
1496
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.9 SEPTEMBER 2024
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Color Correction Method Considering Hue Information for
Dichromats
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SUMMARY Images with rich color information are an important source
of information that people obtain from the objective world. Occasionally, it
is difficult for people with red-green color vision deficiencies to obtain color
information from color images. We propose a method of color correction
for dichromats based on the physiological characteristics of dichromats,
considering hue information. First, the hue loss of color pairs under nor-
mal color vision was defined, an objective function was constructed on its
basis, and the resultant image was obtained by minimizing it. Finally, the
effectiveness of the proposed method is verified through comparison tests.
Red-green color vision deficient people fail to distinguish between partial
red and green colors. When the red and green connecting lines are parallel
to the a* axis of CIE L*a*b*, red and green perception defectives cannot
distinguish the color pair, but can distinguish the color pair parallel to the
b* axis. Therefore, when two colors are parallel to the a* axis, their color
correction yields good results. When color correction is performed on a
color, the hue loss between the two colors under normal color vision is
supplemented with b* so that red-green color vision-deficient individuals
can distinguish the color difference between the color pairs. The magnitude
of the correction is greatest when the connecting lines of the color pairs
are parallel to the a* axis, and no color correction is applied when the
connecting lines are parallel to the b* axis. The objective evaluation results
show that the method achieves a higher score, indicating that the proposed
method can maintain the naturalness of the image while reducing confusing
colors.
key words: red-green color deficiency, color correction, color contrast
enhancement, image processing

1. Introduction

With the continuous development of society and the wide
popularity of smart devices, digital media technology has
been evolving. Multimedia content is mostly used to deliver
information, such as pictures, videos, and colorful charts,
on smartphones, computers, and other smart devices that
flood our work and daily lives. Humans acquire and receive
information from the objective world through their sense
organs (i.e., ears, eyes, mouth, nose, and hands) by listening,
seeing, tasting, smelling, and making contact. Among the
information received from the outside world, those from
vision constitute the vast majority and largely affect people’s
cognitive, emotional, and subconscious activities.

Images, with rich color information, are an important
source of information that people obtain from the objective
world. The eyes can perceive differences in light when they
see different colors. The anterior segment of the eye includes
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crystals that focus images onto the retina, which are covered
with special nerve cells, including optic rods and cone cells.
Optic rod cells perceive low light, dark vision, and vision
without color, whereas optic cone cells perceive bright light,
bright vision, and vision with color. Thus, optic cone cells
are responsible for color vision and contain three types of
optic pigment. According to the absorption spectrum, the
stimuli for the three types of pigment cells, which are sen-
sitive to red, green, and blue light, are mixed to form color
vision. The three optic cone cells, L-, M-, and S-optic cone
cells, are sensitive to long-, medium-, and short-wavelength
visible light, respectively. Optic rod cells contain only one
optochrome, which is extremely sensitive to blue-green light
with a peak at 500 nm [1]. When the optic cone and rod cells
work simultaneously, the eye can recognize a wide range of
colors.

The average person has three types of visual cone cells,
each of which recognizes a color – green, red, or blue – hence
the term “trichromats”. Each type of optical cell undergoes
a different chain reaction at different light wavelengths, re-
sulting in vision. These three types of vision cells, when
activated, send information to the nerve center. The brain
collects combined signals and produces color vision. The
verbal description of the color being sought and the forma-
tion of pigments in the optic cones depends on genes. When
genes are mutated, some or all color vision is lost or al-
tered. In the absence of optic pigments in the optic cones,
the eye cannot distinguish colors; this condition is known as
color vision deficiency or acritochromacy. There are three
types of acritochromia: protanopia, deuteranopia, and tri-
tanopia. A protanopia lacks sensitivity to long wavelengths
of light, and the affected cone cells have difficulty distin-
guishing greens and reds of the spectrum. Deuteranopia is
affected in the same spectral range as protanopia. Those with
deuteranopia lacked visual cone cells sensitive to interme-
diate wavelengths, making the difference more pronounced.
Protanopia and deuteranopia, referred to as red-green color
blindness, affect similar groups of people. Tritanopia is rare
and suggests a lack of cone cells sensitive to short-wave light.
In some people, the cells of the optic cones do not contain
any pigment, and the eye cannot recognize any color; this
condition is known as monochromatism. Monochromatism
is a very rare and severe form of color vision disorder.

A person with normal color vision can see over a mil-
lion shades and tints, while a person with protanopia and
deuteranopia can only see about 10%. For people with color
vision deficiencies, colors can sometimes seem muted and
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confusing, and some colors can be difficult to distinguish.
The detection rate of color acritochromacy among Chinese
people is about 3.14%, of which the rate of male and female
color blindness is 4.71% ± 0.074% and 0.67% ± 0.036%,
respectively; the frequency of color blindness gene carriers
is 8.98%. The rate of color acritochromacy in Japan is about
4%–5% for males and 0.5% for females; in Europe and the
United States, it is about 8% for males and 0.4% for females.
With the progress of society and the development of science
and technology, the division of labor in various professions
has become increasingly sophisticated, and the requirements
for color discrimination in some professions have also in-
creased. However, at present, many people are unaware of
this problem and cannot judge whether they have color vi-
sion abnormalities. Therefore, acritochromacy screening is
medically essential. There are various screening tools for
color vision, such as the Nagel color vision screening gog-
gles and the FM-100 hue test. Each disk is covered with dots
of various colors and sizes, some of which are numbered in
color components that are easily confused by people with
color vision impairment. The dots that form the numbers or
shapes are easily recognizable to people with normal color
vision and are invisible or difficult to see for peoplewith color
vision disorders. Since its inception, the Ishihara acritochro-
macy test has been widely used for its applicability and high
accuracy.

In recent years, many researchers have proposed dif-
ferent color vision models based on the three-channel vision
model to simulate color perception in dichromatopia [2], [3].
Brettel [4] and Viénot [5] proposed simulation models of
protanopia and deuteranopia that constructed a color percep-
tion plane of dichromatopia in the LMS space and quantified
the range of color information visible to dichromatopia. Mar-
tin [6] proposed amodel of color blindness and normal visual
system, elaborating on the reasons for the abnormalities in
color perception by comparing the differences in the ability
to perceive color between normal and dichromats. Machado
et al. [7] proposed a physiological-based model to simulate
color perception by shifting the spectral distribution curves
of the L or M cone cells, depending on the degree of curve
shift that simulates color perception in people with different
degrees of color vision abnormalities. Thesemodels differed
in approach but achieved similar results.

This study used the color acritochromacy simulation
model proposed byViénot [5] for red-green color vision defi-
ciency simulation and proposed a color correctionmethod for
dichromats that considers hue information. For protanopia
and deuteranopia, the loss of color information arises mainly
on the a* axis, while little information is lost in the b* axis,
based on the above characteristics. In this study, when the
color pairs are parallel to the a*-axis of CIE L*a*b* [8],
the two colors are color-corrected, and the hue loss between
the two colors under normal color vision is supplemented to
b*. The correction is greatest when the connecting lines of
the color pairs are parallel to the a*-axis, whereas no color
correction is applied when the connecting lines are paral-
lel to the b*-axis. Color correction can help find a balance

between image contrast enhancement and naturalness main-
tenance, increasing the level of color perception in red-green
color vision deficient individuals while maintaining the nat-
uralness of the image amongst trichromats. In this paper,
when the color of the output image is closer to that of the
input image (with a smaller average color difference), it is
said that the naturalness of the output image is better.

The remainder of the paper is organized as follows:
Section 2 describes related work on color vision detection.
Section 3 discusses the proposed method, while Sect. 4 ver-
ifies the validity of the proposed method. Finally, Sect. 5
concludes the paper.

2. Related Work

Humans have the ability of color perception and can perceive
the frequency of light reflected from the surface of an ob-
ject. However, color vision deficiency is common, and the
problem, while not usually fatal, can cause inconvenience
to a large portion of the population. Color vision defects
are caused by two main reasons: natural genetic factors and
nerve or brain damage. Since most cases are genetically
determined, they need to be genetically altered in their treat-
ment. Currently, there is no method of gene therapy in
China, and treatment can only alleviate the inconvenience
of people with color vision defects from the perspective of
color blindness correction. With the emergence of modern
digital display devices, digital image processing techniques
for recoloring images or color correction to compensate for
color vision deficiencies has attracted much attention.

Several recoloring algorithms are used in web, soft-
ware, and mobile applications [9], [10]. Most methods be-
gin by changing the image hue to the correct color [11]–[15].
Huang et al. [16]–[18] proposed a method to transfer the in-
formation about defects to a normal position, reduce the
difference between the color-corrected image and the orig-
inal image by introducing an error function, and transfer
the information on the defective axes a* to the b* axis by
rotating the operation, thereby reducing the loss of image
content. In subsequent research, they proposed an improved
recoloring algorithm that sets the key colors of the image and
measures the contrast between the two key colors by calcu-
lating the Kullback-Leibler dispersion and interpolating the
colors according to the corresponding mapping to ensure the
smoothness of the local colors in the recolored image. Kuhn
et al. [19] proposed a mass-spring system, thereby enhanc-
ing the color contrast of red and green defects by setting the
mass of each particle on the spring according to the original
color and perceived difference to ensure the naturalness of
the original color. However, this method cannot effectively
enhance images that span almost the entire chromatic plane.
In 2015, Milic et al. [20] proposed a color correction method
based on confusion lines, which defines the remapping range
of the center color and avoids creating new confusing colors
for the center color. However, it cannot effectively avoid
creating new confusing colors for those other than the cen-
ter color. Takimoto et al. [21] proposed a saturation-based
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color correction method, which converts a color image into
a grayscale map, preprocesses the grayscale image, and fi-
nally, color modifies the set of pixels with similar colors to
achieve color correction. In 2016, Tennenholtz et al. [22]
proposed a similarity-based natural contrast enhancement
technique, where the similarity difference between differ-
ent regions of the image is measured based on the variance
difference between the pixels in the original and simulated
images to identify confusing regions and change only some
regions to enhance the color contrast. Hassan et al. [23] pro-
posed a correction method that maintains the naturalness of
red-green color vision deficient individuals. The advantage
of this method is that it maintains the color of the confusing
color-corrected regions at the same hue as the original color.
In addition, the recolored image has the same luminance as
the original image. In 2019, Hassan [24] extended the pre-
vious work by proposing a flexible color contrast enhance-
ment method targeting red-green deficiencies by setting a
dynamic threshold. A contrast parameter was also intro-
duced for exaggerating the blue stimulus of the recolored
image, but it was more inefficient than the previous method
in terms of naturalness. Zhu et al. [25] proposed a novel
adaptive reimaging algorithm that performs image coloring
by minimizing an objective function constrained by contrast
enhancement and naturalness preservation.

In addition to changing the hue of an image, image lu-
minance can also be changed for color correction purposes.
In 2010, Tanaka et al. [26] proposed an effective luminance
modification method, which is an optimization problem de-
fined by the color differences in the input image with re-
spect to the luminance component. Later Suetake et al. [27]
performed luminance modification around the contours of
objects by considering the luminance modification of the
Craik-O’ Brien effect. However, the amount of luminance
modificationwas insufficient for difficult to distinguish parts,
and there is room for improvement. In 2016, Bao et al. [28]
improved thismethod, using the a*-component instead of the
X-component, and the weight portion of the luminance al-
teration was redefined to achieve color blindness correction.
In 2019, Meng [29], [30] proposed a luminance correction
method based on the minimization problem, which modi-
fies the luminance value of the output image by considering
the color difference of the input image to preserve its visual
details and output images with natural colors.

3. Proposed Method

In this study, we focused on common types of color blind-
ness: red and green. The method described by Viénot [5]
was used to simulate color blindness. In this method, N
and K denote normal trichromats and dichromats, respec-
tively. Red and green blindness are abbreviated as P and D,
respectively.

The method used in this study transfers color informa-
tion from defective to normal functional cones using the CIE
L*a*b* color space as the working domain. In red-green
color vision defects, a strong correlation exists between the

original color of the image and the luminance L* and b*
axis information of the simulated color of the color vision
defect perception. In contrast, there is a weak correlation
with the a* axis information to reduce information loss on
the a* axis. The b* component of the image is moderately
altered so that the information of the a* is reflected onto the
b* axis in the CIE L*a*b* color space. In this paper, the
method only modifies the input image’s b* values, and the
L* and a* values remain unchanged.

3.1 Objective Function

This method uses the CIE L*a*b* color space as the working
domain, and the objective function is defined as

E(f ) =
n∑
i=1

n∑
j=1

[ (
fi − fj

)
− δi j

]2
. (1)

Among them.

δi j = ∆b∗i j + α cos
[
Φ( ®Ci j • ®νθ )

]
, (2)

®Ci j =
(
∆a∗i j, ∆b∗i j

)
, (3)

®νθ = (cos θ, sin θ) , (4)
∆a∗i j = a∗i − a∗j , (5)
∆b∗i j = b∗i − b∗j, (6)

where vector f = { f1, f2, . . . , fn} represents the output im-
age, n is the number of pixels in the input image, fi is the
b∗ component value of the ith pixel in output image, and
fj is the b* component value of the jth pixel in output im-
age. a∗ represents the component from green to red, and
b∗ represents the component from blue to yellow; a∗i and b∗i
respectively represent the a* and b* components of i in the
input image, ®Ci j is a vector in the a∗b∗ plane; ®νθ is the unit
vector in the a*b* plane, θ is the angle, and it is set to 0◦

in this study. Φ
(
®Ci j · ®νθ

)
is the angle between vectors ®Ci j

and ®νθ in a*b* space. α is a parameter that takes on a real
number.

In the proposed method, the main goal is to maintain
color pair differences while making the color-corrected re-
sultant image as natural as possible. As shown in Fig. 1, the
difference in the a* axis is large, and the difference in the
b* component between pixel i and pixel j in input image is
small. Protanopia and deuteranopia mainly lose information
on the a* axis, which leads to the inability of red-green color-
blind individuals to distinguish color pairs. In this study, a
panning operation is performed on the a*b* chromatic plane
to convert these colors into new colors. i′ and j ′ are the pixel
points after the panning operation on i and j, respectively.
At this time, the distance of this color pair on the b* axis is
increased, thus improving the color discrimination ability of
people with chromatic deficiencies. α cos

[
Φ

(
®Ci j · ®νθ

)]
is

the correction amount, as shown in Fig. 2. Since red-green
color vision defectors can distinguish color differences along
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Fig. 1 Schematic diagram of color correction for pixels i and j on the
a*b* plane.

Fig. 2 Cosine function graph.

the b* axis, no color change is necessary when the color pair
is parallel to the b* axis; color correction is greatest when the
color pair is parallel to the a* axis, i.e., Φ

(
®Ci j · ®νθ

)
is close

to zero. The unit vector ®νθ determines whether the corrected
color is modified in the positive or negative direction of b*.

The pixels i and j in Fig. 1 are corrected by δi j in Eq. (2).
From the positions of pixels i and j, ∆b∗i j in Eq. (2) is a
positive number; at the same time, the angle between ®Ci j

and ®νθ is less than 90◦. From Fig. 2, it can be seen that the
value of cos

[
Φ

(
®Ci j · ®νθ

)]
is positive. Therefore, pixel i’s b∗i

will be corrected in the direction of +b∗, and the corrected
position will be i’. Similarly, pixel j’s b∗j will be corrected
in the direction of −b∗, and the corrected position will be
j’. After the above correction, the difference between color
pairs (i, j) and b∗ that are difficult to distinguish due to color
vision abnormalities is enlarged, thus enabling color vision
abnormalities to distinguish the corrected color pairs (i′, j ′).

Fig. 3 Experimental images: (a) Chart 5, (b) Chart 6, (c) Chart 97, (d)
flower, (e) line, and (f) Nanten.

3.2 Minimization of the Objective Function

The resulting imagewas obtained by optimizing the objective
function as follows:

f̃ = arg min
fi ∈R

E(f ), (7)

where f̃ is the output image and R is the set of real numbers.
We minimize the objective function, that is, choose a value
that can optimally change the b*-component value of the
color image and obtain the optimal output image.

The solution to the minimization problem of formu-
las (1)–(6) is obtained by the conjugate gradient method.
Solving optimization problems is equivalent to solving the
following simultaneous equations:

A(n)x = b. (8)

Among them,

A(n) = nI(n) − J(n), (9)
x = ( f1, f2, . . . , fn)T, (10)

b =
©«

n∑
j=1

δ1j,

n∑
j=1

δ2j, . . . ,

n∑
j=1

δnj
ª®¬

T

. (11)

Among them, I(n) and J(n) are two matrices, which are
n × n identity matrices and n × n matrices with all elements
being 1, respectively. Through Eq. (9) and Eq. (11), the
relationship between A and b can be obtained as follows:

A2
(n) = nA(n) (12)

A(n)b = nb. (13)

According to the relationship between Eq. (12) and
Eq. (13), use the conjugate gradient method to obtain an
analytical solution.

Our workspace is the CIE L*a*b* color space; however,
it is irregularly shaped, making it necessary to correct the
color gamut before outputting the resultant image to ensure
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Fig. 4 Differences α result image for Chart 97. (a) Original images and corresponding simulated
images, (b) α = 10, (c) α = 20, (d) α = 30, (e) α = 40, (f) α = 50, (g) α = 60.

Table 1 Parameter setting of each method.

Fig. 5 VK values of P-type color vision methods.

that the output colors are within the color gamut. We used
the method of Tanaka et al. [31] to define the pixel values
quadratically, which considers the limitations of the color
range of the target color space and the differences in the
images among different color models to achieve color gamut
correction.

4. Experimental Methods

The experimental images used in this paper are shown in
Fig. 3 for a total of six images, comprising artificial and
natural images.

Fig. 6 VK values of D-type color vision methods.

4.1 Parameter Setting

The parameter in the proposed method is used to control the
amount of modification to the b*-value of the color image.
If the b*-value is too small, the contrast enhancement of
the recolored image becomes insufficient, leading to people
with color vision deficiency being unable to distinguish the
confusing area; if b*-value is too large, the color-corrected
image is excessively altered, making the trichromatopsy peo-
ple unable to receive the original information of the image,
and lose its naturalness and detail information. The resultant
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Table 2 eL∗a∗b∗ values of various methods under K-type color vision.

Table 3 ea∗b∗ values of various methods under K-type color vision.

images, in Fig. 4, correspond to the six different parameters.
Column (a) shows the original images and corresponding
simulated images; columns (b)–(g) are the resultant images
for α = 10, 20, 30, 40, 50, and 60, respectively. The first
row shows the normal image, the second row is the image
observed in the red-blind population, and the third row is
the image observed in the green-blind population. When α
gradually increases, the color of the original image gradually
changes, and the corresponding numbers in the simulated
image become clear. When α is varied from 10 to 40, al-
though the subjectively optimized image looks very similar
in color to the original image, the numbers in the simulated

image are not very obvious; when α is 50 and 60, the num-
bers in the simulated image are clearer than when the α is
40, but the color-corrected image change from green to the
original blue color. Therefore, to ensure the naturalness of
the color-corrected image for tricolor viewers, we chose α
= 40 as the experimental parameter setting. At this time,
the color of the color-corrected image changes, but the blue
stimulus is less, which is relatively easy to accept, and the
simulated image; i.e., the dichromatic viewers viewed the
image with enhanced contrast, the original confusing figures
became clearly visible, and ensure a certain naturalness.
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Table 4 eL∗ values of various methods under K-type color vision.

4.2 Comparative Experiments

This study used comparative tests to verify the validity of
the proposed method. The methods described by Milic et al.
[20], Takimoto et al. [21], Tennholtz et al. [22], Hassan and
Paramesaran [23], Hassan [24], and Meng et al. [29], [30]
were used for comparison. The corresponding parameter
settings for the differentmethods are listed inTable 1. Hassan
and Paramesaran [23] has no parameters, so it is not listed
in this table.

This study used the evaluation metrics proposed by
Tanaka [26]. The effectiveness of the resultant images was
evaluated using four quantitative metrics: contrast VK, av-
erage color difference eL∗a∗b∗ , average lightness difference
eL∗ , and average saturation difference ea∗b∗ . Four quantita-
tive metrics are defined as follows:

eL∗a∗b∗ =
1
n

n∑
i=1

∆Ei, (14)

∆Ei =

√
(L∗outi − L∗ini )

2
+ (a∗outi − a∗ini )

2
+ (b∗outi − b∗ini )

2
,

(15)

eL∗ =
1
n

n∑
i=1

��L∗outi − L∗ini

�� , (16)

ea∗b∗ =
1
n

n∑
i=1

√(
a∗outi − a∗ini

)2
+

(
b∗outi − b∗ini

)2
. (17)

In Eq. (14), ∆Ei is the color difference between the input
image and the output image at the ith pixel. In Eq. (15), L∗outi
and L∗ini represents the lightness component in the output
image and the input image, respectively.

VK is a quantitative evaluation index of contrast based
on the visual characteristics of the human eye, that is, the

degree of improvement in the ability to discriminate confus-
ing colors under K-type color vision, which is divided into
P- and D-type color vision.

VK (λ) =
Sout
K (λ)

Sin
K (λ)

, (18)

Sout
K (λ) =

1
NK,λ

∑
(i, j)∈σK,λ

���∆Eout
K,i j − ∆E in

K,i j

��� , (19)

Sin
K (λ) =

1
NK,λ

∑
(i, j)∈σK,λ

���∆E in
K,i j − ∆E in

i j

��� . (20)

Among them, N represents the number of pixels under
K-type color perception. SK (λ) is the average difference
of the contrasts between colors (pixel pairs) whose contrast
ratios are less than or equal to λ for K-type color vision and
standard color vision. Thus, the contrast of colors for K-type
color vision becomes similar to that for standard color vision
when SK is close to 0.

When VK is close to 0, it represents that the confusion
color is minimized, i.e., the color contrast of the resultant
image is similar to that of the original image; when VK = 1,
the color contrast of the resultant image is not the same as
that of the original image; when VK > 1, the color contrast
of the resultant image is worse than that of the relative input
image, indicating possible loss of color information of the
resultant image.

The VK values at different methods are shown in Figs. 5
and 6. λ is set from 0.1 to 1, which is used to weigh the
maintenance of the color contrast of the original image and
the improvement of the K-type chromatic contrast. When λ
is small, the color correction range only considers the part
of the color that is very similar. The range of the considered
colors is expanded when λ is increased, and there will be
some colors that can be distinguished by the K-type color
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Fig. 7 Simulated images of P-type color perceptionmethods: (a)Milic, (b) Takimoto, (c) Tennenholtz,
(d) Hassan 2017, (e) Hassan 2019, (f) Meng, and (g) proposed.

vision changes; therefore, VK increased with increasing λ.
The method proposed in this paper has the smallest average
value for any λ, which proves the validity of our method. For
the average value of VK for P-type color vision, the lowest
value exists for our method; for the average value of VK for
each method for D-type color vision, although our method
does not consider targeting different color senses when per-
forming color correction, the performance of our method
is optimal for both color deficiency. Thus, our proposed
method can better improve confusing colors and increase
discrimination.

The average color difference eL∗a∗b∗ is the evaluation
index of the degree of color change using the CIE DE2000
color difference formula. In this paper, when the color of
the output image is closer to that of the input image (with
a smaller average color difference), it is said that the natu-
ralness of the output image is better. The average saturation
difference ea∗b∗ was used to measure the degree of the color

change of the resultant image compared to the original image.
The smaller the value, the less the method changes the color
information, that is, it can better maintain the characteristic
information of the original image. The average lightness dif-
ference eL∗ refers to the degree of lightness and darkness of
the image, which reflects the magnitude of lightness change
in the resultant image.

Tables 2 to 4 show the eL∗a∗b∗ , ea∗b∗ and eL∗ values,
respectively. All three evaluation metrics are used as dis-
similarity measures between the original and color-corrected
resultant image. From Table 2 and Table 3, it can be seen
that the eL∗a∗b∗ value and ea∗b∗ value of this method are rel-
atively low. Although it may be inferior to Meng’s method,
becauseMeng’s methodmainly changes the luminance com-
ponent of the image, which results in a smaller change in the
color component of the image; thus, the ea∗b∗ value is very
small. At the same time, Meng’s method also brings a larger
eL∗ value. Compared with other methods for modifying



1504
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.9 SEPTEMBER 2024

Fig. 8 Simulated images ofD-type color perceptionmethods: (a)Milic, (b) Takimoto, (c) Tennenholtz,
(d) Hassan 2017, (e) Hassan 2019, (f) Meng, and (g) proposed.

image color hues, our method has the lowest eL∗a∗b∗ value
and the second lowest ea∗b∗ value. The output image color
is relatively close to the original image color. This further
indicates that the proposed method is still effective in main-
taining naturalness. Table 4 shows that the eL∗ index of the
proposed method is higher than that of the Hassan method;
however, it is generally better than the other methods, es-
pecially for Meng’s method. Taken together, the eL∗a∗b∗
metrics of the proposed method are smaller than those of the
other hue modification methods despite the modification of
the b* value, indicating that the color change of the resultant
image of the proposed method over the original image is rel-
atively small and will not affect the information acquisition
of the resultant image by the trichromatic viewer. Based on
the results of the comparison experiments of the dissimilarity
metrics, from the perspective of the three evaluation metrics,
eL∗a∗b∗ , ea∗b∗ and eL∗ , the proposed method is good in the
comparison experiments as a whole, which further illustrates

the validity of the present method.
The results of the comparison test and simulation of the

proposed method with the red and green color vision defi-
cient person are shown in Figs. 7 and 8. In Fig. 7 although
Tennenholtz et al.’s method performs moderately well in
reducing confusing colors for red color vision deficient in-
dividuals, the output image will have artifacts. Moreover,
because some pixel values are out of the color gamut, it will
lead to black areas in the image, which is obvious in the nat-
ural image, and therefore the image information will be lost.
Hassan et al.’s method enlarges the image’s blue stimulus,
which makes the naturalness of the image less natural when
viewed by people with color vision deficiency. In Milic,
Takimoto, and Meng et al.’s method, insufficient contrast
enhancement is observed, and the restoration effect of color
correction is not obvious; Milic et al.’s method for green
blindness outputs the resultant image with higher lightness
and larger blue stimulus than the simulated resultant image
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Fig. 9 Recolor images of P-type color perception method: (a) original, (b) Milic, (c) Takimoto, (d)
Tennenholtz, (e) Hassan 2017, (f) Hassan 2019, (g) Meng, and (h) proposed.

for red blindness, contributing to the presence of artifacts in
the edge part of the image and the edge blurring problem.

Figure 9 and Fig. 10 show the optimized images for
each method under P-type and D-type, respectively. The
results of “Nanten” color correction of natural images using
different methods. Milic’s D-type image changes the color
of the “branch” part drastically, which exaggerates the blue
stimulus; Takimoto and Meng et al.’s method has too much
lightness of the “fruit” part of the image during processing,
which results in blurring of its boundary. Hassan’s method
in [23] has insufficient contrast enhancement, as well as low
color discrimination in protanopia and deuteranopia simu-
lations, and in [24], by changing the red part to blue and
purple, the original image meaning was changed, and the
naturalness of the image was significantly reduced. In con-
trast, our proposed method achieved a saturation balance for
artificial and natural images and distinguished between col-
ors and areas that were originally prone to confusion well
without losing image details. The proposed method outper-
formed other methods in terms of contrast enhancement and
naturalness preservation, effectively reduced confusing col-
ors and improved the perceptual ability of people with color

vision deficiencies.

5. Conclusion

This paper proposes a color correction method based on hue
for dichromatically sighted people; red-green color vision-
deficient people are mainly considered in the method. First,
the hue loss of color pairs under normal color vision was de-
fined, an objective function was constructed, and the result-
ing image was obtained by optimizing it. Finally, the effec-
tiveness of the proposed method is illustrated through com-
parative tests and evaluation indices. The method achieved
higher scores, maintained naturalness of the image, and ef-
fectively reduced confusing colors to help dichromatic view-
ers improve image color perception and reduce image infor-
mation loss.

However, there are some limitations to the current
method. Sometimes there may be a situation where δi j
reduces the difference between the b* axes. The next goal
is to align the symbols of the corrected part of δi j with
those of ∆b∗i j . And the next step of improvement will focus
on personalized color correction algorithms for the different
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Fig. 10 Recolor images of D-type color perception method: (a) original, (b) Milic, (c) Takimoto, (d)
Tennenholtz, (e) Hassan 2017, (f) Hassan 2019, (g) Meng, and (h) proposed.

physiological characteristics of red and green blindness, as
well as algorithmic speed enhancement. In addition, general-
ized metrics capable of evaluating the quality of the resultant
images in multiple ways will be considered.
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