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PAPER
Pool-unet: A Novel Tongue Image Segmentation Method Based on
Pool-former and Multi-task Mask Learning

Xiangrun LI†∗, Qiyu SHENG††∗, Guangda ZHOU†, Jialong WEI†, Yanmin SHI†††, Zhen ZHAO†,
Yongwei LI††††, Xingfeng LI†††††, and Yang LIU†∗∗, Nonmembers

SUMMARY Automated tongue segmentation plays a crucial role in the
realm of computer-aided tongue diagnosis. The challenge lies in devel-
oping algorithms that achieve higher segmentation accuracy and maintain
less memory space and swift inference capabilities. To relieve this issue,
we propose a novel Pool-unet integrating Pool-former and Multi-task mask
learning for tongue image segmentation. First of all, we collected 756
tongue images taken in various shooting environments and from different
angles and accurately labeled the tongue under the guidance of a medical
professional. Second, we propose the Pool-unet model, combining a hierar-
chical Pool-former module and a U-shaped symmetric encoder-decoder with
skip-connections, which utilizes a patch expanding layer for up-sampling
and a patch embedding layer for down-sampling to maintain spatial res-
olution, to effectively capture global and local information using fewer
parameters and faster inference. Finally, a Multi-task mask learning strat-
egy is designed, which improves the generalization and anti-interference
ability of the model through the Multi-task pre-training and self-supervised
fine-tuning stages. Experimental results on the tongue dataset show that
compared to the state-of-the-art method (OET-NET), our method has 25%
fewer model parameters, achieves 22% faster inference times, and exhibits
0.91% and 0.55% improvements in Mean Intersection Over Union (MIOU),
and Mean Pixel Accuracy (MPA), respectively.
key words: Tongue Image Segmentation, Multi-task Mask Learning, Pool-
former, Pool-unet

1. Introduction

Tongue diagnosis is one of the primary methods of the four
diagnostic methods of traditional Chinese medicine, which is
used to diagnose lesions by observing the changes in the pa-
tient’s tongue texture, tongue coating, and sublingual pulse.
In recent years, important breakthroughs have been made in
computer-aided tongue diagnosis, bringing objective diag-
nostic results and overcoming the limitations of subjectivity
and individual variability in tongue diagnosis. Intelligent
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tongue diagnosis consists of four main steps: 1) collection
of tongue images, 2) automated tongue segmentation, 3) au-
tomated tongue categorization, and 4) disease diagnosis [1].
The accuracy of tongue segmentation directly affects the fi-
nal diagnosis of the tongue. For real-time computer-aided
tongue diagnosis, the computation cost is critical [2]. There-
fore, it is necessary to realize the reduction of the number
of parameters and the improvement of the inference speed
while guaranteeing the segmentation accuracy of the model,
to realize the accurate and fast segmentation tongue image.

Many methods have been proposed for tongue image
segmentation. For instance, Zhang et al. [3] proposed a
tongue segmentation method based on grayscale histogram
projection and OTSU method. Qin et al. [4] developed a
hybrid tongue image segmentation algorithm using initial-
ized SNAKE contour lines. Liu et al. [5] introduced an
edge detection algorithm for unevenly illuminated images.
However, these traditional methods typically rely on specific
feature extraction techniques, such as edge detection and
color information, which may not fully capture the diversity
of the tongue, resulting in limited segmentation accuracy.

To improve the accuracy of tongue image segmentation,
deep learning networks are widely used. Lin et al. [6] pro-
posed a tongue segmentation network combining Res-50 and
Deep-Mask, achieving lower loss values and higher classifi-
cation accuracy. Xue et al. [7] utilized FCN-8s for tongue
image segmentation and mitigated resolution degradation
through up-sampling operations. Trajanovski et al. [8] em-
ployed the Unet network and integrated different color spaces
for tongue image segmentation. Zhou et al. [9] improved the
Atrous Spatial Pyramid Pooling (ASPP) method by utilizing
four parallel convolutional layers, enabling multi-scale fea-
ture extraction and contextual information capture. Lin et al
propose an end-to-end trainable tongue image segmentation
method using a deep convolutional neural network based on
ResNet[10]. Zhou et al. [11] propose a TongueNet tongue
image segmentation network based on U-net as the back-
bone segmentation network and combined with morpholog-
ical layers. Although the aforementioned tongue image seg-
mentation methods exhibit high accuracy, they are hindered
by large model sizes and slow inference speeds [12]. Given
the rapid advancement of Internet-of-Things (IoT) applica-
tions, there is an urgent demand for training lightweight and
efficient tongue image segmentation algorithms to cater to
practical application requirements.

The Transformer approach [13], which has made a big
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splash in the field of Natural Language Processing [14], of-
fers a new solution to the above problems. Liu et al. proposed
an efficient and effective hierarchical visual Transformer,
known as Swin Transformer. Based on Swin Transformer,
Lin et al. [15] [16] resented a network called DS-Trans-
unet, combining Swin Transformer with Unet. Cao et al.
introduced a network named Swin-unet, which combines a
pure Transformer structure with Unet [17]. They achieved
Self-Attention computation from local to global in the en-
coder and utilized up-sampling of global features to the input
resolution in the decoder for corresponding pixel-level seg-
mentation predictions.

Inspired by the above work, this paper proposes an ac-
curate, fast, and memory-intensive network model called
Pool-unet, which borrows the U-shaped structure of Swin-
unet[17] and utilizes jump connections to reduce the loss
of spatial information. In addition, to solve the problem of
a large number of parameters and slow inference in Swin-
unet, we adopt Pool-former based on Pool-attention instead
of Swin-transformer in Swin-unet. Pool-attention is a simple
and effective attention mechanism that is capable of learn-
ing both locally and globally by using Pooling instead of the
traditional attention structure and without learnable param-
eters. This structure greatly reduces the number of param-
eters in the model [18]. In Pool-unet, we feed labeled im-
ages into the encoder-decoder architecture to learn local and
global features and reduce the number of parameters. At the
same time, we propose a Multi-task mask learning strategy
to improve the model’s generalization and anti-interference
ability, wherein the first stage, we train a basic segmenta-
tion model using tongue data so that it learns basic image
segmentation capabilities. In the second stage, we generate
two mask generators based on the input image and perform
masking operations on pixels. Next, we input the masked
image into the already trained image segmentation model
to perform segmentation and pixel prediction tasks. In this
way, our model can learn semantic information and boundary
details effectively, thus improving the accuracy of segmen-
tation.

Figure 1 shows the experimental results of different
models. The experimental results show that the number of
parameters in Pool-unet is 5.78MB and the MIOU is 97.54%
and Pool-unet inference speed of 59ms/piece. The main
contributions of this paper are listed as follows:

(1) We propose a novel Pool-unet, which is a symmet-
ric encoder-decoder U-shape network with skip connections
constructed based on Pool-former blocks and up-sampling
using the patch extension layer and down-sampling using the
patch embedding layer to maintain spatial resolution. This
novel model enhances contextual feature extraction while
substantially reducing the network’s number of parameters.

(2) We introduce a Multi-task training strategy includ-
ing Multi-task pre-training and self-supervised fine-tuning
stages based on the image mask reconstruction mechanism,
which further improves the model’s generalization ability
and convergence speed.

We will present our methodology in section 2 and our

experimental results and analyze the results in section 3 and
give the conclusion of this study in section 5.

2. Methods

First, we will introduce the design structure of each part of
Pool-unet in detail, as shown in Figure 2. Then, we will
introduce the Multi-task mask training method, as shown in
Figure 4.

Fig. 1 MIOU-Parameters scatterplot

2.1 Structural design of Pool-unet

The overall network architecture of Pool-unet proposed in
this paper is shown in Figure 2. Pool-unet is a network of
the encoder, decoder, bottleneck, and skip connections. The
basic building blocks of Pool-unet are called Pool-former
blocks. The combination of the encoder and bottleneck
layer forms a hierarchical structure with four stages. Sup-
pose the shape of the input image is 𝐻 × 𝑊 × 𝐶. In the
𝑖th stage, the patch embedding layer will convert the in-
put image into a feature map of 𝐻

stride 𝑖 ×
𝑊

stride 𝑖 × 𝐶𝑖 , (
stride 𝑖 = [4, 2, 2, 2], 𝐶𝑖 = [64, 128, 256, 512]) through con-
volution and normalization. We will discuss the effect of dif-
ferent embedding dims on the model performance in Section
3.4. Phase [4,2,2,2] has [2,2,6,2] Pool-former blocks. Subse-
quently, the feature map will be fed into Pool-former Blocks
for feature extraction. Inspired by Swin-unet, we designed
a decoder symmetric to the encoder based on Pool-former
blocks. In the decoder section, we use three skip connec-
tions at 1/4 resolution, 1/8 resolution, and 1/16 resolution.
This approach can fuse contextual features with multi-scale
features from the encoder, thus compensating for the spatial
information lost during the down-sampling process. In this
way, we can better integrate feature information at different
scales to achieve better image segmentation. In addition,
a patch-expanding layer is designed in the decoder for up-
sampling. Patch expanding expands the length and width of
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the input feature image by a factor of two and changes the
feature dimensions to the dimensions required by the next
layer of Pool-former blocks. After that, a patch expanding
layer is utilized for 4-fold up-sampling to restore the reso-
lution to that of the input image (𝐻 ×𝑊). Finally, a linear
projection layer is utilized for pixel-level prediction of the
feature maps obtained from the up-sampling.

Fig. 2 Pool-unet structure diagram

2.1.1 Pool-former blocks

Unlike traditional multi-head self-attention (MSA) modules,
the Pool-former module is constructed based on a Pooling
[18]. The Pool-former Block consists of two Normalization-
Layers (Norm), a Pooling-Layer (Pooling), an MLP-Layer
with GELU non-linearity, and two residual connections. The
design of this module has several advantages. First, the nor-
malization layer is used to alleviate the gradient vanishing
problem and can simplify the tuning process, making the
model more stable. Second, a spatial pooling operator with-
out parameters is utilized as the token mixer module, which
replaces the multi-attention token in the traditional Trans-
former and greatly reduces the number of parameters in the
model. This pooling operation allows even aggregation of
information around each token and does not involve learn-
able parameters. Finally, the MLP layer introduces a non-
linear mapping, which enhances the expressive and learning
capabilities of the model. The Pool-former Block can be
expressed as:

𝑧𝑙 = 𝑧𝑙−1 + Pooling
(
Norm

(
𝑧𝑙−1

))
(1)

Fig. 3 Pool-former Block

𝑧𝑙 = 𝑧𝑙 + MLP
(
Norm

(
𝑧𝑙
))

(2)

For the input sequence, the pooling operator is computed as
follows, where 𝐾 is the size of the pooling kernel.

𝑇 ′
:,𝑖, 𝑗 =

1
𝐾 × 𝐾

𝐾∑︁
𝑝,𝑞=1

𝑇:,𝑖+𝑝− 𝐾+1
2 ,𝑖+𝑞− 𝐾+1

2
(3)

2.1.2 Encoder

The encoder is a layered structure with three layers, each con-
sisting of a patch embedding layer and [2,2,6] Pool-former
blocks. The different layers of the patch embedding layer
will divide the input image into different sizes, which are
feature maps of one-quarter resolution (feature dimension
𝐶1), one-eighth resolution (feature dimension 𝐶2), and one-
sixteenth resolution (feature dimension 𝐶3). The feature
maps at each scale are then subjected to a certain number
of Pool-former blocks for further feature extraction. These
Pool-former blocks are used to extract more advanced seman-
tic features from the input feature maps. Finally, a separate
patch embedding layer is set up to process the resolution of
the image into the feature dimensions needed by the bottle-
neck.

2.1.3 Bottleneck

Since the Transformer is too deep to converge [19], only
two consecutive Pool-former blocks are used to construct the
bottleneck in this paper. We discuss the effect of the number
of Pool-former blocks in the bottleneck layer on the model
segmentation accuracy in section 3.4. Pool-former block
with an embedding of 512 is used to construct a bottleneck
to alleviate the problem of the model being too deep to
converge. There is no change in the feature dimension of the
resolution of the image in the bottleneck.

2.1.4 Decoder

The decoder layer is similar to the encoder layer and also
consists of multiple Pool-former blocks. However, unlike the
encoder, the decoder replaces the encoder’s patch embedding
layer with a patch-expanding layer, which up-samples feature
maps of neighboring dimensions by a factor of two to pro-
duce feature maps with higher resolution. At the same time,
the patch expanding layer reduces the feature dimensions to
half their original size. This operation helps to recover a
finer representation of the features in the Decoder layer, thus
improving the model’s ability to capture details.
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Patch expanding layer: Taking the first patch expand-
ing layer as an example, a linear layer is applied to the input
feature map

(
𝐻
32 × 𝑊

32 × 𝐶3
)

to expand the feature dimensions
to twice the original dimensions

(
𝐻
32 × 𝑊

32 × 2𝐶3
)

before per-
forming the up-sampling operation. Then a Rearrange oper-
ation is applied to reduce the feature dimensions to a quarter
of the input dimensions

(
𝐻
32 × 𝑊

32 × 2𝐶3 → 𝐻
16 × 𝑊

16 × 𝐶2
)
.

2.1.5 Skip Connection

Skip connection is used to fuse multi-scale features in the en-
coder with up-sampled features. Shallow and deep features
are connected to minimize the loss of spatial information
caused by down-sampling. We will verify the effect of skip
connections at different locations on the model performance
in section 3.4.

2.2 Multi-task mask learning

2.2.1 Overall process

As illustrated in Figure 4, to enhance the robustness of the
model and improve the capability of tongue image segmen-
tation in complex environments, this paper proposes a multi-
task mask learning strategy to train the tongue image seg-
mentation model. The method consists of two stages. In the
first phase, we pre-train the Pool-unet model using tongue
image data that has not been processed by the Mask Gener-
ator to give it basic tongue image segmentation capabilities.
A Multi-task learning strategy was used for pre-training, and
the loss function was divided into two parts: an image seg-
mentation task and an image restoration task. In this way,
the model can learn basic features and patterns of tongue im-
age segmentation from labeled images. In the second phase,
we introduce two different mask generators and use them to
mask the pixels of the input image. Then, we input these
masked images into the already pre-trained image segmen-
tation model for tongue segmentation and pixel prediction
tasks, at the same time, we can use the feature information of
the labeled images to supervise the model and continuously
improve its segmentation capability.

2.2.2 Multi-task pretraining stage

We first train the Pool-unet model by taking images with-
out masked pixels as inputs to give it preliminary image
segmentation capabilities.

Mask Generator: We describe how to generate a mask
for the input image. First, we need to set a maximum masking
percentage 𝑝𝑚𝑎𝑥 , which must take a value less than one.
Next, we randomly select an actual masking percentage 𝑝
from the interval [0,𝑝𝑚𝑎𝑥]. Then, we generate an all-1 matrix
of the same size as the input image and randomly set the
elements of the 𝑝 percentage therein to 0. The resulting
matrix is then called the masked matrix, which we name
M𝑝 . Then we let O𝑙 multiply element by element with M𝑝

to obtain the masked image O𝑚
𝑙

. Figure 5 shows an example

of mask generation.

O𝑚
𝑙 = O𝑙 ⊙ M𝑝 (4)

Multi-Task Learning: For a given masked image O𝑚
𝑙

,
we input it into the Pool-unet model for a tongue image
segmentation operation:

Õ𝑙 = 𝑓
(
O𝑚
𝑙

)
(5)

Õ𝑙 is the segmented tongue image and O is the corresponding
label.

Õ𝑜
𝑙 + Õ𝑚

𝑙 = Õ𝑙 , Õ𝑜
𝑙 = Õ𝑙 ⊙ (1 − M𝑝) , Õ𝑚

𝑙 = Õ𝑙 ⊙ M𝑝

(6)

O𝑜+O𝑚 = O,O𝑜 = O⊙ (1 − M𝑝) ,O𝑚 = O⊙M𝑝 (7)

Õ𝑜
𝑙

and Õ𝑚
𝑙

together form the image Õ𝑙 after model segmen-
tation. O𝑜 and O𝑚 together form the input image O. O𝑜

is the matrix of pixels that are not masked, and O𝑚 is the
matrix of pixels that are masked. 1 is an all-1 matrix. The
Pool-unet model is trained by minimizing the following loss.

𝑙1 =
Õ𝑙 − O


1 =

Õ𝑜
𝑙 − O𝑜


1︸         ︷︷         ︸

image segmentation task

+
Õ𝑚

𝑙 − O𝑚


1︸          ︷︷          ︸
image restoration task

(8)

The first term of 𝑙1 loss is a segmentation task performed
on pixels that are not masked and the second term is a repair
task performed on pixels that are corrupted by the mask.
Therefore, the task is multitask learning.

2.2.3 Self-supervised fine-tuning stage

To enhance the model’s generalization ability and robust-
ness in the complex and diverse shooting environment, we
adopted a self-supervised approach for fine-tuning, as illus-
trated in Figure 4. This approach aims to improve the model’s
performance by leveraging a specific training objective. The
training objectives is as follows:

𝑙2 =
Õ𝑝1

𝑢 − Opseudo


1︸                ︷︷                ︸
self-supervisory term

+𝛼
Õ𝑝1

𝑢 − Õ𝑝2
𝑢


1︸              ︷︷              ︸

Regularization term

, 𝛼 ∈ [0, 1]

(9)

where Opseudo = 𝑓 (O𝑢) denotes the segmentation result of
the segmentation model 𝑓 on the input image O𝑢 at each
training iteration of the model. The input image O𝑢 is cov-
ered by M𝑝1 and M𝑝2 generated by two different mask per-
centages 𝑝1, 𝑝2, which are then fed into the segmentation
model to obtain two different segmentation results Õ𝑝1

𝑢 and
Õ𝑝2
𝑢 .The loss function 𝑙2 contains both self-supervision and

regularization components. Where 𝛼 is the weighting pa-
rameter used to balance these two terms. The effect of the
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Fig. 4 The overview of the Multi-task mask learning strategy. The same model
architecture is shared in both pre-training and fine-tuning, except for the loss function
definition. In the pre-training process, the model is trained on labeled data and learns
tongue segmentation capabilities through supervision by 𝑙1(Eq. (8)). In the fine-
tuning process, the model is initialized with pre-trained parameters and fine-tuned
by the 𝑙fine−t.

Fig. 5 Example for masked image generation

value of 𝛼 on the model performance we will discuss in
section 3.4.

Õ𝑝1
𝑢 = 𝑓 (M𝑝1 ⊙ Ou) (10)

Õ𝑝2
𝑢 = 𝑓 (M𝑝2 ⊙ Ou) (11)

Self-supervision: In the first term of 𝑙2, the initial seg-
mentation result O𝑝𝑠𝑒𝑢𝑑𝑜 obtained from each iteration of the
segmentation model is used as pseudo labels. These pseudo
labels are used as noise ground truth for self-supervised
training. This self-supervised training method can learn
more details from labeled data. Since the model is initial-
ized with a loss of 0 using a pre-trained model, training will
not continue if only this part is included in the loss function.
To avoid this problem, we include a regularization term in
the 𝑙2 loss function.

Regularization: The second term of 𝑙2 is used for the
training of the regularization model. Its goal is to minimize
the difference between two segmentation results Õ𝑝1

𝑢 and
Õ𝑝2
𝑢 of the same image O𝑢 corrupted with different masks,

with 𝛼 being the regularization weight.

Both self-supervision and regularization in l are essen-
tial. The training of the model cannot be adapted to unlabeled
data without a regularization term; and in the absence of a
self-supervision term, the model will ignore features learned
from the labeled data, which in turn leads to the degradation
of the model performance or early convergence.

To improve the stability of the fine-tuning process, we
let the labeled data be trained together with the unlabeled
data. As a result, the total loss function 𝑙fine−t for fine-tuning
is as follows:

𝑙fine−t = 𝛽 × 𝑙1 + (1 − 𝛽) × 𝑙2 (12)

The role of 𝛽 is to balance the effects of 𝑙1 and 𝑙2 on model
fine-tuning. We will discuss the effect of the value of 𝛽 on
the model segmentation accuracy in section 3.4.

Loss function: In this paper, a combination of Dice-
Loss and Cross-Entropy-Loss is used as the loss function.
This choice is made because Dice-Loss mitigates the neg-
ative effects caused by the imbalance between foreground
and background, while Cross-Entropy-Loss calculates the
loss equally for each pixel point, relating only to the differ-
ence between the current predicted value and the true labeled
value. By using a combination of these two loss functions,
better training results can be achieved, overcoming the prob-
lem of loss saturation that dice loss may experience when
used alone. The loss function for the whole training process
in this paper is as follows.

𝑙𝑡𝑟𝑎𝑖𝑛 = 𝑑𝑖𝑐𝑒𝑙𝑜𝑠𝑠 + 𝑐𝑒𝑙𝑜𝑠𝑠 + 𝑙fine−t (13)
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𝑙𝑣𝑎𝑙𝑢𝑎𝑡𝑒 = 𝑑𝑖𝑐𝑒𝑙𝑜𝑠𝑠 + 𝑐𝑒𝑙𝑜𝑠𝑠 (14)

Dice-Loss is calculated as follows:

𝑑𝑖𝑐𝑒𝑙𝑜𝑠𝑠 = 1 −
2
∑𝑁
𝑖=1 𝑦𝑖 �̂�𝑖∑𝑁

𝑖=1 𝑦𝑖 +
∑𝑁
𝑖=1 �̂�𝑖

(15)

where 𝑦𝑖 and �̂�𝑖 denote the labeled and predicted values
of pixel 𝑖, respectively, and 𝑁 is the total number of pixel
points, which is equal to the number of pixels in a single
image multiplied by the batch size.

The formula for calculating Cross-Entropy-Loss for the
second classification is as follows:

𝑐𝑒𝑙𝑜𝑠𝑠 = − 1
𝑀 + 𝑁 (

𝑀∑︁
𝑖=1if𝑦𝑖=1

log (𝑝𝑖)+
𝑀∑︁

𝑖=1if𝑦𝑖=0
log (1 − 𝑝𝑖))

(16)

where 𝑀 is the number of positive samples, 𝑁 is the number
of negative samples, 𝑦𝑖 is the true value and 𝑝𝑖 is the predicted
value.

Overall Training Procedure: We summarize the en-
tire training process in Algorithm 1.

Algorithm 1 Training of a deraining model
//Pre-training
Prepare : {O𝑘

𝑙
}𝑁
𝑘=1, {O𝑘 }𝑁

𝑘=1 from labeled dataset.
1: while 𝑒𝑝𝑜𝑐ℎ ≤ 𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥 do:
2: Randomly crop training image pairs {O𝑙 ,O}
3: Generate a mask M𝑝 using Mask Generator
4: Generate masked rainy images {O𝑚

𝑙
} using Eq.(4)

5: Obtain intermediate derained images Õ𝑙
6: Minimize loss in Eq.(8)
7: 𝑒𝑝𝑜𝑐ℎ = 𝑒𝑝𝑜𝑐ℎ + 1
8: end while
9: Output the pre-trained deraining model 𝑓𝑝𝑟𝑒−𝑡

//Fine-tuning
Prepare : {O𝑘

𝑙
}𝑁
𝑘=1, {O𝑘 }𝑁

𝑘=1 from labeled data, {O𝑘𝑟 }𝑁𝑘=1 from real-label
data. Model 𝑓𝑝𝑟𝑒−𝑡

1: Initialize a model 𝑓 using the parameters from 𝑓𝑝𝑟𝑒−𝑡
2: while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 do:
3: Update O𝑝𝑠𝑒𝑢𝑑𝑜 = 𝑓 (O𝑢 )
4: while 𝑒𝑝𝑜𝑐ℎ ≤ 𝑒𝑝𝑜𝑐ℎ𝑢𝑚𝑎𝑥 do:
5: Generate masked images O𝑝1

𝑢 and O𝑝2
𝑢 with different masks

M𝑝1 ,M𝑝2

6: Obtain deraining results Õ𝑝1
𝑢 and Õ𝑝2

𝑢 using 𝑓
7: Obtain deraining result Õ𝑙 for labeled data using Eq.(4) and

Eq.(5)
8: Minimize loss in Eq.(12)
9: 𝑒𝑝𝑜𝑐ℎ = 𝑒𝑝𝑜𝑐ℎ + 1

10: end while
11: 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1
12: end while
13: Output 𝑓 as the final deraining model 𝑓fine−t

3. Experimental Results and Analysis

3.1 Dataset Description

In this paper, a self-built tongue dataset is used for model

training and testing. The dataset contains 764 tongue im-
ages from different populations, each with 24-bit depth RGB
channels and a resolution of 512 × 512. This dataset is
unique because of the complexity and diversity of the envi-
ronments in which it was captured and the diversity of the
tongue states of the different populations included. We use
the LABELME tool for image annotation. The first round
of labeling was performed on the images, and a professional
doctor reviewed the results. Then, for the pictures that do
not pass the review, based on the first round of labeling, es-
pecially for the location of the edge of the tongue and the
tongue-lip-dental contact location for the second round of
labeling. The second round of labeling of the images that
did not pass the review was performed by the doctor for final
labeling. Once the images were annotated, the LABELME
tool could export the annotations in JSON format. These
files include spatial information and category labels associ-
ated with each annotated object. Finally, we can utilize this
JSON file to convert the original images into binary images,
serving as our labels. Some examples of the data are shown
in Figure 6.

Fig. 6 Examples of the dataset

The mask image is a binary image with 255 (white) pix-
els in the foreground and 0 (black) pixels in the background.
The mask image corresponding to the sample in Figure 6 is
shown in Figure 7.

3.2 Experimental details

Pool-unet is implemented based on Pytorch 2.0.0 and Python
3.8. We trained the model on an RTX 3090 with 24GB
of video memory. Weight-Decay=1e-7, Momentum is
0.9, Learning Rate=1e-4, epochs=250, and K-fold cross-
validation=5. The value of 𝛼 in 𝑙2 is 0.4. The value of 𝛽 in
𝑙 𝑓 𝑖𝑛𝑒−𝑡 is 0.4

3.3 Evaluation metrics

In this paper, MPA and MIOU are used as the indexes for
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Fig. 7 Samples from the mask set corresponding to the
dataset in Figure 6.

evaluating segmentation accuracy, and both MPA and MIOU
are extremely large variables, with larger values representing
higher segmentation accuracy of the model.

𝑀𝑂𝑈 =
1

𝑘 + 1

𝑘∑︁
𝑖=0

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (17)

𝑀𝑃𝐴 =
1

𝑘 + 1

𝑘∑︁
𝑖=0

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (18)

where 𝑇𝑃 is the actual number of positive samples predicted
to be positive, 𝑇𝑁 is the actual number of negative samples
predicted to be negative, 𝐹𝑃 is the actual number of samples
predicted to be positive, 𝐹𝑁 is the actual number of positive
samples predicted to be negative, and 𝑘 is the number of
categories.

Total parameters: It is the total number of parameters
included in the model, which can intuitively reflect the size
of the model.

Inference time: It reflects the time required for the
model to infer the results, the shorter the inference time, the
faster the model reasons about the results.

3.4 Selection of hyperparameter

Impact of the number of skip connections on model per-
formance: We add skip connections at positions of 1/4, 1/8,
and 1/16 resolution of Pool-unet. In the experiments, the
effect of the model on the segmentation performance of the
tongue dataset was investigated by modifying the number of
skip connections to 0, 1, 2, and 3, as shown in Table 1.

As can be seen from Table 1, the addition of three skip
connections at 1/4, 1/8 and 1/16 resolution maximizes the
possibility of incorporating low-resolution features, resulting
in better model performance.

Impact of embedding dim size in encoder on model
performance: The Pool-former network proposed by YU
[18] has two sizes, 𝑆 and 𝑀 . The embedding dim in

Table 1 Impact of the number of skip connections on
model performance

Quantities Connected Position MPA(%) MIOU(%)
0 Non skip connections 78.72 62.84

Retain only 1/4 resolution
skip connections 97.01 95.1

1 Retain only 1/8 resolution
skip connections 97.19 95.41

Retain only 1/16 resolution
skip connections 97.3 95.51

Retains two skip connec-
tions at 1/4, 1/8 resolution 96.15 94.07

2 Retains two skip connec-
tions at 1/4, 1/16 resolution 96.99 96.12

Retains two skip connec-
tions at 1/8, 1/16 resolution 97.13 96.39

3
Retain three skip connec-
tions at 1/4, 1/8, and 1/16
resolution

97.54 97.19

Table 2 Effect of embedding dim number on model per-
formance

Embedding Dim Number Parameters MPA(%) MIOU(%)
[64,128,256,512] 5.78MB 97.19 97.54
[96,192,384,768] 12.96MB 97.17 97.15

each layer of patch embedding in the 𝑀-size model is
[96,192,384,768]. Next, we discuss the effect of the number
of embedding dims for 𝑀-size versus the number of em-
bedding dims for [64,128,256,512] used in this paper on the
model’s performance.

From Table 2, it can be seen that the number of param-
eters of the Pool-unet structure with embedding dim number
of [64,128,256,512] proposed in this paper is only 45.1% of
that of the Pool-unet structure with embedding dim number
of [96,196,384,768], but it achieves the same segmentation
performance. Therefore We choose the network structure
with an embedding dim of [64,128,256,512] in this paper.

The effect of the number of Pool-former blocks in
the bottleneck layer: We discuss the impact of a bottleneck
layer consisting of 0 (no bottleneck layer), 1, 2, and 3 Pool-
former blocks on model performance. It can be seen from
Figure 8 that the model achieves the maximum segmentation
accuracy when the bottleneck layer consists of two Pool-
former blocks.

The effect of weight coefficient 𝛼 in the regulariza-
tion term on the model: In 𝑙2 loss, regularization weights
𝛼 are needed to balance the degree of model regularization.
We randomly selected 10 values of 𝛼 for the experiment.

As can be seen from Figure 9, both MIOU and MPA
reach their maximum values when 0.4.

The effect of the value of 𝛽 in 𝑙 𝑓 𝑖𝑛𝑒−𝑡 on the model
performance: The role of 𝛽 in 𝑙 𝑓 𝑖𝑛𝑒−𝑡 is to balance the
proportion of labeled and unlabeled data in the fine-tuning
process to ensure a more stable fine-tuning process. To
determine the proportion of labeled and unlabeled data in
the fine-tuning process, we did the following experiments on
𝛽.
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Fig. 8 Impact of the number of Pool-former blocks in the
bottleneck layer on model performance

Fig. 9 Impact of 𝛼 on model performance

We chose a total of nine values from 0.1 to 0.9 to discuss
the effect of the value of 𝛽 in 𝑙 𝑓 𝑖𝑛𝑒−𝑡 on the model perfor-
mance. For the cases where 𝛽 takes 0 or 1, we consider them
as ablation experiments for 𝑙1 and 𝑙2, which we will discuss
in detail in section 3.5. It can be seen from Figure 10 that the
model has the highest segmentation accuracy when 𝛽 takes
the value of 0.4.

Fig. 10 Impact of 𝛽 on model performance

Table 3 Impact of 𝑙1 and 𝑙2 on model performance
Model MPA(%) MIOU(%)

w/o 𝑙1 & w/o 𝑙2 95.55 95.18
w/o 𝑙1 & w 𝑙2 96.03 95.31
w/o 𝑙2 & w 𝑙1 96.16 95.38
w/ 𝑙1 & w/ 𝑙2 97.54 97.19

Impact of L1-norm and L2-norm on model perfor-
mance: We have tried using L1-norm and L2-norm in Eq.(8)
and Eq.(9), respectively, while ensuring that all other condi-
tions remain the same, and comparing the performance of the
models. The results indicate that using the L1-norm yielded
slightly better segmentation performance compared to L2-
norm. Specifically, with L1-norm, the MPA and MIOU are
97.54% and 97.19%, respectively, while with L2-norm, they
are 96.94% and 96.21%.

3.5 Ablation experiments

Impact of 𝑙1 and 𝑙2 on model performance: In order to
explore the effect of Eq.(8) 𝑙1 and Eq.(9) 𝑙2 on the model
segmentation accuracy, we choose to remove 𝑙1 or remove
𝑙2. The results are shown in Table 3. When 𝑙1 and 𝑙2 are not
added, it is equivalent to not using a Multi-task mask learning
strategy in the model, and the segmentation accuracy of the
model is the lowest in this case. When only 𝑙1 is added, the
MPA and MIOU of the model are improved by 0.5% and
0.14% respectively. The MPA and MIOU of the model are
improved by 0.63% and 0.21% respectively when only 𝑙2 is
added. This shows that 𝑙1 and 𝑙2 alone do not improve the
model performance significantly. However, the MPA of the
model improves by 2.08% and 2.11% when both 𝑙2 and 𝑙1 are
added. Therefore, the Multi-task mask learning strategy can
effectively improve the segmentation accuracy of the model.

3.6 Comparison with SOTA approaches

Computer-aided tongue diagnosis algorithms require smaller
memory space lower inference time and high segmentation
accuracy [2]. Therefore, the speed of inference and the total
number of parameters of the model need to be considered
while improving the segmentation accuracy [12]. In section
3.6.1 we will use the example of 512 × 512 × 3 images to
compare with the SOTA models in terms of both the number
of model parameters and inference time. In section 3.6.2 we
use MIOU and MPA to measure the segmentation accuracy
of the model.

3.6.1 Parameter Count and Inference Time Evaluations

Since OET-NET is the model with the highest segmentation
accuracy achieved in this task, we use it as a benchmark to
compare with our model. OET-NET has a large number of
convolution and de-convolution operations, which require
a large number of computations and parameters. But our
model has average pooling as mixed tokens in pooling atten-
tion and only one convolution operation in Patch Embedding.
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Table 4 Comparison of parametric quantities and infer-
ence time of common segmentation models

Methods Parameters(MB) Inference Time(ms/piece)
Unet [20] 9.16 58

Unet++ [21] 13.39 128
Trans-unet [22] 105.28 –
Swin-unet [17] 27.17 106

FCN [23] 16.4 –
Deeplabv3+ [24] 5.81 324
OET-NET [25] 7.78 59
Pool-unet(ours) 5.78 46

So the number of parameters and inference time of our model
is less than OET-NET. Table 4 also confirms this view.

As shown in Table 4, the model parameter of our pro-
posed model is just 5.78MB. It is 25.71% lower than the
model parameter of the latest model (OET-NET). The re-
duction varies from 94.49% to 25.71% compared to other
models. The time to infer a picture in the Pool-unet pro-
posed in this paper is reduced by 22.03% over the latest
model (OET-NET) and by 20.6% over the classical Unet
network.

3.6.2 Performance Evaluations

We conducted prediction experiments using 100 test sam-
ples and used MIOU and MPA to measure the segmentation
accuracy of the model. Table 5 shows that the proposed
Pool-unet outperforms other methods, especially in MIOU,
which can reach 97.19%. The MIOU and MPA of the pro-
posed method improve with other methods ranging from
0.60%-23.21% and 0.92%-15.21%.

Table 5 Comparison of segmentation performance of dif-
ferent methods

Methods MIOU(%) MPA(%)
Unet 87.46 92.30

Unet++ 89.71 92.52
Trans-unet 91.75 95.39
Swin-unet 93.38 94.24

FCN 78.88 84.66
OET-NET 96.62 96.65

Deeplabv3+ 93.79 96.79
Pool-unet(ours) 97.19 97.54

4. Discussion

In this paper, we propose Pool-unet, a fast and accurate
tongue segmentation network based on Pool-former and
Multi-task learning. Various experiments were conducted to
test the effectiveness of the proposed method. For example,
the results of the ablation experiments show that the model
has the highest segmentation accuracy when the bottleneck
consists of two Pool-former blocks.

To test whether there is a significant difference in in-
ference time between Pool-unet and the benchmark, we per-
formed statistical analysis with inference time as the depen-
dent variable. We used Pool-unet and OET-NET to predict

Fig. 11 Example of segmentation results

ten tongue pictures recorded the inference time of each pic-
ture and performed a one-way analysis of variance (ANOVA)
on these two data sets. The results show that F(1,18)=85.43,
p=2.6e-8 for the inference time. This suggests that there
is a significant difference in inference speed between Pool-
unet and OET-NET, at the level of significance 𝛼 =0.05. In
addition, to assess whether there is a significant difference
in the performance of the Pool-unet and OET-NET in pro-
cessing the test set, we performed ten repetitions of the test
recorded the values of MIOU and MPA for each model, and
used ANOVA to statistically analyze the MIOU and MPA
of the Pool-unet and the OET-NET. The results show that
F(1,18)=11.254, p=0.0035 for MPA and F(1,18)=85.43, p=
2.96e-8 for MIOU. This suggests that there is a significant
difference in segmentation accuracy between Pool-unet and
OET-NET, at the level of significance 𝛼 =0.05.

However, since the proximity of the tongue to the lips
and teeth, it is difficult for our model to separate them per-
fectly and accurately. As shown in Figure 11, it is also
a major challenge to accurately segment the edges of the
tongue, which will affect the computer-assisted tongue diag-
nosis system’s ability to judge the smoothness of the tongue
edges. For example, a tooth-marked tongue has a certain
unevenness of the edge of the tongue body due to the com-
pression of the tooth edge by the hypertrophy of the tongue
body[26]. In the future, we will study this challenge in de-
tail and further explore and apply the Pool-unet model for a
wider range of applications in medical image segmentation.

5. Conclusions

In this study, we proposed a novel encoder-decoder net-
work architecture called Pool-unet based on Pool-former
and Multi-task mask learning. Instead of the traditional
self-attentive structure, we use pool-attention, which greatly
reduces the number of parameters in the model. In addi-
tion, we designed a U-shaped encoder and decoder network
architecture and added skip connections at different resolu-
tion levels to better fuse low-resolution image features. In
addition we propose a model training method for Multi-task
mask learning, which pre-trains the model using labeled
data to give it basic image segmentation capabilities. Fol-
lowing this, two distinct mask generators are designed to



10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Inupt UNET UNET++ Trans-unet

Swin-unet Deeplabv3+ Pool-unet Label

Fig. 12 Comparison of segmentation performance of different methods

execute masking operations on input images, and through-
out the training iterations, the model undergoes fine-tuning
with pseudo-label supervision. We conducted experiments
on the tongue dataset, which has been labeled by ourselves,
and Pool-unet achieved 97.19% and 97.54% on the MIOU
and MPA metrics, respectively. The number of parameters
of the model is only 5.78 MB and the inference speed reaches
46 (ms/piece).
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