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Boolean Functions with Two Distinct Nega-Hadamard Coefficients∗

Jinfeng CHONG†a), Niu JIANG††, Zepeng ZHUO†, Nonmembers, and Weiyu ZHANG†, Student Member

SUMMARY In this paper, we consider the spectra of Boolean functions
with respect to the nega-Hadamard transform. Based on the properties of the
nega-Hadamard transform and the solutions of the Diophantine equations,
we investigate all possibilities of the nega-Hadamard transform of Boolean
functions with exactly two distinct nega-Hadamard coefficients.
key words: Boolean function, nega-Hadamard coefficient, negabent func-
tion

1. Introduction

Boolean functions are widely used in cryptography, error
correcting coding and signal sequence design. The Walsh-
Hadamard transform of Boolean functions is an important
tool to study the properties of cryptographic functions, since
many cryptographic properties of Boolean functions are
characterized by their Walsh coefficients. A value of the
Walsh-Hadamard transform of a Boolean function is called
a Walsh coefficient, and the set of all Walsh coefficients is
called the Walsh spectrum. In 1976, Rothaus [1] introduced
the class of bent functions, which have the maximum non-
linearity in the sense that their Hamming distances to all the
affine Boolean functions are optimal. A Boolean function is
bent if and only if its spectrum with respect to the Walsh-
Hadamard transform is flat, but bent functions exist only in
an even number of variables and are not balanced.

To get Boolean functions with good properties in an
odd or even number of variables. Riera and Parker [2] ex-
tended the concept of a bent function to some generalized
bent criteria for a Boolean function, where they required that
a Boolean function has a flat spectrum with respect to one or
more transforms from a specified set of unitary transforms.
The set of transforms they chose is not arbitrary but is moti-
vated by a choice of local unitary transforms that are central
to the structural analysis of pure n-qubit stabilizer quantum
states. The transforms they applied are n-fold tensor prod-
ucts of the identity matrix, the Walsh-Hadamard matrix and
the nega-Hadamard matrix, respectively
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I =
(

1 0
0 1

)
,H =

(
1 1
1 −1

)
,N =

(
1 i
1 −i

)
,

where i2 = −1. The Walsh-Hadamard transform can be
described as the tensor product of several H ′s, and the nega-
Hadamard transform is constructed from the tensor product
of several N ′s. As in the case of the Walsh-Hadamard trans-
form, a Boolean function is called negabent if the spectrum
under the nega-Hadamard transform is flat.

Chee et al. [3] and Zhang [4] generalized the bent func-
tions to semi-bent and plateaued functions, respectively. Pei
et al. [5] studied the Boolean functions having at most eight
nonzero Walsh coefficients. Boolean functions with exactly
four or five different Walsh coefficients have not been exten-
sively studied except in a few works like [6]–[9]. In [10], Tu
et al. characterized all Boolean functions with exactly two
distinct Walsh coefficients in terms of their spectrum, and
they pointed out that the Boolean functions with exactly two
distinct Walsh coefficients were close to bent functions and
affine functions.

In [11], Schmidt shows that the nega spectrum of a ne-
gabent function has at most four values, and the nega spec-
trum distribution of negabent functions has been presented
in [12]. Parker and Pott [13] showed that for even n, every
negabent function over Fn2 can be constructed from a bent
one over Fn2 and vice versa. Furthermore, when n > 1 is
odd, Su [12] showed that every negabent function over Fn2
can also be obtained from a bent one over Fn−1

2 and vice
versa. Therefore, the construction of negabent functions and
bent functions may be equivalent. However, this equivalence
does not reduce the importance to construct and classify the
negabent functions. One of our motivations comes from
Boolean functions with exactly two distinct Walsh coeffi-
cients present in [10]. In order to investigate all possibilities
of nega-Hadamard spectra of Boolean functions with exactly
two distinct nega-Hadamard coefficients. We prove that such
Boolean functions have exactly three possible choices of
Walsh spectra if the number of variables n ≥ 3 is odd, and
exactly two possible choices if n is even.

2. Preliminaries

Throughout this paper, Fn2 denotes the n-dimensional vector
space over F2. Let Bn be the set of all n-variable Boolean
functions. The set of integers, real numbers, and complex
numbers are denoted byZ,R andC, respectively, the addition
over Z, R, and C is denoted by “+”. The binary addition over
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F2 is denoted by “⊕”. Let a · b denotes the inner product of
a, b ∈ Fn2 . If z = a + bi ∈ C, then |z | =

√
a2 + b2 denotes

the absolute value of z, and z̄ = a − bi denotes the complex
conjugate of z, where i2 = −1, a, b ∈ R.

The Walsh-Hadamard transform of f ∈ Bn at u ∈ Fn2 is
denoted by

W f (u) =
∑
x∈Fn2

(−1) f (x)⊕u ·x .

Let n be an even positive integer, a function f ∈ Bn is
a bent function if W f (u) = ±2 n

2 for all u ∈ Fn2 . The value
W f (u) is called aWalsh-Hadamard coefficient of f at u ∈ Fn2 .
The multiset

Spec( f ) = {W f (u) : u ∈ Fn2 }

is said to be the Walsh-Hadamard spectrum of f .
The nega-Hadamard transform of f ∈ Bn at u ∈ Fn2 is

the complex valued function

Nf (u) =
∑
x∈Fn2

(−1) f (x)⊕u ·x iwt(x), (1)

where i2 = −1. A function f is called negabent function if
Nf (u) = ±2 n

2 for all u ∈ Fn2 . In contrast to bent functions,
negabent functions also exist if n is odd. For an even number
of variables, a bent function f is said to be bent-negabent if
f is negabent. For example, all affine functions (both with
an even and an odd numbers of variables) are negabent. The
value Nf (u) is called a nega-Hadamard coefficient of f at
u ∈ Fn2 . The multiset

nega − Spec( f ) = {Nf (u) : u ∈ Fn2 }

is said to be the nega-Hadamard spectrum of f . It is clear
that nega − Spec( f ) is a finite subset of C. From the formula
(1), we can verify∑

u∈Fn2

Nf (u) = 2n(−1) f (0). (2)

The Nega-Parseval’s Identity is given in [14] as follows∑
u∈Fn2

|Nf (u)|2 = 22n. (3)

3. Boolean Functions with Two Distinct Nega Coeffi-
cients

The cardinality of the spectrum of a Boolean function is
always greater than or equal to 2. It is known that an n-
variable affine Boolean function has the Walsh spectrum
{0,2n} or {0,−2n}, and an n-variable bent Boolean function
has the Walsh spectrum {±2 n

2 }. In [10], the modification
of affine and bent functions are obtained, by changing their
values at x = 0. The corresponding functions are near affine
functions with Walsh spectrum {2,−2n + 2} or {−2,2n − 2},
and near bent function with Walsh spectrum {±2 n

2 + 2} or
{±2 n

2 − 2}.

In this section we investigate all possibilities of nega-
Hadamard spectra of Boolean functions with exactly two
distinct nega-Hadamard coefficients. Let f ∈ Bn and
nega − Spec( f ) = {α, β}, where α and β are distinct com-
plex numbers with the real parts and the imaginary parts are
all integer. Denote by N1 and N2 the number of u ∈ Fn2 such
that Nf (u) equals α and β, respectively. By (2) and (3) we
have 

N1 + N2 = 2n,
N1α + N2β = 2n(−1) f (0),
N1 |α |

2 + N2 |β |
2 = 22n.

(4)

But for the case on nega-Hadamard transform, we prove
the following statement.

Lemma 1. Let f ∈ Bn with two distinct nega-Hadamard
coefficients α, β ∈ Z[i]. Then |α − β |2

�� 22n.

Proof. It is known that an n-variable Boolean function f can
be written as

f (xn−1, x ′) = g(xn−1)(1 ⊕ x ′) ⊕ x ′ · h(xn−1),

where g, h ∈ Bn−1, (xn−1, x ′) ∈ Fn−1
2 × F2. The nega-

Hadamard transform of f at (un−1,u′) ∈ Fn−1
2 × F2 is

Nf (un−1,u′) =
∑

(xn−1 ,x
′)

∈Fn−1
2 ×F2

(−1) f (xn−1 ,x
′)⊕un−1 ·xn−1⊕u

′x′ iwt(xn−1 ,x′)

=
∑

xn−1∈F
n−1
2

(−1)g(xn−1)⊕un−1 ·xn−1 iwt(xn−1)

+
∑

xn−1∈F
n−1
2

(−1)h(xn−1)⊕un−1 ·xn−1⊕u
′

iwt(xn−1)+1

=Ng(un−1) + i(−1)u
′

Nh(un−1).

Thus{
Nf (un−1,0) = Ng(un−1) + iNh(un−1),
Nf (un−1,1) = Ng(un−1) − iNh(un−1).

(5)

From (5), we have

Nh(un−1) =
Nf (un−1,1) − Nf (un−1,0)

2
i ∈

{
0,±

α − β

2
i
}
,

for all un−1 ∈ F
n−1
2 . Using Nega-Parseval’s Identity to h, we

have (����α − β2

����2) ����22(n−1),

therefore |α − β |2
�� 22n. �

Lemma 2. Let f ∈ Bn with two distinct nega-Hadamard
coefficients α, β ∈ Z[i]. Then, we have

(α − 1)(1 − β) = 2n − 1 and α − 1 = t(1 − β)

for some real number t > 0.
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Proof. Since the proofs for the two cases of f (0) = 0 and
f (0) = 1 are similar, we only prove the results when f (0) =
0. From the second and third equations of (4) we get

N1α + N2β = 2n and N1αα + N2ββ = 22n. (6)

Solving (4) and (6) we have

N2 = 2n
α − 1
α − β

and N2 = 2n
α − 2n

αβ − ββ
.

Thus,

(α − 1)(1 − β) = 2n − 1. (7)

From (6), we get

(α − 1)(1 − β) = (α − 1)(1 − β),

that is,

α − 1
1 − β

=
α − 1
1 − β

=

(
α − 1
1 − β

)
.

This proves that α−1
1−β is a real number, that is,

α − 1 = t(1 − β)

for some t ∈ R. Moreover, from

(α − 1)(1 − β) = t |1 − β |2 = 2n − 1,

we have t > 0. �

Lemma 3. Let s and t be two positive integers, such that
st = 2n − 1 and (s + t)

�� 2n. Without loss of generality,
assume that s ≤ t, then
(1) If n = 1, then s = t = 1.
(2) If n = 2k, then s = 1, t = 2n−1 or s = 2k −1, t = 2k +1.
(3) If n ≥ 3 is odd, then s = 1, t = 2n − 1.

Proof. The result of (1) is obviously. Now we prove (2) and
(3). Without loss of generality, assume that n ≥ 2. If s = t,
then

s2 + 1 = 2n ≡ 0 (mod 4),

this is a contradiction, since

s2 + 1 ≡ 2 (mod 4).

Since, st = 2n − 1, then s, t are two odd numbers and
s+t
2 , st are two positive integers. Based on the fact that(

s + t
2

)2
> st,

we have(
s + t

2

)2
≥ st + 1,

that is,

s + t
2
≥ 2

n
2 .

Let
s + t

2
= 2k, k ≥

n
2
≥ 1,

where k is positive integer. Let

s = 2k − u, t = 2k + u,

where u is positive odd number and u < 2k . Since, st =
2n − 1, then

22k − u2 = 2n − 1,

that is,

22k − 2n = u2 − 1 = (u + 1)(u − 1),

thus 2n
�� (u + 1)(u − 1). From the fact that

(u + 1,u − 1) = (u + 1,2) = 2,

we have

4 - (u + 1) or 4 - (u − 1).

Therefore, 2n−1
�� (u + 1) or 2n−1

�� (u − 1).
In the case of 2n−1

�� (u + 1), we have

u + 1 ≥ 2n−1, u ≥ 2n−1 − 1,

that is,

t ≥ 2u = 2n − 2,

then s = 1, t = 2n − 1.
The case of 2n−1

�� (u−1) implies that u−1 ≥ 2n−1, it is
impossible. Therefore, u − 1 = 0, u = 1, that is, s = 2k − 1,
t = 2k + 1, where n = 2k. �

Lemma 4. Let n be a positive integer andω1,ω2 ∈ Z[i] with

ω1ω2 = 2n − 1 and |ω1 + ω2 |
2 �� 22n, (8)

where ω1 , ω2. Then all solutions of (8) are

(1,2n − 1), (2n − 1,1), (−1,−2n + 1), (−2n + 1,−1),
(i, i(2n − 1)), (i(2n − 1), i), (−i,−i(2n − 1)), (−i(2n − 1),−i),

if n ≥ 3 is odd, and all solutions of (8) are

(2k−1,2k+1), (2k+1,2k−1), (−2k+1,−2k−1), (−2k−1,−2k+
1)), (i(2k − 1), i(2k + 1)), (i(2k + 1), i(2k − 1)), (−i(2k − 1),
−i(2k + 1)), (−i(2k + 1),−i(2k − 1)),

if n = 2k is even.

Proof. Let ω1 = s(a+ bi), ω2 = c+ di, where s is a positive
integer, (a, b) = 1 and a, b is not all zero. Since, ω1ω2 is a
real number, then bc = ad. Therefore, a|c, b|d.

If a , 0. Let c = at. Then, d = bt. If b , 0, let d = bt.
Then, c = at, where t ∈ Z. Therefore,
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ω2 = c+di = t(a+bi) andω1ω̄2 = st(a2+b2) = 2n−1,

where t > 0. Since,

|ω1 + ω2 |
2 = (s + t)2(a2 + b2)

�� 22n,

then

(a2 + b2)
�� (2n − 1,22n) = 1,

thus a2 + b2 = 1.
Hence, all solutions of (8) is equivalent to all solutions

of the following Eq. (9)

st = 2n − 1 and (s + t)
�� 2n, (9)

Based on Lemma 3, we obtain all solutions of (9) are

ω1 = ε, ω2 = (2n − 1)ε,

if n ≥ 3 is odd, and all solutions of (9) are

ω1 = (2k − 1)ε, ω2 = (2k + 1)ε,

if n = 2k, where ε is one of 1, −1, i and −i. �

Proposition 1. In the case of the Boolean functions with two
distinct nega-Hadamard coefficients, there is no such case
with a ∈ Z, ta ∈ Z for some real number t > 0 and t , 1.

Proof. We suppose that f ∈ Bn has two distinct nega-
Hadamard coefficients a ∈ Z and ta ∈ Z for some real
number t > 0 and t , 1. Now using the second equation of
(4), we have

N1 + tN2 = 2n
(−1) f (0)

a
.

Since t > 0, then

2n
(−1) f (0)

a
> 0.

On the one hand, if a = (−1) f (0) we have

N1 + tN2 = 2n
(−1) f (0)

a
= 2n = N1 + N2,

which leads to t = 1, a contradiction. If a , (−1) f (0), we
have

0 < 2n
(−1) f (0)

a
< 2n

and

N1 + tN2 = 2n
(−1) f (0)

a
< 2n = N1 + N2,

which leads to t < 1. Then we have 0 < t < 1.
On the other hand, from the second and third equations

of (4), since

0 < 2n
(−1) f (0)

a
≤

(
2n
(−1) f (0)

a

)2
=

(
2n

a

)2
,

we have

N1 + tN2 = 2n
(−1) f (0)

a
≤

(
2n

a

)2
= N1 + t2N2,

which leads to t > 1, a contradiction. �

From the known results above, we can obtain the fol-
lowing Theorem 1.

Theorem 1. For any non-constant Boolean functions f with
two distinct nega-Hadamard coefficients. If f (0) = 0, then
all the possible nega-Hadamard spectrum of f are

nega − Spec( f ) ={2,−2n + 2} or {2n,0}
or {1 + i,1 − i(2n − 1)}
or {1 − i,1 + i(2n − 1)},

when n ≥ 3 is odd, and

nega − Spec( f ) ={2k,−2k} or {2k + 2,−2k + 2}
or {1 + i(2k − 1),1 − i(2k + 1)}
or {1 + i(2k + 1),1 − i(2k − 1)},

when n = 2k is even. If f (0) = 1, then all the possible
nega-Hadamard spectrum of f are

nega − Spec( f ) ={−2,2n − 2} or {−2n,0}
or {−1 − i,−1 + i(2n − 1)}
or {−1 + i,−1 − i(2n − 1)},

when n ≥ 3 is odd, and

nega − Spec( f ) ={−2k,2k} or {−2k − 2,2k − 2}
or {−1 − i(2k − 1),−1 + i(2k + 1)}
or {−1 − i(2k + 1),−1 + i(2k − 1)},

when n = 2k is even.

Proof. By Lemma 2 we know that, if α, β ∈ Z[i] are two
distinct nega-Hadamard coefficients of f ∈ Bn, then

(α − 1)(1 − β̄) = 2n − 1.

Together with the fact that

|α − 1 + 1 − β |2 = |α − β |2
�� 22n,

using the result in Lemma 1.
Without loss of generality, wemay assume thatα−1 > 0

and 1 − β̄ > 0. Using Lemma 4, we solve the Diophantine
equation (7) to get all the possible nega-Hadamard spectrum
of f , that is, when n ≥ 3 is odd, we have

nega − Spec( f ) ={2,−2n + 2} or {2n,0}
or {1 + i,1 − (2n − 1)i}
or {1 − i,1 + (2n − 1)i},

and when n = 2k is even we have
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nega − Spec( f ) ={2k,−2k} or {2k,−2k + 2}
or {1 + i(2k − 1),1 + i(2k + 1)}
or {1 + i(2k + 1),1 + i(2k − 1)}.

From Proposition 1, we know that all forms of nega-
Hadamard spectra of the Boolean function with two distinct
nega-Hadamard coefficients obtained in Theorem 1 exist.

In [12], it was shown that the relationship between ne-
gabent functions and bent functions, which is an important
tool to analyze the properties of negabent functions. If n
is even, necessary and sufficient conditions for a Boolean
function f ∈ Bn to be negabent have been given in [11], that
is, the Boolean function f is negabent if and only if f + σ2
is bent.

Lemma 5. [12] Let f ∈ Bn. Between the nega-Hadamard
transform and the Walsh-Hadamard transform, there is the
relation

Nf (u)=
Wf ⊕σ2 (u) +Wf ⊕σ2 (u)

2
+i
Wf ⊕σ2 (u) −Wf ⊕σ2 (u)

2
.

With Lemma 5, we can present the following proposi-
tion.

Proposition 2. When n = 2k is even, the relationships be-
tween the Boolean functions with two distinct Walsh coef-
ficients and the Boolean functions with two distinct nega-
Hadamard coefficients are

Case 1. If Wf ⊕σ2 (u) = 2 n
2 ,Wf ⊕σ2 (u) = −2 n

2 + 2
andWf ⊕σ2 (u) = −2 n

2 ,Wf ⊕σ2 (u) = 2 n
2 + 2, then

Nega − spec( f ) = {1 + i(2k − 1),1 − i(2k + 1)}.

Case 2. If Wf ⊕σ2 (u) = 2 n
2 + 2, Wf ⊕σ2 (u) = −2 n

2 and
Wf ⊕σ2 (u) = −2 n

2 + 2,Wf ⊕σ2 (u) = 2 n
2 , then

Nega − spec( f ) = {1 + i(2k + 1),1 − i(2k − 1)}.

Case 3. If Wf ⊕σ2 (u) = −2 n
2 , Wf ⊕σ2 (u) = 2 n

2 − 2 and
Wf ⊕σ2 (u) = 2 n

2 ,Wf ⊕σ2 (u) = −2 n
2 − 2, then

Nega − spec( f ) = {−1 − i(2k − 1),−1 + i(2k + 1)}.

Case 4. If Wf ⊕σ2 (u) = −2 n
2 − 2, Wf ⊕σ2 (u) = 2 n

2 and
Wf ⊕σ2 (u) = 2 n

2 − 2,Wf ⊕σ2 (u) = −2 n
2 , then

Nega − spec( f ) = {−1 − i(2k + 1),−1 + i(2k − 1)}.

The above cases indicate that the two distinct nega-
Hadamard coefficients of f at u ∈ Fn2 , can be obtained by
selecting the appropriate value of the two distinct Walsh
coefficients of f ⊕ σ2 at u,u ∈ Fn2 , where n = 2k is even.

4. Conclusion

We have presented all possibilities of nega-Hadamard spec-
tra of Boolean functions with exactly two distinct nega-
Hadamard coefficients. Furthermore, it is interesting to
construct specific Boolean function with two distinct nega-
Hadamard coefficients.
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