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Shape-aware Convolution with Convolutional Kernel Attention for
RGB-D Image Semantic Segmentation

Kun ZHOU', Zejun ZHANG', Xu TANG', Wen XU, Jianxiao XIE', and Changbing TANG", Nonmembers

SUMMARY RGB-D semantic segmentation has attracted increasing at-
tention over the past few years. The depth feature encodes both the shape
of a local geometry as well as the base (whereabout) of it in a larger con-
text. RGB and depth images can be concatenated into one and inputted
into a network model, reducing additional computation but resulting in
some distractive information as they are multimodal. For the problem,
we propose a Shape-aware Convolutional layer with Convolutional Ker-
nel Attention(CKA-ShapeConv) for reducing the distractive information
by leveraging each unique input feature to rectify the kernels. Instead
of using a single convolution kernel, we aggregate N parallel convolution
kernels based on input-dependent attention. Specifically, four sets of at-
tention weights are firstly calculated from each input feature map, next N
parallel convolution kernels are weighted and aggregated along different
dimensions, which ensure that the generated convolution kernel is more
capable of catching semantic information from the input feature map, re-
ducing interference between RGB and depth features. Then the aggregated
convolution kernel is decomposed into two components: base and shape,
two new learnable weights are introduced to cooperate with them indepen-
dently, and finally a convolution is applied on the re-weighted combination
of these two components. These two components can capture semantic
and shape information of regions effectively, respectively. Meanwhile, our
CKA-ShapeConv layer can be easily integrated into most existing backbone
models with only a small amount of additional computation. Our exper-
iments on NYUDv2 and SUN RGB-D datasets show that the proposed
CKA-ShapeConv layer can improve the performance of backbone models
effectively.

key words: RGB-D semantic segmentation, input-dependent attention,
single-stream network, dynamic convolution

1. Introduction

Image semantic segmentation, a fundamental task in com-
puter vision[1]—[5], is an ideal perception solution to trans-
form an image input into its underlying semantically mean-
ingful regions, providing pixel-wise dense scene understand-
ing for Intelligent Transportation Systems (ITS)[6], [7]. De-
spite this, the RGB-based segmentation approaches might
largely degenerate when applied to complex scenarios. To
address this challenge, the depth image, which provides ge-
ometric information to the RGB image, has been used for
achieving RGB+Depth (RGB-D)[8]-[14] semantic segmen-
tation, demonstrating promising performance.
Convolutional neural networks (CNNs) have been
widely applied in RGB image segmentation[15]-[19], whose
architecture consists of encoder and decoder. The encoder
is used to extract features from RGB images, with popular
models such as ResNet[20], ResNeXt[21] and Mix Trans-
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former(MiT)[24], which are pretrained on the ImageNet[22]
dataset. The goal of the decoder is to restore image resolution
and assign semantic class labels to each input pixel. Methods
in this stage include Upsample[15], PPM[23], ASPP[17],
[18], MLP-decoder[24] and so on. Semantic image segmen-
tation for indoor scenes often faces significant challenges
due to uneven lighting, severe occlusion, diverse object cate-
gories, and high similarity in surface color and texture. One
of methods to overcome the problem is to increase the size
of convolutional layers(kernel size, input channels, output
channels), which have huge computational requirements, so
itis not possible to blindly increase the size of a model. With
the widespread use of depth images capture devices, it has
become easy to obtain RGB images and corresponding depth
images of scenes, which has greatly facilitated the develop-
ment of applying depth information to semantic segmenta-
tion. Existing RGB-D semantic segmentation methods can
be divided into two categories: (1) The first one employs
a single network to extract features from RGB and depth
modality, which are fused in the input stage. Xing et al.[25]
introduce a new operator called malleable 2.5D convolution
for considering depth information. Cao et al.[8] design a
dedicated convolutional layer for depth data. Chen et al.[9]
design a S-Conv to infer the sampling offset of convolution
kernel guided by the 3D spatial information. Zheng et al.[10]
utilize pre-segmentation labels from traditional image seg-
mentation and concatenate them with RGB-D features to
provide more accurate guidance for semantic segmentation.
In this kind of single-stream network, RGB and depth im-
ages are concatenated into a dedicated convolutional layer,
which reduces the computational cost in the encoding stage,
but maybe introduce interference information and result in
suboptimal performance because of the domain gap between
the RGB and depth modalities. (2) The second one deploys
two backbones to perform feature extraction from RGB and
depth modality separately followed by a feature fusion based
decoder for semantic prediction. Seichter et al.[11] design a
series of modules to fuse RGB and depth feature. Zhou et
al.[12] propose a feature reconstruction network and a multi-
scale fusion strategy. Zhou et al.[13] introduce a progressive
guided fusion strategy and a depth enhancement network
to progressively fuse features and improve the quality of
depth images. Zhang et al.[14] utilize the transformer as
the backbone to extract features, and then fuse the different
modality information to achieve RGB-D semantic segmen-
tation. This kind of double-stream network requires to retain
two heavy encoders after training, increasing the deployment

Copyright © 200x The Institute of Electronics, Information and Communication Engineers



burden of RGB-D semantic segmentation. And it is hard to
decide when and where the RGB and depth features need
to be fused. To tackle the aforementioned challenges, we
construct a single-stream network and introduce a series of
rectification modules to rectify our convolution kernel.

The core idea of attention mechanism is to dynamically
adjust the weights of features, imitating the selective percep-
tion mechanism of the human visual system, and to focus
attention on more important parts of the feature while sup-
pressing irrelevant parts. Vaswani et al.[26] first propose to
use self-attention mechanism to compute global dependen-
cies in the inputs and applied it to machine translation. At
the same time, attention modules have been widely used in
the field of computer vision. Hu et al.[27] propose a chan-
nel attention module called ’squeeze-and-excitation (SE)” to
weight each channel of the feature map based on the mutual
dependencies between convolutional feature channels. Zhou
et al.[28] propose a hybrid cross-fusion co-attention mod-
ule to improve RGB and depth semantic information. Li et
al.[29] calculate channel attention and present channel split
to highlight important channels and refine features. Most
previous researches focused on rectifying the output con-
volutional feature with attention modules, which incurred
a significant computational cost. Therefore, we consider
applying the attention mechanism to the rectification of con-
volution kernels. The same convolution kernel is applied
to each input feature when designing convolutional layers.
However, each input feature is unique and should be con-
sumed using its corresponding rectified convolution kernel.
The dynamic mechanism of using input-dependent convolu-
tion kernel allows model to adapt to the input feature and has
the potential to improve model performance and generaliza-
tion. Jia et al.[30] generate small input-dependent convolu-
tion kernel filters for transforming images for the next-frame
and the stereo prediction. Yang et al.[31] introduce Cond-
Conv, which increases the attention weights determined by
the input of the convolutional layer and combines them to ob-
tain the convolution kernel weights. Chen et al.[32] propose
dynamic convolution, which has a similar idea to CondConv
but replaces the Sigmoid function with the Softmax function
to calculate attention weights and introduces a temperature
annealing strategy. This optimizes the calculation and train-
ing process of attention weights. Hou et al.[33] propose
a hybrid gradient convolution to capture edge information
more effectively by dynamically adjusting the weights of the
gradient convolution kernel. These works only compute a set
of attention weight to rectify the convolution kernels along
a particular dimension, which may result in ineffective cor-
rections for other dimensions. Therefore, we consider using
input-dependent attention mechanism to weight and aggre-
gate N convolution kernels across four dimensions: spatial,
input channels, output channels, and the number of kernels.

The purpose of our study is to rectify the convolution
kernels using both RGB and depth features, while enhancing
the capacity and performance of the model without increas-
ing its depth and width. The ShapeConv[8] method rectifies
the convolution kernel by introducing two parameters to bal-
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ance the shape and base components. Building upon this, we
incorporate the idea of dynamic convolution[32], relying on
each specific RGB-D input, to achieve a more comprehensive
rectification of each dimension of the convolution kernels
meanwhile extracting more accurate 3D shape information
from the input. Specifically, we propose CKA-ShapeConv,
a shape-aware convolutional layer with convolutional ker-
nel attention for RGB-D image semantic segmentation. In-
stead of increasing the depth and width of the model, we
enhance the model’s capacity by combining N parallel con-
volution kernels into one for each convolutional layer. In
detail, four sets of attention weights are firstly calculated
from each input feature map. Then, N parallel convolution
kernels are weighted and aggregated along different dimen-
sions, ensuring that the resulting convolution kernel is more
effective in capturing semantic information from the input
feature map. Subsequently, the aggregated convolution ker-
nel is decomposed into two components: base and shape,
two new learnable weights are introduced to independently
cooperate with them. Finally, a convolution operation is
applied on the re-weighted combination of these two com-
ponents. These two components can effectively capture se-
mantic and shape information of regions, respectively. The
input-dependent attention strategy reduces the interference
between RGB and depth features, improving model capacity
with a small increase in computational cost. The rectified
convolution kernels can extract more accurate feature in-
formation from higher layer input, thereby improving the
model’s performance and achieving better results.

To validate the effectiveness of CKA-ShapeConv, we
conduct experiments on the NYUDv2[34] and SUN RGB-
D[35] datasets. We apply CKA-ShapeConv to various back-
bone networks and several representative semantic segmen-
tation architectures. In all cases, we observe corresponding
performance improvements, which demonstrate the effec-
tiveness of our approach.

In short, out main contributions are as follows:

* We propose a shape-aware convolutional layer with con-
volutional kernel attention (CKA-ShapeConv) to rectify
the kernels by utilizing each unique input feature, re-
ducing the interference caused by concatenating RGB
and depth features.

* We do not increase the depth and width of the model,
but instead enhance its capacity by combining N con-
volution kernels into one for each convolutional layer.

¢ We conduct extensive experiments on two indoor RGB-
D semantic segmentation benchmarks and show that
the proposed CKA-ShapeConv layer can improve the
performance of backbone models effectively.

* We analyze the limitations of our proposed method and
provide suggestions for future improvement work.

2. Method

In this section, we first introduce the principle and formula of
vanilla dynamic convolution and Shape-aware convolution,
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Fig.1 A CKA-ShapeConv layer.

as well as analyze their limitation in image segmentation
field. Finally, we introduce our CKA-ShapeConv to over-
come the shortcomings of these two models and provide
details on its specific implementation.

2.1 Vanilla Dynamic Convolution and Shape-aware Con-
volution

2.1.1 Vanilla Dynamic Convolution

For the vanilla convolution layer, it consists of single static
convolution kernel shared for all inputs. In contrast, the
dynamic convolutional layer uses a linear combination of N
convolution kernels and weights them with input-dependent
attention. Specifically, given an input feature map X;, €
RCin*HXW [ and W are the spatial dimensions of the input
feature map, C;, represents the channel numbers in the input
feature map, the output feature map is obtained by

N
Z KW,

i=1

Y =Conv , Xin (1)

where Y € RCou*HXW denotes the output feature map,
Cour represents the channel numbers in the output fea-
ture map; operator Conv denotes the convolution operation;
W; € REKn*KuwxCinxCout denotes the i;;, convolution kernel,
Kj, and K, are the spatial dimensions of the kernel; K; € R!
is the attention for weighting W;, which is calculated by
Eq.(2). To simplify, the bias term has been omitted:

K(Xin) = Sigmoid (FC (GAP (Xin))) @

where GAP is a global average pooling operation, through
which an input feature is squeezed to RC»*1X! and FC is
a fully-connected operator, which generates N scalar val-
ues. Finally, the attention weights are calculated using the
Sigmoid function.

Subsequent work[32] has improved the dynamic convo-
lution with promoting the model learning by using Softmax
function instead of the Sigmoid function to limit Zf\i 1 Ki =1
However, a single attention scalar is still allocated to the en-
tire convolution kernel, and this N is still huge which results
in a massive number of parameters, making it difficult to
deploy in practical applications.

2.1.2  Shape-aware Convolution

The core idea of Shape-aware Convolution[8] is to decom-
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Fig.2  The overall semantic segmentation network architecture.

(©)channel-wise Concatenation CKA-ShapeConv

pose a convolution kernel into two kernels for extracting
shape and base components from depth feature, which can
be combined by weights to get improved depth feature. This
can be calculated as Eq.(3):

Y =Conmv (W oap+Ws xas), Xi,) 3)

where ¢ and * denote the base-product and shape-product op-
erator, respectively. X;, € RCn*H*W and y € RCouxHXW
denote the input feature map and the output feature map,
respectively; W € R!X1XCinxCout jg the average value
of the convolution kernel W € RKn*KuXCinXCour gyer the
Kj, x K, dimensions, which extracts base component of
input feature map, Wy = W — Wp is to extract the shape
component, and W, € REwXKwXCinXCour. op e R! and
as € RCnx(KnxKu)x(KnxKu) denote the corresponding
learnable parameters.

In [8], the ShapeConv operator is only used for depth
feature. Therefore, when RGB and depth data are concate-
nated as input, the operator may lead to inaccurate feature
extraction. Therefore, we introduce an input-dependent at-
tention mechanism to rectify our convolution kernels, which
allows the weight of the shape-aware convolution kernel to
match the input data better.

2.2 Shape-aware Convolution with Convolutional Kernel
Attention

Inspired by dynamic convolution[32] and ShapeConv[8], we
design our shape-aware convolution with convolutional ker-
nel attention (CKA-ShapeConv), which leverages their ad-
vantages in using Softmax function instead of the Sigmoid
function to limit Zi’\i 1 Ki = 1 and addresses the issue of
segmentation errors caused by variations in depth value for
objects of the same class. The main idea of our method is
to calculate four sets of input-dependent convolution kernel
attention weights for rectification and combination of N con-
volution kernels. A CKA-ShapeConv layer of our model is
illustrated in Fig.1 and formulated as:

N
WZZ(SiOIiQOiQKiQWi)

= @)
W =Wpg + Ws

Y =Conv (W o ap +Ws *as) , Xin)

where © denotes the multiplication operation along dif-
ferent dimensions of the kernel space; Conv denotes



Algorithm 1 Shape-aware Convolution with Convolutional
Kernel Attention

Input: The input feature map Xj,,, convolution kernels W; (i € {1 : N})
Output: The output feature map Y

: Calculate S;, I;, O;, K;(i € {1 : N}) by Eq.(5)

: Rectify weight W — X (S; 01; ©0; 0 K; © W;)

Decompose W into base component Wg and shape component Wg

: Aggregate weight W «— Wg ¢ ap + Ws * as

: Learn the output feature map Y «— Conv (W, X;,)

T NI

the convolution operation; ap € RCinx1xI

RCin X (KpxKw)X(Kp

and as €
*Ku) denote the two learnable parame-
ters used to balance the average and residual components.
W; € REn*KuwxCinxCour denotes the i,;, convolution kernel.
S; € REnxKu) agsigns different attention scalars to W; at
Kj, x K, spatial locations; I; € RC" assigns different at-
tention scalars to each input channel of each convolution
kernel W;; O; € RCou assigns different attention scalars to
each output channel of each convolution kernel W;; K; € R!
assigns one attention scalar to each convolution kernel W;.
In this way, all dimensions of the convolution kernels re-
ceive attention weights that are input-dependent, ensuring
the extraction of rich and accurate feature information from
the upper-layer input. The specific calculation method is
formulated as follows:

Yin = RELU (Convix (GAP (Xin)))
S; = Sigmoid (Convix (Yin))
I; = Sigmoid (Convixi (Yin)) (5)
O; = Sigmoid (Convix1 (Yin))
K; = Softmax (Convix1 (Yin))

where Convjyx; denotes the 1 X 1 convolution layer. The
input X;, is squeezed into a feature vector with the size
RCin*1X1 by a olobal average pooling layer, followed by a
1 x 1 convolution layer and a RELU[36] operation. Next the
1 x 1 convolution layer maps the squeezed feature vector to a
lower dimensional space. For four head branches, each has a
1x 1 convolution layer with the output size of R (Kn>*Kuw)xIx1/
RCinX1x1 = RCouXIx1 = pNXIXI “and a Softmax or Sigmoid
function to generate the normalized attentions S;, I;, O;, K;,
respectively. We have incorporated temperature annealing
strategy[32] into the Sigmoid and Softmax function, which
is represented in Eq.(6).

o
Szgmmd(x) = m
e(xi/7) 6)
Softmax(xl‘) = W

j=1

where x and x; are the input vector. 7 is the temperature
value. The original functions are a special case(r = 1). The
corresponding ablation experimental result are provided in
Sect. 3.5.3. The algorithm of proposed CKA-ShapeConv is
illustrated as Algorithm 1.

ShapeConv[8] directly decomposes the convolution
kernel weight into shape component and base component.
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Fig.3  Visualization results from NYUD-v2 dataset, where each column
represents the segmentation results of the same image. The red boxes
indicate significant improvements.

Table 1  Performance comparison with the same backbone network on
the NYUDv2-13 dataset. Deeplabv3+ is the adopted architecture.

Backbone Setting Pixel Acc | Mean Acc | Mean IoU | f.w.IoU
Bascline 79.89 73.03 61.12 | 6750
Baseline* 80.48 73.41 62.08 68.23
‘ ShapeConv | 81.54 75.62 6324 | 69.65
ResNetS0 =g oeConve | 81.73 75.89 64.00 | 70.09
Ours 82.14 75.89 6412 | 70.43
Ours* 8251 76.12 6484 | 70.90
Baseline 79.94 73.34 61.34 67.68
Bascline* | 80.79 7412 6256 | 6831
ShapeConv | 81.72 75.40 6385 | 69.90
ResNetl 01 o SeConve | 82.13 76.33 6449 | 7035
Ours 82.30 76.71 64.70 | 70.66
Ours* 82.60 77.32 6513 | 71.03

In contrast, we decompose the weight after using input-
dependent attention-rectified convolution kernel to mitigate
the impact of decomposition on RGB feature. Unlike dy-
namic convolution[32], we rectify all dimensions of the con-
volution kernels and obtain better results with a smaller N
value, ensuring that the parameter count remains within a
usable range. Figure 2 depicts the overall method architec-
ture. We apply CKA-ShapeConv to all convolutional layers
except for the first layer of the CNN architecture.

3. Experiments
3.1 Experimental Setup
To validate the effectiveness of our method, we conduct ex-

periments on two indoor RGB-D benchmarks: NYU-Depth-
V2[34] and SUN RGB-D[35]. The NYUDv2 dataset con-
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Table 2 Performance comparison with the same backbone network on
the NYUDV2-40 dataset. Deeplabv3+ is the adopted architecture.

Table 4  Performance comparison with the same backbone network on
the SUN RGB-D dataset. Deeplabv3+ is the adopted architecture.

Backbone Setting Pixel Acc | Mean Acc | Mean IoU | f.w.IoU Backbone Setting Pixel Acc | Mean Acc | Mean IoU | f.w.IoU
Baseline 73.75 58.84 46.04 60.13 Baseline 80.60 56.24 44.28 69.09
Baseline* 74.61 59.29 47.47 60.85 Baseline* 80.85 56.76 45.44 69.31
e A 2 1 Bl 1 R 270 O O
Ours 75.09 61.49 48.90 61.80 Ours 81.02 57.09 45.24 69.78
Ours* 75.66 61.92 49.81 62.27 Ours* 81.34 57.68 46.32 70.13
Baseline 72.84 57.09 44.87 58.92 Baseline 80.70 56.92 44.58 69.24
Baseline* 73.48 57.78 45.84 59.39 Baseline* 81.18 57.76 45.75 69.74
ShapeConv 74.46 60.91 47.72 61.06 ShapeConv 81.14 57.83 45.98 69.89
Re;gzzt;o Sha;icOnv* 7491 61.16 4844 | 6139 ResNet101 Sha;?eConv* 81.69 58.66 7723 | 7052
N Ours 75.12 61.65 48.64 61.76 Ours 81.53 58.88 46.51 70.29
Ours* 75.63 61.78 49.63 62.18 Ours* 81.93 59.39 47.43 70.63
Baseline 74.49 60.56 47.59 61.14
Baseline* 75.20 61.05 48.84 61.67
ResNet101 SshhaPCCCOHV* ;2-32 gi'i(s) jggg gg-éi ers or ShapeConv layers with CKA-ShapeConv layers, while
al(?)euran o i 279 keeping other settings such as batch size, number of training
Ours™ 76.39 387 5128 63.08 epochs, learning rate, weight decay, and momentum con-
Bascline 75.06 61.49 4850 61.78 stant. This ensures that the obtained performance improve-
Baseline* 75.55 61.45 49.38 62.06 ments are solely due to the application of CKA-ShapeConv,
ResNext10 |onapecony | 76.05 62.68 50.08 | 63.01 but not other factors. We use ResNet[20] and ResNeXt[21]
1.32x8d Sha](’)efrgnv' ;2‘;; gg;g gg‘gg gg‘g with pre-trained models on ImageNet[22] as our backbone
Ours® 7649 | 6333 5097 | 6322 models in the training phase. All inputs are the concatena-
tion of RGB and HHA images. We adopt single-scale and
multi-scale testing strategies during inference. For the latter
Table 3  Performance comparison with other methods on NYUDv2-40 one, left—right ﬂipped images and six scales are exploited:
dataset. [0.5,0.75, 1.0, 1.25, 1.5, 1.75]. The * in tables of this section
Method Backbone | Pixel Acc | Mean Acc | Mean IoU | f.w.loU denotes the multi-scale strategy. We train our model on a
FCNI15] VGG16 65.4 46.1 34.0 49.5 .
RAFNet41] | ResNe0 | 73.8 603 75 — single NVIDIA GeForce RTX3090 GPU.
Link-RGBDI[38] | ResNet50 76.8 59.6 49.5 -
MMANet[40] | ResNet50 - - 49.6 - 3.2 Experiments on Different Datasets
Ours ResNet50 | 75.66 61.92 49.81 62.27
NAM[10] | ResNetl01| 75.0 60.7 47.9 6L5 NYUDv2 Dataset: We adopt two popular settings for this
ShapeConv[8] |ResNetlO1| 755 60.7 49.0 617 dataset, i.e., 13-class and 40-class, and show the results of
GGED[39] ResNet101 75.9 62.4 49.4 - . . .
M25D[25] |ResNetlOl | 76.9 — 300 — baseline, ShapeConv[8] and our CKA-ShapeConv with dif-
SGNet[9]  |ResNetlOl | 76.8 633 511 - ferent backbones in Table 1 and Table 2, respectively. It
Ours ResNet101 | 76.39 63.87 51.28 | 63.08 can be seen that our CKA-ShapeConv achieve better results

sists of 1,449 RGB-D scene images, where 795 images are
split for training and 654 images for testing. We adopt two
popular settings for this dataset, i.e., 13-class[34] and 40-
class[37], where all pixels are labeled with 13 or 40 classes,
respectively. SUN RGB-D dataset consists of 10,335 RGB-
D indoor images, with 37 class labels assigned to each pixel.
Following widely used settings[35], we divide the dataset
into a training set with 5,285 images and a test set with 5,050
images. We report results using the same evaluation proto-
col and metrics as FCN[15], i.e., pixel accuracy (Pixel Acc.),
mean accuracy (Mean Acc.), mean region intersection over
union (Mean IoU), and frequency weighted intersection over
union (f.w.IoU). We employ several popular architectures
with different backbones to demonstrate the effectiveness
and generalization ability of CKA-ShapeConv. The baseline
is generic architectures equipped with vanilla convolutional
layers. We rerun the experiments for both the baseline and
ShapeConv|[8] and obtain new results. For all baseline and
ShapeConv, we only replace the vanilla convolutional lay-

than both the baseline and ShapeConv methods. The core
idea of ResNeXt is to use a parallel multi-branch structure to
enhance the feature extraction capability of the network. It
is similar to our approach, but there is some overlap. There-
fore, compared to the ResNeXt series networks, our method
is more effective on the ResNet series networks and achieves
the best results with the ResNet101 backbone. We also com-
pare the performance of our CKA-ShapeConv with several
developed methods in Table 3 where our method achieves a
competitive performance on NYUDv2-40.

SUN RGB-D Dataset: The baseline, ShapeConv, and our
CKA-ShapeConv results with different backbone networks
are shown in Table 4. Our CKA-ShapeConv achieves better
results than both the baseline and ShapeConv methods. But
our method shows more noticeable performance improve-
ment on NYUDv2 dataset compared to SUN RGB-D.

3.3 Experiments on Different Architectures

Our proposed CKA-ShapeConv is a general layer for RGB-
D semantic segmentation that can be easily inserted into




Table 5  Performance comparison with different architecture network on
the NYUDv2-40 dataset.

Architecture| Backbone | Setting |Pixel Acc[Mean Acc|Mean IoU|f.w.IoU

Baseline | 73.75 58.84 46.04 | 60.13

ResNet50 ([ShapeConv| 74.78 60.74 47.61 |61.18

Deeplabv3+ Ours 75.09 | 61.49 | 48.90 |61.80

Baseline | 74.49 60.56 47.59 |6l1.14

ResNet101|ShapeConv| 75.49 61.30 48.89 | 62.25

Ours 75.90 63.41 50.29 | 62.79

Baseline | 72.82 57.53 44.74 | 58.84

ResNet50 [ShapeConv| 74.33 59.12 46.90 | 60.59

Ours 74.71 60.21 48.05 | 61.26

Deeplabv3 Baseline | 74.05 | 59.34 | 4636 | 60.44
ResNet101|ShapeConv| 74.97 61.47 48.48 | 61.52
Ours 75.55 62.01 49.07 | 62.37
Baseline | 71.82 55.34 42.55 |57.86
ResNet50 [ShapeConv| 72.79 56.66 44.44 159.04
FPN Our§ 73.70 59.54 46.61 | 60.60
Baseline | 73.28 57.48 45.11 [59.57
ResNet101{ShapeConv| 73.92 58.85 46.08 | 60.50
Ours 74.60 60.63 47.69 | 61.47
Baseline | 72.08 55.75 43.15 |58.21
ResNet50 [ShapeConv| 74.14 59.42 46.66 | 60.37
Ours 74.40 60.10 47.25 |60.95
PSPNet

Baseline | 72.34 55.38 43.16 | 58.43

ResNet101|ShapeConv| 74.76 61.56 48.04 | 61.25

Ours 75.33 62.58 49.30 | 62.00

most CNN architectures as a replacement for vanilla convo-
lution. To validate its generalization performance, we eval-
uate the effectiveness of our method in several representa-
tive semantic segmentation architectures: Deeplabv3+[18],
Deeplabv3[17], FPN[19], PSPNet[23] with different back-
bone networks(ResNet-50[20], ResNet-101[20]), and con-
duct experiments on the NYUDv2-40[37] dataset. The per-
formance is reported in Table 5. We can observe that CKA-
ShapeConv brings performance improvements in all settings,
demonstrating the generalization ability of our method.

3.4 Visualization

Figure 3 shows the visual comparison results of our
CKA-ShapeConv, Baseline, and ShapeConv[8] on the
Deeplabv3+[18] architecture with the ResNet101[20] back-
bone network. Our CKA-ShapeConv extracts more accurate
features from the higher-level inputs by leveraging the input-
dependent attention. The rectification of multiple convolu-
tion kernels in different dimensions effectively enhances the
model’s capacity and performance, greatly improving the
robustness (e.g., in Fig.3(b), the highlighted area in the RGB
image would lead a segmentation error in other models, but
our model produces the correct result).

3.5 Ablation Study

3.5.1 Convolutional Kernel Number

We conduct ablation experiments to validate the impact of
the number of convolution kernels on our method. We train

models with different number of convolution kernels and
backbone networks. The results are shown in Table 6. From
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Table 6  Performance comparision with different N in CKA-ShapeConv
on the NYUDvV2-40 dataset. The architecture adopted in this table is
deeplabv3+ with different backbone.

Backbone Setting Pixel Acc | Mean Acc | Mean IoU | f.w.IoU
Baseline 73.75 58.84 46.04 60.13
ShapeConv 74.78 60.74 47.61 61.18
N=1 74.73 61.03 47.99 61.30
ResNetS0 - —x 75.09 61.49 4890 | 61.80
N=3 75.01 61.39 48.57 61.57
N=4 74.76 61.34 48.71 61.23
Baseline 74.79 60.56 47.59 61.14
ShapeConv | 75.49 61.30 48.89 62.25
N=1 75.62 62.53 49.19 62.49
ResNetlOl —x— 75.90 63.41 5029 | 62.79
N=3 75.78 62.22 49.47 62.51
N=4 75.72 62.30 49.96 62.64
Table 7  Investigating the complementarity of four types of attentions in

CKA-ShapeConv on the NYUDv2-40 dataset. The architecture adopted in
this table is deeplabv3+ with ResNet50 as backbone.

Backbone | S; | I; | O; | K; | Pixel Acc | Mean Acc | Mean IoU | f.w.IoU
—|=|-1-1 7375 58.84 46.04 60.13
- |V |V |V | 7491 61.35 48.67 61.56

ResNet50 V-V [V ]| 7450 60.58 47.71 61.19
VIV -V | 7462 60.33 47.88 61.24
VIV -] 7473 61.03 47.99 61.30
VIVIVIV| 7509 61.49 48.90 61.80

Table 8  Performance comparision with different temperature in CKA-

ShapeConv on the NYUDv2-40 dataset. The architecture adopted in this
table is deeplabv3+ with ResNet50 as backbone.

Backbone | Setting | Pixel Acc|Mean Acc | Mean IoU | f.w.IoU
Baseline 73.75 58.84 46.04 60.13
ShapeConv | 74.78 60.74 47.61 61.18
ResNet50 [ 7=10 74.68 61.14 48.13 61.26
7=20 75.09 61.49 48.90 61.80
7=30 74.93 60.68 48.10 61.53

the table, it can be observed that when using N=2 convo-
lution kernels is the optimal choice. This is because when
using N=/, the model’s capacity does not receive sufficient
improvement. On the other hand, the model’s gains reach
saturation when the number of convolution kernels is too
high. Having an excessive number of convolution kernels
lead to difficulties in optimization and a significant increase
in the parameter count.

3.5.2 Four sets of Attentions

We conduct ablation experiments to validate the necessity of
the four sets of input-dependent convolution kernel attentions
proposed in our method, and the results are shown in Table 7.
From the table, it can be observed that the inclusion of each
attention individually leads to performance improvements.
When all four attentions are used together, the best results
are achieved.

3.5.3 Temperature value

To validate the impact of temperature value[32] in our
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method, we conduct experiments with different temperature
value. The results are shown in Table 8, where we obtain
the best results with a temperature value of 20. A too small
temperature value can lead to significant weight differences
in the early stages of training, causing optimization to focus
only on a small subset of convolution kernels and resulting
in slow convergence. On the other hand, a too large tem-
perature value can lead to overly uniform attention, making
it difficult for the convolution kernels to receive effective
training.

4. Conclusion

In this paper, we propose CKA-ShapeConv that is a plug-
and-play convolutional layer. Instead of using a single con-
volution kernel, we aggregate N parallel convolution kernels
based on input-dependent attention, which ensure that the
aggregated convolution kernel is more capable of catching
semantic information from the input feature map, reduc-
ing interference between RGB and depth features. Then
the aggregated convolution kernel is decomposed into two
components: base and shape, two new learnable weights are
introduced to cooperate with them independently, and finally
a convolution is applied on the re-weighted combination of
these two components. These two components can capture
semantic and shape information of regions effectively, re-
spectively. CKA-ShapeConv increases model capacity and
reduces distractive information, while addressing the issue
of segmentation errors caused by the positions of different
classes in the depth map. CKA-ShapeConv only requires a
small amount of computation to calculate four sets of atten-
tion weights and perform one combination of the N kernels.
We conduct extensive experiments on two indoor RGB-D
semantic segmentation benchmarks and show that the pro-
posed CKA-ShapeConv layer can improve the performance
of backbone models effectively. The input-dependent atten-
tion effectively reduce the mutual interference between RGB
and depth features caused by their concatenation. However,
RGB and depth information are inherently different from
each other. We recommend incorporating this approach to
double-stream networks and design a suitable fusion mod-
ule to integrate RGB and depth information when pursing
performance.

References

[1] N. Mukojima, M. Yasugi, Y. Mizutani, T. Yasui, H. Yamamoto,
“Deep-learning-assisted single-pixel imaging for gesture recogni-
tion in consideration of privacy,” IEICE Trans.Electron, vol.E105-C,
pp.79-85, 2022.

[2] S. Sedukhin, Y. Tomioka, and K. Yamamoto, “In search of
the performance- and energy-efficient CNN accelerators,” IEICE
Trans.Electron, vol.E105-C, no.6, pp.209-221, 2022.

[3] D.A. Ando, Y. Kase, T. Nishimura, T. Sato, T. Ohgane, Y. Ogawa, J.
Hagiwara, “Deep neural networks based end-to-end DOA estimation
system,” IEICE Trans. Commun, vol.E106-B, no.12, pp.1350-1362,
2023.

[4] W. Zhou, J. S. Berrio, S. Worrall, and E. Nebot, “Automated evalua-
tion of semantic segmentation robustness for autonomous driving,”

(51

(6]

(7]

(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

IEEE TITS, vol.21, no.5, pp.1951-1963, 2020.

K. Yang, X. Hu, Y . Fang, K. Wang, and R. Stiefelhagen, “Om-
nisupervised omnidirectional semantic segmentation,” IEEE TITS,
vol.23, no.2, pp.1184-1199, 2022.

L. Sun, K. Yang, X. Hu, W. Hu, and K. Wang, “Real-time fusion net-
work for RGB-D semantic segmentation incorporating unexpected
obstacle detection for road-driving images,” IEEE RA-L, vol.5, no.4,
pp.5558-5565, 2020.

J. Zhang, K. Yang, A. Constantinescu, K. Peng, K. Miiller, and
R. Stiefelhagen, “Trans4Trans: Efficient transformer for transparent
object and semantic scene segmentation in real-world navigation
assistance,” IEEE TITS, vol.23, no.10, pp.19 173-19186, 2022.

J. Cao, H. Leng, D. Lischinski, D. Cohen-Or, C. Tu and Y. Li,
“ShapeConv: shape-aware convolutional layer for indoor RGB-D
semantic segmentation,” ICCV, pp.7068-7077, 2021.

L.-Z. Chen, Z. Lin, Z. Wang, Y.-L. Yang, and M.-M. Cheng, “Spa-
tial information guided convolution for real-time RGBD semantic
segmentation,” IEEE TIP, vol.30, pp.2313-2324, 2021.

Y. Zheng, Y. Xu, S. Qiu, W. Li, G. Zhong and M. Sarem, “A novel
semantic segmentation algorithm for RGB-D images based on non-
symmetry and anti-packing pattern representation model,” IEEE Ac-
cess, vol.11, pp.36290-36299, 2023.

D. Seichter, M. Kohler, B. Lewandowski, T. Wengefeld and H. -M.
Gross, “Efficient RGB-D semantic segmentation for indoor scene
analysis,” ICRA, pp.13525-13531, 2021.

W. Zhou, E. Yang, J. Lei, and L. Yu, “Frnet: Feature reconstruction
network for rgb-d indoor scene parsing,” IEEE JSTSP, vol.16, no.4,
pp.677-687, 2022.

W. Zhou, E. Yang, J. Lei, J. Wan, and L. Yu, “Pgdenet: Progressive
guided fusion and depth enhancement network for rgb-d indoor scene
parsing,” IEEE TMM, vol.25, pp.3483-3494, 2023.

J. Zhang, H. Liu, K. Yang, X. Hu, R. Liu, and R. Stiefelhagen,
“Cmx: Cross-modal fusion for rgb-x semantic segmentation with
transformers,” IEEE TITS, vol.24, pp.14679-14694, 2023.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” CVPR, pp.3431-3440, 2015.

L.-C Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs,” IEEE TPAMI,
vol.40, pp.834-848, 2017.

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” arXiv preprint
arXiv:1706.05587, 2017.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-Decoder with atrous separable convolution for semantic
image segmentation,” ECCV, pp.801-818, 2018.

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Be-
longie, “Feature pyramid networks for object detection,” CVPR,
pp.2117-2125, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CVPR, pp.770-778, 2016.

S. Xie, R. Girshick, P. Dolldr, Z. Tu,and K. He, “Aggregated residual
transformations for deep neural networks,” CVPR, pp.1492-1500,
2017.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, “ImageNet large scale
visual recognition challenge,” IICV, vol.115, pp.211-252, 2015.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” CVPR, pp.2881-2890, 2017.

E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“Segformer: Simple and efficient design for semantic segmentation
with transformers,” NeurIPS, 2021.

Y. Xing, J. Wang, and G. Zeng, “Malleable 2.5D convolution: learn-
ing receptive fields along the depth-axis for RGB-D scene parsing,”
ArXiv abs/2007.09365, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser and 1. Polosukhin, “Attention is all you need,”



[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

NIPS, 2017.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation networks,”
CVPR, pp.7132-7141, 2018.

H. Zhou, L. Qi, H. Huang, X. Yang, Z. Wan, X. Wen, “CANet:
Co-attention network for RGB-D semantic segmentation,” Pattern
Recognition, vol.124, 2021.

G. Li and Q. Fang and L. Zha, X. Gao, N. Zhen, “HAM: Hybrid
attention module in deep convolutional neural networks for image
classification,” Pattern Recognition, vol.129, 2022.

X. Jia, B. D. Brabandere, T. Tuytelaars, and L. V. Gool, “Dynamic
filter networks,” NIPS, pp.667-675, 2016.

B. Yang, G. Bender, Q. V. Le, and J. Ngiam, “Condconv: condition-
ally parameterized convolutions for efficient inference,” NeurIPS,
2019.

Y. Chen, X. Dai, M. Liu, D. Chen, L. Yuan and Z. Liu, “Dynamic
convolution: attention over convolution kernels,” CVPR, pp.11027-
11036, 2020.

J. Hou, Z. Guo, Y. Wu, W. Diao, T. Xu, “BSNet: Dynamic hybrid
gradient convolution based boundary-sensitive network for remote
sensing image segmentation,” IEEE TGRS, vol.60, pp.1-22, 2022.
N. Silberman, D. Hoiem, P. Kohli,and R. Fergus, “Indoor segmenta-
tion and support inference from RGBD images,” ECCV, 2012.

S. Song, S. P. Lichtenberg, and J. Xiao, “SUN RGB-D: a RGB-D
scene understanding benchmark suite,” CVPR, pp.567-576, 2015.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” NIPS, pp.84-90,
2012.

S. Gupta, P. Arbelaez, and J. Malik, “Perceptual organization
and recognition of indoor scenes from RGB-D images,” CVPR,
pp.564-571, 2013.

P. Wu, R. Guo, X. Tong, S. Su, Z. Zuo, B. Sun, J. Wei, “Link-
RGBD: Cross-guided feature fusion network for RGBD semantic
segmentation,” IEEE Sensor Journal, vol.22, pp.24161-24175, 2022.
W. Zou, Y. Peng, Z. Zhang, S. Tian, X. Li, “RGB-D gate-guided
edge distillation for indoor semantic segmentation,” MTA, vol.81,
pp-35815-35830, 2022.

W. Shicai, Y. Luo and C. Luo, “MMANet: margin-aware distilla-
tion and modality-aware regularization for incomplete multimodal
learning,” CVPR, pp.20039-20049, 2023.

X. Yan, S. Hou, K. Awudu, W. Jia, “RAFNet: RGB-D attention
feature fusion network for indoor semantic segmentation,” Displays,
vol.70, pp.102082, 2021.

Kun Zhou received the B.S. degree in elec-
tronic information engineering from Zhejiang
Normal University, Jinhua, China, in 2022. He
is currently pursuing the M.S. degree at Zhe-
jiang Normal University. His research interests
include computer vision and pattern recognition.

IEICE TRANS. FUNDAMENTALS, VOL.Exx-??, NO.xx XXXX 200x

d.h

Zejun Zhang  received the B.S. and M.S. de-
grees in computer science from Guizhou Univer-
sity, Guiyang, China, in 2007 and 2010, respec-
tively, and the Ph.D. degree in electronic engi-
neering from Xidian University, Xi’an, China, in
2014. He is currently a Lecturer with the College
of Physics and Electronic Information Engineer-
ing, Zhejiang Normal University, Jinhua, China.
His current research interests include computer
vision and pattern recognition.

Xu Tang received the B.S. degree from
Dezhou University, Dezhou, China, in 2021. He
is currently pursuing the M.S. degree at Zhe-
jiang Normal University. His research interests
include computer vision and pattern recognition.

Wen Xu received the B.S. degree from Xi-
hua University, Chengdu, China, in 2022. She
is currently pursuing the M.S. degree at Zhe-
jiang Normal University. Her research interest is
computer vision.

Jianxiao Xie received the B.S. and M.S.
degree in electronic information engineering
and Detection Technology and Automation from
the Nanchang Hangkong University, Nanchang,
China in 2013, and 2016, respectively, and the
Ph.D. degrees in Information and Communi-
cation Engineering from Beijing University of
Posts and Telecommunications, Beijing, China
in 2020 He is now a lecturer in the College of
Physics and Electronic Information Engineering,
Zhejiang Normal University. His research inter-

ests include wireless mobile networks and wireless communications.

Changbing Tang received his Ph.D. from
the Department of Electronic Engineering, Fu-
dan University, Shanghai, China in2014. He
received his B.S. and M.S. degrees in mathe-
matics and applied mathematics from Zhejiang
Normal University, Jinhua, China, in 2004 and
2007, respectively. Dr. Tang was the recipient
of the Academic New Artist Doctoral Post Grad-
uate from the Ministry of Education of China
in 2012 and the recipient of the Academician
Pairing Training Program for Young Talents of

Zhejiang Province in 2019. He is currently an Associate Professor with the
College of Physics and Electronic Information Engineering, Zhejiang Nor-
mal University, Jinhua, China. His research interests include game theory
and its applications, intelligent optimization and decision-making.


http://www.tcpdf.org

