
the simulator has to find S such that the last (d − 1)n bits of
π(M [1..d]) collides with the first (d−1)n bits of π(M [2..d] ‖S).
However, finding such S needs approximately O(2(d−1)n)
queries, or there does not exist such S. Therefore, A can
distinguish Φ̂r from π with a high probability. �

6. Indifferentiability of Feistel Cipher with Constants

Wehave seen in the previous section that for any r ≥ 1, Φ̂r [Ê]
cannot be secure in the indifferentiability notion. The attack
can be seen as a type of slide attacks [20], and introducing a
round constant is a well-known countermeasure against the

Fig. 6 Structure of Φ̂′7. Hatched ICs have the same input block, key, and
output block. (a) step 6, (b) step 7.

attack. In this section, we consider a variant of Φ̂r that uses
a round constant. One may hope that the round constant
prevents the slide attacks. However, we show that this is not
the case for r = 2d − 1 in the indifferentiability notion.

We have the following theorem for Φ̂′2d−1.

Theorem 5: Fix d ≥ 2. Let Ê be the ((d − 1)n,n)-bit IC,
c2

1, . . . , c
d
1 , . . . , c

2
2d−1, . . . , c

d
2d−1 be the n-bit round constants,

and Φ̂′2d−1 = Φ̂′2d−1[Ê] be the r-round single IC-based Feistel
cipher with round constants, where r = 2d − 1. Then Φ̂2d−1
is not indifferentiable from a random permutation.

Proof : We show that Φ̂′2d−1 can be distinguished from π
with O(1) queries.

1. Fix S1
1 = · · · = Sd−1

1 = C1
1 = 0n.

2. Obtain Md
1 by a primitive query of φ−1

d
with

S1
1, . . . ,S

d−1
1 ,C1

1 .
3. ObtainC2

1 , . . . ,C
d
1 byprimitive queries of φd+1, . . . , φ2d−1

with S1
1, . . . ,S

d−1
1 ,C1

1 .
4. Fix S1

2 = Md
1 ⊕ c2

d−1 ⊕ c2
d
,S2

2 = c3
d−1 ⊕ c3

d
, . . . ,Sd−1

2 =

cd
d−1 ⊕ cd

d
, and C1

2 = 0n.
5. ObtainC2

2 , . . . ,C
d
2 byprimitive queries of φd+1, . . . , φ2d−1

with S1
2, . . . ,S

d−1
2 ,C1

2 .
6. Make a construction query M [1..d]1 ← O−1(C[1..d]1 ).
7. Make a construction query M [1..d]2 ← O−1(C[1..d]2 ).
8. If Md−1

1 = Md
2 holds, then output 1, else output 0.

An example of Φ̂′7 with d = 4 is shown in Fig. 6.
Figure 7 focuses on φd−1 and φd of the construction.

We first fix all the d-line output of φd in the 1st query to all
zero. At this point, the output of IC in φd−1 is also fixed as 0n,
which is the hatched IC in Fig. 7(a). The 2nd construction
query reproduces the input and output of the hatched IC in
the 1st query. Therefore, the bottommost dash-dotted line of
the φd outputs in the 1st and 2nd queries collide. We observe
these values as output lines of Φ̂′2d−1 even when d − 1 extra
rounds are appended to an output side of φd . Furthermore,
the inputs of the hatched ICs, namely, the bottommost dashed
line of the φd−1 input in the 1st query and the penultimate
dashed line of the φd−1 input in the 2nd query are equal.
This collision occurs even when we append d − 2 additional
rounds to an input side of φd−1.

Now we observe that n-bit simultaneous collisions on
the input and output of the construction. We see that finding
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Fig. 7 φd−1 and φd of Φ̂′2d−1. Hatched ICs have the same input block,
key, and output block. (a) step 6, (b) step 7.

such a collision in π is not possible if we consider efficient
simulators. Therefore, the probability of Md−1

1 = Md
2 is

negligible in π. �

As a remark, this algorithm never makes primitive
queries once a construction query is made. This implies that
Φ̂′2d−1[Ê] does not achieve the sequential indifferentiability
notion [34] which is a weaker notion of indifferentiability.

7. Conclusions

In this paper, we analyzed the security of the single-keyed
TBC-based Feistel ciphers in the indistinguishability notion,
and the single IC-based Feistel ciphers in the indifferentia-
bility notion. We completed the security characterization
depending on the number of rounds. We also considered a
structure that employs a round constant, and showed that this
does not work for the case r = 2d−1 in the indifferentiability
notion.

As open problems, there have been various proposals
to modify the PRF-based Feistel cipher so that the security
is maintained [4]–[7], and it would be interesting to see how
one canmodify the single-keyed TBC-based/single IC-based
Feistel ciphers to improve the security. With respect to the
construction with a round constant, we have only covered
the indifferentiability notion of the case r = 2d − 1, and it
would be interesting to see the security with other parameters
and/or in the indistinguishability notion.
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Appendix: Security Proof of Φd+1

We show the detailed proof of Theorem 2. We recall the
theorem.
Theorem 2: Fix d ≥ 2. Let Ẽ be the (n, (d − 1)n)-bit TRP,
andΦd+1 = Φd+1[Ẽ] be the r-round single-keyedTBC-based
Feistel cipher, where r = d + 1. Then for any adversary A
that makes at most q queries, we have

Advsprp
Φd+1
(A) ≤

(4d + 1)q2

2n
+

0.5q2

2dn
.

We first define the transcripts followed by two oracles,
the real world oracle based onΦd+1 and the ideal world oracle
based on the random permutation π, and the bad conditions.
Next, we compute the bad probability in Lemma 2 and the
good probability ratio in Lemma 3. The security bound is
obtained from these lemmas and the coefficient-H technique
in Lemma 1.

A.1 Transcripts

The adversary A is given access to the encryption and de-
cryption oracles. If the i-th query is an encryption query
M [1..d]i , thenA obtains the corresponding ciphertext C[1..d]i .
If the i-th query is a decryption queryC[1..d]i , thenA obtains
M [1..d]i . Without loss of generality, we assume thatA makes
exactly q queries, does not repeat a query, and does not make
a redundant query, i.e., ifA obtains C[1..d]i for an encryption
query M [1..d]i , then it does not use C[1..d]i in the subsequent
decryption queries, and vice versa. As we detail below, after
making q queries and before returning the decision bit, A
is given all the internal state values S1, . . . ,Sq . Since it is
only beneficial to A, there is no loss of generality of giving
the additional input to A. Then the transcript is defined as
follows:
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Fig. A· 1 Algorithm of R and R−1.

A.2 Definition of the Oracles

The real world oracles R,R−1 internally make use of the
block cipher Φd+1 and its inverse Φ−1

d+1. After making q
queries, the oracles R,R−1 give A all the internal states
S1, . . . ,Sq . Fig. A· 1 shows the algorithms of R,R−1.

The ideal world oracles I,I−1 internally make use of
the random permutation π and its inverse π−1. After q
queries, I,I−1 generate dummy internal states S1, . . . ,Sq
with the same probability distribution as TRP Ẽ . For this,
for an encryption query, the oracle simulates the 1st round
TRP. For a decryption query, the oracle simulates the (d+1)-
st round TRP. After completing the simulation, S1, . . . ,Sq are
given to A. Fig. A· 2 shows the algorithms of I,I−1.

A.3 Bad Conditions

For the TRP Ẽ in the real world, the tweak determines the
permutation between the input and output of the TRP. Ac-
cordingly, if the tweaks are the same, the TRP does not output
distinct outputs from the same inputs or distinct inputs from
the same outputs. By applying this to all the combinations
of the TRPs in Φd+1, we obtain the bad conditions of the
whole structure of Φd+1 as follows:

1. {M1
1 , . . . ,M

d
1 , . . . ,M

1
q, . . . ,M

d
q } ∩ {S1, . . . ,Sq} , ∅

2. {C1
1 , . . . ,C

d
1 , . . . ,C

1
q, . . . ,C

d
q } ∩ {S1, . . . ,Sq} , ∅

3. |{S1, . . . ,Sq}| < q

Recall that a transcript is defined as (A· 1), and let Tbad be
the set of all the transcripts that satisfy at least one of the
conditions above. Let Tgood be the set of all the transcripts
that does not satisfy any of the conditions above.

In what follows, we discuss the correctness of the above

Fig. A· 2 Algorithm of I and I−1, where Dom(T ) and Ran(T ) are
defined as Dom(T ) = {x | Ẽ(T , x) = y is defined for some y } and
Ran(T ) = {y | Ẽ(T , x) = y is defined for some x }.

bad conditions, i.e., without the bad conditions, we show that
the underlying TRP Ẽ can interpolate all the relevant inputs,
tweaks, and the outputs with a non-zero probability. See
Fig. 4 for an example of Φ6.

First, observe that the absence of the above three con-
ditions guarantees that all the tweaks in Ẽ2, . . . , Ẽd are
distinct. That is, there are q tweaks for each of Ẽ2, . . . , Ẽd ,
and we thus have q(d − 1) values of the tweak in total for
Ẽ2, . . . , Ẽd . It can be verified that all these q(d − 1) values
are distinct, and they are also different from the q tweaks of
Ẽ1 and the q tweaks of Ẽd+1.

Next, let T 1 = {M [2..d]1 , . . . ,M [2..d]q } be the set of the q
tweaks of Ẽ1 and T d+1 = {C[1..d−1]

1 , . . . ,C[1..d−1]
q } be the set

of the q tweaks of Ẽd+1. From the discussion above, all these
2q tweaks are different from those of Ẽ2, . . . , Ẽd , while we
may have |T 1 | < q, T 1 ∩ T d+1 , ∅, or |T d+1 | < q.
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• If |T 1 | < q, i.e., if M [2..d]i = M [2..d]j holds for some
1 ≤ i < j ≤ q, we necessary have M1

i , M1
j since the

adversary does not repeat a query, and from Si , Sj ,
this case does not yield inconsistency in Ẽ .

• If T 1 ∩ T d+1 , ∅, there are two cases to consider.
The first case is M [2..d]i = C[2..d]j for some 1 ≤ i <

j ≤ q. In this case, Ẽ1 and Ẽd+1 have to satisfy Si =
Ẽ1(M [2..d]i ,M1

i ) and Cd
j = Ẽd+1(C[1..d−1]

j ,Sj), which is
possible since Si , Cd

j and M1
i , Sj .

The second case is M [2..d]i = C[2..d]i for some 1 ≤ i ≤
q. In this case, Ẽ1 and Ẽd+1 have to satisfy Si =
Ẽ1(M [2..d]i ,M1

i ) and Cd
i = Ẽd+1(C[1..d−1]

i ,Si), which is
again possible since Si , Cd

i and M1
i , Si .

• The analysis of the case |T d+1 | < q is similar to the
case |T 1 | < q.
Therefore, the absence of the bad conditions implies that

the TRP Ẽ can interpolate all the relevant inputs, tweaks, and
the outputs with a non-zero probability. We next compute
the probability of the bad conditions and the ratio of the good
probabilities to use the coefficient-H Technique.

A.4 Probability of the Bad Conditions

We have the following lemma.

Lemma 2: We have Pr[ΘI ∈ Tbad] ≤
(4d + 1)q2

2n
.

Proof : We compute the probability of the bad condi-
tions based on the randomness of S1, . . . ,Sq . Assume that
A has completed making q queries to the oracles, and
hence (M [1..d]1 ,C[1..d]1 ), . . . , (M [1..d]q ,C[1..d]q ) are fixed. We
further assume that we do not have the bad conditions for
S1, . . . ,Si−1, and we compute the probability that Si causes
one of the bad conditions, which we write “Si is bad.” We
then have

Pr[Si is bad] ≤
2dq + (i − 1)

2n − 2q
.

The term 2q of the denominator indicates the maximum
value of |Ran(M [2..d]i )| or |Dom(C[1..d−1]

i )|. Due to the
uniqueness of S1, . . . ,Si−1, the tweaks of TRPs other than Ẽ1

and Ẽd+1 also have unique values. Therefore, |Ran(M [2..d]i )|

or |Dom(C[1..d−1]
i )| takes the maximum value of 2q when

M [2..d]j and C[1..d−1]
j take the same value for all j =

1, . . . , i − 1. Besides, from the uniqueness of S1, . . . ,Si−1
and the assumption that no queries are repeated, it is guar-
anteed that the corresponding entry, i.e., (M [2..d]i ,M1

i ) for
encryption or (C[1..d−1]

i ,Cd
i ) for decryption, does not exist

at the generation of Si . That is, Si has randomness when
generating it.

Now, by taking the summation of Pr[Si is bad], we have

Pr[ΘI ∈ Tbad] ≤

q∑
i=1

2dq + (i − 1)
2n − 2q

≤
(2d + 0.5)q2

2n − 2q

≤
(4d + 1)q2

2n
,

where the third inequality follows from 2q < 2n−1.

A.5 Ratio of the Good Probabilities

We have the following lemma.

Lemma 3: For any θ ∈ Tgood, we have
Pr[ΘR = θ]
Pr[ΘI = θ]

≥ 1 −

0.5q2

2dn
.

Proof : First, we define the following two sets:

Qe = {i | the i-th query is encryption}
Qd = {i | the i-th query is decryption}

In the real world, we additionally define two sets as
follows:

Senc,x
i = {( j, k)

| (( j < i ∧ 1 ≤ k ≤ d + 1) ∨ ( j = i ∧ 1 ≤ k < x))

∧ (the j-th tweak of Ẽk) = (the i-th tweak of Ẽ x)}

Sdec,x
i = {( j, k)

| (( j < i ∧ 1 ≤ k ≤ d + 1) ∨ ( j = i ∧ x < k ≤ d + 1))

∧ (the j-th tweak of Ẽk) = (the i-th tweak of Ẽ x)}

Intuitively, Senc,x
i is the set of ( j, k) that shares the same tweak

as the i-th tweak of Ẽ x when the i-th query is encryption,
and Sdec,x

i is that when the i-th query is decryption. That is,
for the i-th tweak of Ẽ x , these sets indicate the indices that
share the same tweak in the previous TRP calls. Then, the
probability can be evaluated as follows:

Pr[ΘR = θ]

=

d+1∏
x=1

( ∏
i∈Qe

1
2n − |Senc,x

i |
×

∏
i∈Qd

1
2n − |Sdec,x

i |

)
≥

1
(2n)dq

×
∏
i∈Qe

1
2n − |Senc,1

i |
×

∏
i∈Qd

1
2n − |Sdec,d+1

i |
.

The last inequality is obtained by assuming |Senc,x
i | =

|Sdec,x
i | = 0 except for |Senc,1

i | and |Sdec,d+1
i |.

In the ideal world, as with the real world, we define two
sets as follows:

Tenc,x
i = {( j, k)

| (( j < i ∧ 1 ≤ k ≤ d + 1) ∨ ( j = i ∧ 1 ≤ k < x))

∧ (the j-th tweak of Ẽk) = (the i-th tweak of Ẽ x)}

Tdec,x
i = {( j, k)
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| (( j < i ∧ 1 ≤ k ≤ d + 1) ∨ ( j = i ∧ x < k ≤ d + 1))

∧ (the j-th tweak of Ẽk) = (the i-th tweak of Ẽ x)} .

Here, in the definitions above, we abuse the notation to write
Ẽk for the TRP Ẽ used in the k-th round in Algorithm 5.
Then, the probability can be evaluated as follows:

Pr[ΘI = θ]

=
1

(2dn)q
×

∏
i∈Qe

1
2n − |Tenc,1

i |
×

∏
i∈Qd

1
2n − |Tdec,d+1

i |
.

Finally, we compute the ratio of the two possibilities.
We have

Pr[ΘR = θ]
Pr[ΘI = θ]

≥
(2dn)q

(2n)dq
×

∏
i∈Qe

2n − |Senc,1
i |

2n − |Tenc,1
i |

×
∏
i∈Qd

2n − |Sdec,d+1
i |

2n − |Tdec,d+1
i |

≥ 1 −
0.5q2

2dn
,

where the last inequality follows since Senc,x
i = Tenc,x

i and
Sdec,x
i = Tdec,x

i are always satisfied from the definitions of
the oracles.

From Lemma 2, Lemma 3, and the coefficient-H tech-
nique, we obtain Theorem 2.
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