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PAPER
Color correction method considering hue information for
dichromats

Shi BAO†∗, Member, Xiaoyan SONG†, Xufei ZHUANG†, Min LU†, and Gao LE†, Nonmembers

SUMMARY Images with rich color information are an important source
of information that people obtain from the objective world. Occasionally, it
is difficult for people with red-green color vision deficiencies to obtain color
information from color images. We propose a method of color correction
for dichromats based on the physiological characteristics of dichromats,
considering hue information. First, the hue loss of color pairs under nor-
mal color vision was defined, an objective function was constructed on its
basis, and the resultant image was obtained by minimizing it. Finally, the
effectiveness of the proposed method is verified through comparison tests.
Red-green color vision deficient people fail to distinguish between partial
red and green colors. When the red and green connecting lines are parallel
to the a* axis of CIE L*a*b* , red and green perception defectives cannot
distinguish the color pair, but can distinguish the color pair parallel to the
b* axis. Therefore, when two colors are parallel to the a* axis, their color
correction yields good results. When color correction is performed on a
color, the hue loss between the two colors under normal color vision is
supplemented with b* so that red-green color vision-deficient individuals
can distinguish the color difference between the color pairs. The magnitude
of the correction is greatest when the connecting lines of the color pairs
are parallel to the a* axis, and no color correction is applied when the
connecting lines are parallel to the b* axis. The objective evaluation results
show that the method achieves a higher score, indicating that the proposed
method can maintain the naturalness of the image while reducing confusing
colors.
key words: Red-green color deficiency, color correction, color contrast
enhancement, image processing

1. Introduction

With the continuous development of society and the wide
popularity of smart devices, digital media technology has
been evolving. Multimedia content is mostly used to deliver
information, such as pictures, videos, and colorful charts,
on smartphones, computers, and other smart devices that
flood our work and daily lives. Humans acquire and receive
information from the objective world through their sense
organs (i.e., ears, eyes, mouth, nose, and hands) by listening,
seeing, tasting, smelling, and making contact. Among the
information received from the outside world, those from
vision constitute the vast majority and largely affect people’s
cognitive, emotional, and subconscious activities.

Images, with rich color information, are an important
source of information that people obtain from the objective
world. The eyes can perceive differences in light when they
see different colors. The anterior segment of the eye includes
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crystals that focus images onto the retina, which are covered
with special nerve cells, including optic rods and cone cells.
Optic rod cells perceive low light, dark vision, and vision
without color, whereas optic cone cells perceive bright light,
bright vision, and vision with color. Thus, optic cone cells
are responsible for color vision and contain three types of
optic pigment. According to the absorption spectrum, the
stimuli for the three types of pigment cells, which are sen-
sitive to red, green, and blue light, are mixed to form color
vision. The three optic cone cells, L-, M-, and S-optic cone
cells, are sensitive to long-, medium-, and short-wavelength
visible light, respectively. Optic rod cells contain only one
optochrome, which is extremely sensitive to blue-green light
with a peak at 500 nm [1]. When the optic cone and rod cells
work simultaneously, the eye can recognize a wide range of
colors.

The average person has three types of visual cone cells,
each of which recognizes a color – green, red, or blue – hence
the term “trichromats”. Each type of optical cell undergoes
a different chain reaction at different light wavelengths, re-
sulting in vision. These three types of vision cells, when
activated, send information to the nerve center. The brain
collects combined signals and produces color vision. The
verbal description of the color being sought and the forma-
tion of pigments in the optic cones depends on genes. When
genes are mutated, some or all color vision is lost or al-
tered. In the absence of optic pigments in the optic cones,
the eye cannot distinguish colors; this condition is known as
color vision deficiency or acritochromacy. There are three
types of acritochromia: protanopia, deuteranopia, and tri-
tanopia. A protanopia lacks sensitivity to long wavelengths
of light, and the affected cone cells have difficulty distin-
guishing greens and reds of the spectrum. Deuteranopia is
affected in the same spectral range as protanopia. Those with
deuteranopia lacked visual cone cells sensitive to interme-
diate wavelengths, making the difference more pronounced.
Protanopia and deuteranopia, referred to as red-green color
blindness, affect similar groups of people. Tritanopia is rare
and suggests a lack of cone cells sensitive to short-wave light.
In some people, the cells of the optic cones do not contain
any pigment, and the eye cannot recognize any color; this
condition is known as monochromatism. Monochromatism
is a very rare and severe form of color vision disorder.

A person with normal color vision can see over a mil-
lion shades and tints, while a person with protanopia and
deuteranopia can only see about 10%. For people with color
vision deficiencies, colors can sometimes seem muted and
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confusing, and some colors can be difficult to distinguish.
The detection rate of color acritochromacy among Chinese
people is about 3.14%, of which the rate of male and female
color blindness is 4.71% ± 0.074% and 0.67% ± 0.036%,
respectively; the frequency of color blindness gene carriers
is 8.98%. The rate of color acritochromacy in Japan is about
4% - 5% for males and 0.5% for females; in Europe and the
United States, it is about 8% for males and 0.4% for females.
With the progress of society and the development of science
and technology, the division of labor in various professions
has become increasingly sophisticated, and the requirements
for color discrimination in some professions have also in-
creased. However, at present, many people are unaware of
this problem and cannot judge whether they have color vi-
sion abnormalities. Therefore, acritochromacy screening is
medically essential. There are various screening tools for
color vision, such as the Nagel color vision screening gog-
gles and the FM-100 hue test. Each disk is covered with dots
of various colors and sizes, some of which are numbered in
color components that are easily confused by people with
color vision impairment. The dots that form the numbers or
shapes are easily recognizable to people with normal color
vision and are invisible or difficult to see for people with color
vision disorders. Since its inception, the Ishihara acritochro-
macy test has been widely used for its applicability and high
accuracy.

In recent years, many researchers have proposed differ-
ent color vision models based on the three-channel vision
model to simulate color perception in dichromatopia [2],
[3]. Brettel [4] and Viénot [5] proposed simulation mod-
els of protanopia and deuteranopia that constructed a color
perception plane of dichromatopia in the LMS space and
quantified the range of color information visible to dichro-
matopia. Martin [6] proposed a model of color blindness and
normal visual system, elaborating on the reasons for the ab-
normalities in color perception by comparing the differences
in the ability to perceive color between normal and dichro-
mats. Machado et al. [7] proposed a physiological-based
model to simulate color perception by shifting the spectral
distribution curves of the L or M cone cells, depending on
the degree of curve shift that simulates color perception in
people with different degrees of color vision abnormalities.
These models differed in approach but achieved similar re-
sults.

This study used the color acritochromacy simulation
model proposed by Viénot [5] for red-green color vision defi-
ciency simulation and proposed a color correction method for
dichromats that considers hue information. For protanopia
and deuteranopia, the loss of color information arises mainly
on the a* axis, while little information is lost in the b* axis,
based on the above characteristics. In this study, when the
color pairs are parallel to the a*-axis of CIE L*a*b* [8],
the two colors are color-corrected, and the hue loss between
the two colors under normal color vision is supplemented to
b*. The correction is greatest when the connecting lines of
the color pairs are parallel to the a*-axis, whereas no color
correction is applied when the connecting lines are paral-

lel to the b*-axis. Color correction can help find a balance
between image contrast enhancement and naturalness main-
tenance, increasing the level of color perception in red-green
color vision deficient individuals while maintaining the nat-
uralness of the image amongst trichromats. In this paper,
when the color of the output image is closer to that of the
input image (with a smaller average color difference), it is
said that the naturalness of the output image is better.

The remainder of the paper is organized as follows:
Section 2 describes related work on color vision detection.
Section 3 discusses the proposed method, while Section 4
verifies the validity of the proposed method. Finally, Section
5 concludes the paper.

2. Related Work

Humans have the ability of color perception and can perceive
the frequency of light reflected from the surface of an ob-
ject. However, color vision deficiency is common, and the
problem, while not usually fatal, can cause inconvenience
to a large portion of the population. Color vision defects
are caused by two main reasons: natural genetic factors and
nerve or brain damage. Since most cases are genetically
determined, they need to be genetically altered in their treat-
ment. Currently, there is no method of gene therapy in
China, and treatment can only alleviate the inconvenience
of people with color vision defects from the perspective of
color blindness correction. With the emergence of modern
digital display devices, digital image processing techniques
for recoloring images or color correction to compensate for
color vision deficiencies has attracted much attention.

Several recoloring algorithms are used in web, soft-
ware, and mobile applications [9], [10]. Most methods be-
gin by changing the image hue to the correct color [11]–
[15]. Huang et al. [16]–[18] proposed a method to transfer
the information about defects to a normal position, reduce
the difference between the color-corrected image and the
original image by introducing an error function, and transfer
the information on the defective axes a* to the b* axis by
rotating the operation, thereby reducing the loss of image
content. In subsequent research, they proposed an improved
recoloring algorithm that sets the key colors of the image
and measures the contrast between the two key colors by cal-
culating the Kullback-Leibler dispersion and interpolating
the colors according to the corresponding mapping to ensure
the smoothness of the local colors in the recolored image.
Kuhn et al. [19] proposed a mass-spring system, thereby
enhancing the color contrast of red and green defects by set-
ting the mass of each particle on the spring according to the
original color and perceived difference to ensure the natu-
ralness of the original color. However, this method cannot
effectively enhance images that span almost the entire chro-
matic plane. In 2015, Milic et al. [20] proposed a color
correction method based on confusion lines, which defines
the remapping range of the center color and avoids creating
new confusing colors for the center color. However, it can-
not effectively avoid creating new confusing colors for those
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other than the center color. Takimoto et al. [21] proposed a
saturation-based color correction method, which converts a
color image into a grayscale map, preprocesses the grayscale
image, and finally, color modifies the set of pixels with sim-
ilar colors to achieve color correction. In 2016, Tennen-
holtz et al. [22] proposed a similarity-based natural contrast
enhancement technique, where the similarity difference be-
tween different regions of the image is measured based on
the variance difference between the pixels in the original and
simulated images to identify confusing regions and change
only some regions to enhance the color contrast. Hassan et
al. [23] proposed a correction method that maintains the
naturalness of red-green color vision deficient individuals.
The advantage of this method is that it maintains the color
of the confusing color-corrected regions at the same hue as
the original color. In addition, the recolored image has the
same luminance as the original image. In 2019, Hassan [24]
extended the previous work by proposing a flexible color
contrast enhancement method targeting red-green deficien-
cies by setting a dynamic threshold. A contrast parameter
was also introduced for exaggerating the blue stimulus of the
recolored image, but it was more inefficient than the previous
method in terms of naturalness. Zhu et al. [25] proposed
a novel adaptive reimaging algorithm that performs image
coloring by minimizing an objective function constrained by
contrast enhancement and naturalness preservation.

In addition to changing the hue of an image, image lu-
minance can also be changed for color correction purposes.
In 2010, Tanaka et al. [26] proposed an effective luminance
modification method, which is an optimization problem de-
fined by the color differences in the input image with respect
to the luminance component. Later Suetake et al. [27]
performed luminance modification around the contours of
objects by considering the luminance modification of the
Craik-O’ Brien effect. However, the amount of luminance
modification was insufficient for difficult to distinguish parts,
and there is room for improvement. In 2016, Bao et al. [28]
improved this method, using the a*-component instead of the
X-component, and the weight portion of the luminance al-
teration was redefined to achieve color blindness correction.
In 2019, Meng [29], [30] proposed a luminance correction
method based on the minimization problem, which modi-
fies the luminance value of the output image by considering
the color difference of the input image to preserve its visual
details and output images with natural colors.

3. Proposed Method

In this study, we focused on common types of color blind-
ness: red and green. The method described by Viénot [5]
was used to simulate color blindness. In this method, N
and K denote normal trichromats and dichromats, respec-
tively. Red and green blindness are abbreviated as P and D,
respectively.

The method used in this study transfers color informa-
tion from defective to normal functional cones using the CIE
L*a*b* color space as the working domain. In red-green

color vision defects, a strong correlation exists between the
original color of the image and the luminance L* and b*
axis information of the simulated color of the color vision
defect perception. In contrast, there is a weak correlation
with the a* axis information to reduce information loss on
the a* axis. The b* component of the image is moderately
altered so that the information of the a* is reflected onto the
b* axis in the CIE L*a*b* color space. In this paper, the
method only modifies the input image’s b* values, and the
L* and a* values remain unchanged.

3.1 Objective Function

This method uses the CIE L*a*b* color space as the working
domain, and the objective function is defined as

𝐸 (f ) =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

[ (
𝑓𝑖 − 𝑓 𝑗

)
− 𝛿𝑖 𝑗

]2
. (1)

Among them.

𝛿𝑖 𝑗 = Δ𝑏∗𝑖 𝑗 + 𝛼 cos
[
Φ( ®𝐶𝑖 𝑗 • ®𝜈𝜃 )

]
, (2)

®𝐶𝑖 𝑗 =

(
𝛥𝑎∗𝑖 𝑗 , 𝛥𝑏

∗
𝑖 𝑗

)
, (3)

®𝜈𝜃 = (cos 𝜃, sin 𝜃) , (4)
Δ𝑎∗𝑖 𝑗 = 𝑎∗𝑖 − 𝑎∗𝑗 , (5)
Δ𝑏∗𝑖 𝑗 = 𝑏∗𝑖 − 𝑏∗𝑗 , (6)

where vector f = { 𝑓1, 𝑓2, . . . , 𝑓𝑛} represents the output im-
age, 𝑛 is the number of pixels in the input image, 𝑓𝑖 is the
𝑏∗ component value of the ith pixel in output image, and
𝑓 𝑗 is the b* component value of the jth pixel in output im-
age. 𝑎∗ represents the component from green to red, and
𝑏∗ represents the component from blue to yellow; 𝑎∗

𝑖
and 𝑏∗

𝑖

respectively represent the a* and b* components of i in the
input image, ®𝐶𝑖 𝑗 is a vector in the 𝑎∗𝑏∗ plane; ®𝜈𝜃 is the unit
vector in the a*b* plane, 𝜃 is the angle, and it is set to 0°
in this study. Φ

(
®𝐶𝑖 𝑗 · ®𝜈𝜃

)
is the angle between vectors ®𝐶𝑖 𝑗

and ®𝜈𝜃 in a*b* space. 𝛼 is a parameter that takes on a real
number.

In the proposed method, the main goal is to maintain
color pair differences while making the color-corrected re-
sultant image as natural as possible. As shown in Fig. 1, the
difference in the a* axis is large, and the difference in the
b* component between pixel i and pixel j in input image is
small. Protanopia and deuteranopia mainly lose information
on the a* axis, which leads to the inability of red-green color-
blind individuals to distinguish color pairs. In this study, a
panning operation is performed on the a*b* chromatic plane
to convert these colors into new colors. 𝑖′ and 𝑗 ′ are the pixel
points after the panning operation on 𝑖 and 𝑗 , respectively.
At this time, the distance of this color pair on the b* axis is
increased, thus improving the color discrimination ability of
people with chromatic deficiencies. 𝛼 cos

[
Φ

(
®𝐶𝑖 𝑗 · ®𝜈𝜃

)]
is

the correction amount, as shown in Fig. 2. Since red-green
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Fig. 1 Schematic diagram of color correction for pixels i and j on the
a*b* plane.

Fig. 2 Cosine function graph.

color vision defectors can distinguish color differences along
the b* axis, no color change is necessary when the color pair
is parallel to the b* axis; color correction is greatest when the
color pair is parallel to the a* axis, i.e., Φ

(
®𝐶𝑖 𝑗 · ®𝜈𝜃

)
is close

to zero. The unit vector ®𝜈𝜃 determines whether the corrected
color is modified in the positive or negative direction of b*.

The pixels i and j in Fig. 1 are corrected by 𝛿𝑖 𝑗 in Eq.
2. From the positions of pixels i and j, Δ𝑏∗

𝑖 𝑗
in Eq. 2 is a

positive number; at the same time, the angle between ®𝐶𝑖 𝑗

and ®𝜈𝜃 is less than 90°. From Fig. 2, it can be seen that the
value of cos

[
Φ

(
®𝐶𝑖 𝑗 · ®𝜈𝜃

)]
is positive. Therefore, pixel i’s

𝑏∗
𝑖

will be corrected in the direction of +𝑏∗, and the corrected
position will be i’. Similarly, pixel j’s 𝑏∗

𝑗
will be corrected

in the direction of −𝑏∗, and the corrected position will be
j’. After the above correction, the difference between color
pairs (𝑖, 𝑗) and 𝑏∗ that are difficult to distinguish due to color
vision abnormalities is enlarged, thus enabling color vision

abnormalities to distinguish the corrected color pairs (𝑖′, 𝑗 ′).

3.2 Minimization of the Objective Function

The resulting image was obtained by optimizing the objective
function as follows:

f̃ = arg min
𝑓𝑖∈R

𝐸 (f ) , (7)

where f̃ is the output image and R is the set of real numbers.
We minimize the objective function, that is, choose a value
that can optimally change the b*-component value of the
color image and obtain the optimal output image.

The solution to the minimization problem of formu-
las (1) - (6) is obtained by the conjugate gradient method.
Solving optimization problems is equivalent to solving the
following simultaneous equations:

𝐴(𝑛)𝒙 = 𝒃. (8)

Among them,

𝐴(𝑛) = 𝑛𝐼 (𝑛) − 𝐽(𝑛) , (9)

𝒙 = ( 𝑓1, 𝑓2, ..., 𝑓𝑛)T, (10)

𝒃 =
©­«

𝑛∑︁
𝑗=1

𝛿1 𝑗 ,

𝑛∑︁
𝑗=1

𝛿2 𝑗 , ...,

𝑛∑︁
𝑗=1

𝛿𝑛 𝑗
ª®¬

T

. (11)

Among them, I(𝑛) and J(𝑛) are two matrices, which are
n × n identity matrices and n × n matrices with all elements
being 1, respectively. Through Eq. 9 and Eq. 11, the
relationship between A and 𝒃 can be obtained as follows:

𝐴2
(𝑛) = 𝑛𝐴(𝑛) (12)

𝐴(𝑛) 𝒃 = 𝑛𝒃. (13)
According to the relationship between Eq. 12 and Eq.

13, use the conjugate gradient method to obtain an analytical
solution.

Our workspace is the CIE L*a*b* color space; how-
ever, it is irregularly shaped, making it necessary to cor-
rect the color gamut before outputting the resultant image
to ensure that the output colors are within the color gamut.
We used the method of Tanaka et al. [31] to define the pixel
values quadratically, which considers the limitations of the
color range of the target color space and the differences in the
images among different color models to achieve color gamut
correction.

4. Experimental Methods

The experimental images used in this paper are shown in Fig.
3 for a total of six images, comprising artificial and natural
images.

4.1 Parameter Setting

The parameter in the proposed method is used to control the
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Fig. 3 Experimental images: (a) Chart 5, (b) Chart 6, (c) Chart 97, (d)
Flower, (e) Line, and (f) Nanten.

amount of modification to the b*-value of the color image.
If the b*-value is too small, the contrast enhancement of
the recolored image becomes insufficient, leading to people
with color vision deficiency being unable to distinguish the
confusing area; if b*-value is too large, the color-corrected
image is excessively altered, making the trichromatopsy peo-
ple unable to receive the original information of the image,
and lose its naturalness and detail information. The resultant
images, in Fig. 4, correspond to the six different parameters.
Column (a) shows the original images and corresponding
simulated images; columns (b)-(g) are the resultant images
for 𝛼 = 10, 20, 30, 40, 50, and 60, respectively. The first
row shows the normal image, the second row is the image
observed in the red-blind population, and the third row is
the image observed in the green-blind population. When 𝛼

gradually increases, the color of the original image gradually
changes, and the corresponding numbers in the simulated im-
age become clear. When 𝛼 is varied from 10 to 40, although
the subjectively optimized image looks very similar in color
to the original image, the numbers in the simulated image
are not very obvious; when 𝛼 is 50 and 60, the numbers in
the simulated image are clearer than when the 𝛼 is 40, but
the color-corrected image change from green to the origi-
nal blue color. Therefore, to ensure the naturalness of the
color-corrected image for tricolor viewers, we chose 𝛼 = 40
as the experimental parameter setting. At this time, the color
of the color-corrected image changes, but the blue stimulus
is less, which is relatively easy to accept, and the simulated
image; i.e., the dichromatic viewers viewed the image with
enhanced contrast, the original confusing figures became
clearly visible, and ensure a certain naturalness.

4.2 Comparative experiments

This study used comparative tests to verify the validity of
the proposed method. The methods described by Milic et al.
[20], Takimoto et al. [21] , Tennholtz et al. [22], Hassan and
Paramesaran [23], Hassan [24], and Meng et al. [29], [30]

were used for comparison. The corresponding parameter
settings for the different methods are listed in Table 1. Hassan
and Paramesaran [23] has no parameters, so it is not listed
in this table.

This study used the evaluation metrics proposed by
Tanaka [26]. The effectiveness of the resultant images was
evaluated using four quantitative metrics: contrast 𝑉K, av-
erage color difference 𝑒𝐿∗𝑎∗𝑏∗ , average lightness difference
𝑒𝐿∗ , and average saturation difference 𝑒𝑎∗𝑏∗ . Four quantita-
tive metrics are defined as follows:

𝑒𝐿∗𝑎∗𝑏∗ =
1
𝑛

𝑛∑︁
𝑖=1

𝛥𝐸𝑖 , (14)

𝛥𝐸𝑖 =

√︃
(𝐿∗out

𝑖
− 𝐿∗in

𝑖
)2 + (𝑎∗out

𝑖
− 𝑎∗in

𝑖
)2 + (𝑏∗out

𝑖
− 𝑏∗in

𝑖
)2
,

(15)

𝑒𝐿∗ =
1
𝑛

𝑛∑︁
𝑖=1

��𝐿∗out
𝑖 − 𝐿∗in

𝑖

�� , (16)

𝑒𝑎∗𝑏∗ =
1
𝑛

𝑛∑︁
𝑖=1

√︃(
𝑎∗out
𝑖

− 𝑎∗in
𝑖

)2 +
(
𝑏∗out
𝑖

− 𝑏∗in
𝑖

)2
. (17)

In Eq.14, 𝛥𝐸𝑖 is the color difference between the input
image and the output image at the ith pixel. In Eq.15, 𝐿∗out

𝑖

and 𝐿∗in
𝑖

represents the lightness component in the output
image and the input image, respectively.

𝑉K is a quantitative evaluation index of contrast based
on the visual characteristics of the human eye, that is, the
degree of improvement in the ability to discriminate confus-
ing colors under K-type color vision, which is divided into
P- and D-type color vision.

𝑉K (𝜆) =
𝑆out

K (𝜆)
𝑆in

K (𝜆)
, (18)

𝑆out
K (𝜆) = 1

𝑁K,𝜆

∑︁
(𝑖, 𝑗 ) ∈𝜎K,𝜆

���𝛥𝐸out
K,𝑖 𝑗 − 𝛥𝐸 in

K,𝑖 𝑗

��� , (19)

𝑆in
K (𝜆) = 1

𝑁K,𝜆

∑︁
(𝑖, 𝑗 ) ∈𝜎K,𝜆

���𝛥𝐸 in
K,𝑖 𝑗 − 𝛥𝐸 in

𝑖 𝑗

��� . (20)

Among them, N represents the number of pixels under
K-type color perception. 𝑆K (𝜆) is the average difference
of the contrasts between colors (pixel pairs) whose contrast
ratios are less than or equal to 𝜆 for K-type color vision and
standard color vision. Thus, the contrast of colors for K-type
color vision becomes similar to that for standard color vision
when 𝑆K is close to 0.

When 𝑉K is close to 0, it represents that the confusion
color is minimized, i.e., the color contrast of the resultant
image is similar to that of the original image; when 𝑉K = 1,
the color contrast of the resultant image is not the same as
that of the original image; when 𝑉K > 1, the color contrast
of the resultant image is worse than that of the relative input
image, indicating possible loss of color information of the
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Fig. 4 Differences 𝛼 result image for Chart 97. (a) Original images and corresponding simulated
images, (b) 𝛼 = 10, (c) 𝛼 = 20, (d) 𝛼 = 30, (e) 𝛼 = 40, (f) 𝛼 = 50, (g) 𝛼 = 60.

Table 1 Parameter setting of each method.

Method Parameter setting
Milic et al.’s method [20] 𝛼 =0.5, 𝛽=0.5

Takimoto et al.’s method [21] k = 5, 𝑝𝑖 - 𝑎𝑖 = 5°, 𝑏𝑖 - 𝑝𝑖 = 5°
Tennenholtz et al’s method [22] 𝜆 = 1, m = n = (40% of input image width)

Hassan et al.’s method [24] 𝛽 = 4
Meng et al.’s method [29], [30] 𝜌 = 10, 𝛼 = 15, 𝜆𝐿∗ = 3, 𝜆𝑎∗ = 15, 𝜆𝑏∗ = 7, e = 0.1

resultant image.
The 𝑉K values at different methods are shown in Fig.

5 and 6. 𝜆 is set from 0.1 to 1, which is used to weigh
the maintenance of the color contrast of the original im-
age and the improvement of the K-type chromatic contrast.
When 𝜆 is small, the color correction range only consid-
ers the part of the color that is very similar. The range of
the considered colors is expanded when 𝜆 is increased, and
there will be some colors that can be distinguished by the
K-type color vision changes; therefore, 𝑉K increased with
increasing 𝜆. The method proposed in this paper has the
smallest average value for any 𝜆, which proves the validity
of our method. For the average value of 𝑉K for P-type color
vision, the lowest value exists for our method; for the av-
erage value of 𝑉K for each method for D-type color vision,
although our method does not consider targeting different
color senses when performing color correction, the perfor-
mance of our method is optimal for both color deficiency.
Thus, our proposed method can better improve confusing
colors and increase discrimination.

The average color difference 𝑒𝐿∗𝑎∗𝑏∗ is the evaluation
index of the degree of color change using the CIE DE2000
color difference formula. In this paper, when the color of
the output image is closer to that of the input image (with
a smaller average color difference), it is said that the natu-
ralness of the output image is better. The average saturation
difference 𝑒𝑎∗𝑏∗ was used to measure the degree of the color

Fig. 5 𝑉K values of P-type color vision methods.

change of the resultant image compared to the original image.
The smaller the value, the less the method changes the color
information, that is, it can better maintain the characteristic
information of the original image. The average lightness dif-
ference 𝑒𝐿∗ refers to the degree of lightness and darkness of
the image, which reflects the magnitude of lightness change
in the resultant image.

Tables 2 to 4 show the 𝑒𝐿∗𝑎∗𝑏∗ , 𝑒𝑎∗𝑏∗ and 𝑒𝐿∗ values,
respectively. All three evaluation metrics are used as dis-
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Table 2 𝑒𝐿∗𝑎∗𝑏∗ values of various methods under K-type color vision.

Image Methods
Milic Takimoto Tennenholtz Hassan2017 Hassan2019 Meng Proposed

P-type

Chart 5 15.02 11.64 12.39 11.87 29.51 2.45 8.72
Chart 6 5.56 4.42 6.18 3.96 10.89 6.93 7.97

Chart 97 7.98 7.63 9.05 5.58 16.11 3.37 9.60
Flower 24.34 16.49 21.73 18.85 44.75 5.82 14.64
Line 15.21 12.58 18.14 13.38 33.69 3.91 8.36

Nanten 23.33 17.81 8.98 21.67 47.20 8.61 15.46

Average 15.24 11.76 12.75 12.55 30.36 5.18 10.79

D-type

Chart 5 19.78 12.50 17.32 9.03 22.87 2.45 8.72
Chart 6 7.23 5.12 11.32 5.18 11.61 6.93 7.97

Chart 97 9.99 8.46 15.27 5.67 13.89 3.37 9.60
Flower 22.96 18.90 32.35 24.09 50.84 5.82 14.64
Line 18.22 13.45 21.43 10.52 26.72 3.91 8.36

Nanten 22.38 21.65 19.58 31.27 60.51 8.61 15.46

Average 16.76 13.35 19.55 14.29 31.07 5.18 10.79

Table 3 𝑒𝑎∗𝑏∗ values of various methods under K-type color vision.

Image Methods
Milic Takimoto Tennenholtz Hassan2017 Hassan2019 Meng Proposed

P-type

Chart 5 14.77 10.74 10.86 11.73 29.37 0.40 8.69
Chart 6 5.39 3.85 2.92 3.81 10.75 4.16 7.91

Chart 97 7.80 7.11 4.27 5.45 15.97 2.15 9.57
Flower 24.18 15.48 21.57 18.84 44.74 1.67 13.64
Line 14.99 11.91 12.07 13.25 33.56 0.72 8.33

Nanten 22.92 16.37 5.90 21.65 47.20 2.57 12.45

Average 15.01 10.91 9.60 12.46 30.27 1.95 10.09

D-type

Chart 5 19.35 11.88 11.81 8.93 22.74 0.40 8.69
Chart 6 6.79 4.43 3.16 5.08 11.48 4.16 7.91

Chart 97 9.57 7.82 4.57 5.56 13.76 2.15 9.57
Flower 22.13 17.69 26.26 24.06 50.83 1.67 13.64
Line 17.82 12.93 12.62 10.42 26.60 0.72 8.33

Nanten 19.95 18.43 5.96 31.00 60.42 2.57 12.45

Average 15.94 12.20 10.73 14.18 30.97 1.95 10.09

similarity measures between the original and color-corrected
resultant image. From Table 2 and Table 3, it can be seen
that the 𝑒𝐿∗𝑎∗𝑏∗ value and 𝑒𝑎∗𝑏∗ value of this method are rel-
atively low. Although it may be inferior to Meng’s method,
because Meng’s method mainly changes the luminance com-
ponent of the image, which results in a smaller change in the
color component of the image; thus, the 𝑒𝑎∗𝑏∗ value is very
small. At the same time, Meng’s method also brings a larger
𝑒𝐿∗ value. Compared with other methods for modifying
image color hues, our method has the lowest 𝑒𝐿∗𝑎∗𝑏∗ value
and the second lowest 𝑒𝑎∗𝑏∗ value. The output image color
is relatively close to the original image color. This further

indicates that the proposed method is still effective in main-
taining naturalness. Table 4 shows that the 𝑒𝐿∗ index of the
proposed method is higher than that of the Hassan method;
however, it is generally better than the other methods, espe-
cially for Meng’s method. Taken together, the 𝑒𝐿∗𝑎∗𝑏∗ met-
rics of the proposed method are smaller than those of the
other hue modification methods despite the modification of
the b* value, indicating that the color change of the resultant
image of the proposed method over the original image is rel-
atively small and will not affect the information acquisition
of the resultant image by the trichromatic viewer. Based on
the results of the comparison experiments of the dissimilarity
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Table 4 𝑒𝐿∗ values of various methods under K-type color vision.

Image Methods
Milic Takimoto Tennenholtz Hassan2017 Hassan2019 Meng Proposed

P-type

Chart 5 1.98 3.69 3.06 0.36 0.37 2.29 0.58
Chart 6 0.77 1.79 3.88 0.27 0.29 4.31 0.80
Chart 97 0.93 2.39 6.18 0.26 0.32 2.20 0.68
Flower 2.14 5.30 2.28 0.20 0.38 5.03 2.57
Line 1.89 3.35 9.91 0.25 0.31 3.55 0.56

Nanten 2.79 5.88 4.01 0.47 0.43 7.39 3.45

Average 1.75 3.73 4.89 0.30 0.35 4.13 1.44

D-type

Chart 5 1.58 1.88 9.42 0.48 0.40 2.29 0.58
Chart 6 0.98 1.68 9.03 0.46 0.40 4.31 0.80
Chart 97 0.91 1.96 12.47 0.46 0.41 2.20 0.68
Flower 2.75 4.69 13.21 0.47 0.37 5.03 2.57
Line 1.36 1.62 12.17 0.45 0.38 3.55 0.56

Nanten 5.83 6.93 14.41 2.57 1.94 7.39 3.45

Average 2.24 3.13 11.79 0.82 0.65 4.13 1.44

Fig. 6 𝑉K values of D-type color vision methods.

metrics, from the perspective of the three evaluation metrics,
𝑒𝐿∗𝑎∗𝑏∗ , 𝑒𝑎∗𝑏∗ and 𝑒𝐿∗ , the proposed method is good in the
comparison experiments as a whole, which further illustrates
the validity of the present method.

The results of the comparison test and simulation of the
proposed method with the red and green color vision defi-
cient person are shown in Fig. 7 and 8. In Fig. 7 although
Tennenholtz et al.’s method performs moderately well in
reducing confusing colors for red color vision deficient indi-
viduals, the output image will have artifacts. Moreover, be-
cause some pixel values are out of the color gamut, it will
lead to black areas in the image, which is obvious in the nat-
ural image, and therefore the image information will be lost.
Hassan et al.’s method enlarges the image’s blue stimulus,
which makes the naturalness of the image less natural when
viewed by people with color vision deficiency. In Milic,
Takimoto, and Meng et al.’s method, insufficient contrast

enhancement is observed, and the restoration effect of color
correction is not obvious; Milic et al.’s method for green
blindness outputs the resultant image with higher lightness
and larger blue stimulus than the simulated resultant image
for red blindness, contributing to the presence of artifacts in
the edge part of the image and the edge blurring problem.

Fig. 9 and Fig. 10 show the optimized images for
each method under P-type and D-type, respectively. The
results of “Nanten” color correction of natural images us-
ing different methods. Milic’s D-type image changes the
color of the “branch” part drastically, which exaggerates the
blue stimulus; Takimoto and Meng et al.’s method has too
much lightness of the “fruit” part of the image during pro-
cessing, which results in blurring of its boundary. Hassan’s
method in [23] has insufficient contrast enhancement, as well
as low color discrimination in protanopia and deuteranopia
simulations, and in [24], by changing the red part to blue
and purple, the original image meaning was changed, and
the naturalness of the image was significantly reduced. In
contrast, our proposed method achieved a saturation balance
for artificial and natural images and distinguished between
colors and areas that were originally prone to confusion well
without losing image details. The proposed method outper-
formed other methods in terms of contrast enhancement and
naturalness preservation, effectively reduced confusing col-
ors and improved the perceptual ability of people with color
vision deficiencies.

5. Conclusion

This paper proposes a color correction method based on hue
for dichromatically sighted people; red-green color vision-
deficient people are mainly considered in the method. First,
the hue loss of color pairs under normal color vision was de-
fined, an objective function was constructed, and the result-
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Fig. 7 Simulated images of P-type color perception methods: (a) Milic, (b) Takimoto, (c) Tennenholtz,
(d) Hassan 2017, (e) Hassan 2019, (f) Meng, and (g) Proposed.

ing image was obtained by optimizing it. Finally, the effec-
tiveness of the proposed method is illustrated through com-
parative tests and evaluation indices. The method achieved
higher scores, maintained naturalness of the image, and ef-
fectively reduced confusing colors to help dichromatic view-
ers improve image color perception and reduce image infor-
mation loss.

However, there are some limitations to the current
method. Sometimes there may be a situation where 𝛿𝑖 𝑗
reduces the difference between the b* axes. The next goal
is to align the symbols of the corrected part of 𝛿𝑖 𝑗 with
those of Δ𝑏∗

𝑖 𝑗
. And the next step of improvement will focus

on personalized color correction algorithms for the different
physiological characteristics of red and green blindness, as
well as algorithmic speed enhancement. In addition, general-
ized metrics capable of evaluating the quality of the resultant
images in multiple ways will be considered.
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Fig. 8 Simulated images of D-type color perception methods: (a) Milic, (b) Takimoto, (c) Tennenholtz,
(d) Hassan 2017, (e) Hassan 2019, (f) Meng, and (g) Proposed.
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[5] F. Viénot, H. Brettel, and J. D. Mollon, “Digital video colourmaps
for checking the legibility of displays by dichromats,” Color Research
& Application, vol. 24, no. 4, pp. 243–252, 1999.

[6] C. E. Martin, J. O. Keller, S. K. Rogers, and M. Kabrisky, “Color
blindness and a color human visual system model,” IEEE Trans. Syst.
Man Cybern. Part A, vol. 30, no. 4, pp. 494–500, 2000.

[7] G. M. Machado, M. M. Oliveira, and L. A. Fernandes, “A
physiologically-based model for simulation of color vision defi-
ciency,” IEEE transactions on visualization and computer graphics,
vol. 15, no. 6, pp. 1291–1298, 2009.

[8] R. C. Gonzalez, R. E. Woods, and B. R. Masters, “Digital image
processing, third edition,” Journal of Biomedical Optics, vol. 14,
no. 2, p. 029901, 2009.

[9] M. Ichikawa, K. Tanaka, S. Kondo, K. Hiroshima, K. Ichikawa,
S. Tanabe, and K. Fukami, “Web-page color modification for barrier-
free color vision with genetic algorithm,” in Genetic and Evolution-
ary Computation Conference. Springer, pp. 2134–2146, 2003.

[10] K. Wakita and K. Shimamura, “Smartcolor: disambiguation frame-
work for the colorblind,” in Proceedings of the 7th International
ACM SIGACCESS Conference on Computers and Accessibility, pp.
158–165, 2005.

[11] Karl, Rasche, Robert, Geist, James, and Westall, “Re-coloring im-
ages for gamuts of lower dimension,” Computer Graphics Forum,
2005.

[12] L. Jefferson and R. Harvey, “Accommodating color blind computer
users,” in Proceedings of the 8th international ACM SIGACCESS



BAO et al.: COLOR CORRECTION METHOD CONSIDERING HUE INFORMATION FOR DICHROMATS
11

Fig. 9 Recolor images of P-type color perception method: (a) Original, (b) Milic, (c) Takimoto, (d)
Tennenholtz, (e) Hassan 2017, (f) Hassan 2019, (g) Meng, and (h) Proposed.

conference on Computers and accessibility, pp. 40–47, 2006.
[13] J. Lee and W. P. Dos Santos, “An adaptive fuzzy-based system

to simulate, quantify and compensate color blindness,” Integrated
Computer-Aided Engineering, vol. 18, no. 1, pp. 29–40, 2011.

[14] C. Lau, W. Heidrich, and R. Mantiuk, “Cluster-based color space
optimizations,” in 2011 International conference on computer vision.
IEEE, pp. 1172–1179, 2011.

[15] G. E. Tsekouras, A. Rigos, S. Chatzistamatis, J. Tsimikas, K. Kotis,
G. Caridakis, and C.-N. Anagnostopoulos, “A novel approach to
image recoloring for color vision deficiency,” Sensors, vol. 21, no. 8,
p. 2740, 2021.

[16] J.-B. Huang, Y.-C. Tseng, S.-I. Wu, and S.-J. Wang, “Information
preserving color transformation for protanopia and deuteranopia,”
IEEE Signal Processing Letters, vol. 14, no. 10, pp. 711–714, 2007.

[17] J.-B. Huang, C.-S. Chen, T.-C. Jen, and S.-J. Wang, “Image recol-
orization for the colorblind,” in 2009 IEEE International Conference
on Acoustics, Speech and Signal Processing.IEEE, pp. 1161–1164,
2009.

[18] C.-R. Huang, K.-C. Chiu, and C.-S. Chen, “Key color priority based
image recoloring for dichromats,” in Advances in Multimedia In-
formation Processing-PCM 2010: 11th Pacific Rim Conference on
Multimedia, Shanghai, China, September 2010, Proceedings, Part II
11. Springer, pp. 637–647, 2010.

[19] G. R. Kuhn, M. M. Oliveira, and L. A. Fernandes, “An efficient
naturalness-preserving image-recoloring method for dichromats,”
IEEE transactions on visualization and computer graphics, vol. 14,

no. 6, pp. 1747–1754, 2008.
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