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PAPER
Enhanced Radar Emitter Recognition with Virtual Adversarial
Training: A Semi-Supervised Framework

Ziqin FENG†a), Hong WAN††b), Nonmembers, and Guan GUI††c), Member

SUMMARY Radar emitter identification (REI) is a crucial function
of electronic radar warfare support systems. The challenge emphasizes
identifying and locating unique transmitters, avoiding potential threats,
and preparing countermeasures. Due to the remarkable effectiveness
of deep learning (DL) in uncovering latent features within data and
performing classifications, deep neural networks (DNNs) have seen
widespread application in radar emitter identification (REI). In many real-
world scenarios, obtaining a large number of annotated radar transmitter
samples for training identification models is essential yet challenging.
Given the issues of insufficient labeled datasets and abundant unlabeled
training datasets, we propose a novel REI method based on a semi-
supervised learning (SSL) framework with virtual adversarial training
(VAT). Specifically, two objective functions are designed to extract the
semantic features of radar signals: computing cross-entropy loss for labeled
samples and virtual adversarial training loss for all samples. Additionally, a
pseudo-labeling approach is employed for unlabeled samples. The proposed
VAT-based SS-REI method is evaluated on a radar dataset. Simulation
results indicate that the proposed VAT-based SS-REI method outperforms
the latest SS-REI method in recognition performance.
key words: radar emitter identification (REI), signal recognition, semi-
supervised learning (SSL), virtual adversarial training (VAT)

1. Introduction

In the increasingly complex electromagnetic environment
of modern naval and aerial battlefields, radar offense
and defense strategies are intensifying. The heart of
radar countermeasure information processing, central to
modern electronic warfare and surveillance, is radar signal
identification [1]. Radar emitter identification (REI) is
crucial, involving the recognition and classification of radar
signals for defense systems and intelligence. Modern
warfare’s diverse radar systems and signal characteristics
pose significant challenges to REI. The complexity
of radar emitter identification (REI) is heightened by
the dense electromagnetic spectrum, mixed radar and
communication signals, and variability within signal types,
further compounded by noise, jamming, and new system
signals [2]. This complexity arises from diverse signal
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modulation techniques, multiple radar operational modes,
and environmental noise and interference. Identification
typically involves analyzing radar signal features like
frequency and modulation, which can be affected by
distance and atmospheric conditions. The increasing
number and complexity of modern radars challenge the
creation of comprehensive databases. Traditional REI,
relying on manual analysis and simple algorithms, is
inadequate for modern electronic warfare, driving the need
for automated, intelligent systems. This has led to the
exploration of advanced signal processing and machine
learning techniques, with neural networks showing promise
in automatic classification.

As a result, numerous REI methods have explored
the integration of time-domain complex baseband signals
with deep neural networks (DNNs). Wang et al. [5]
explored a radar transmitter recognition technique utilizing
a deep network model. Their approach involves using the
estimated parameter sample plot (EPSD) as the input data
format. They employed a deep feedforward network (DFN)
to effectively fit the abstract function mapping the input
data to its category, significantly enhancing the recognition
accuracy of radar transmitters. Madhu et al. [6] implemented
DL methods for the efficient processing of large image
datasets, leveraging power spectrum and signal noise. They
assessed convolutional neural networks across different time-
frequency estimators to determine the one yielding the
highest accuracy. The optimal estimator is then applied for
identifying radar emitters by analyzing the signal-to-noise
ratio. Xiao et al. [7] introduced an innovative method for
signal feature analysis that utilizes the short-time Fourier
Transform (STFT). This approach demonstrates robust
performance and effectiveness, particularly in scenarios with
low signal-to-noise ratio (SNR), and it also offers notable
real-time capabilities. Pan et al. [8] employed a one-
dimensional convolutional residual neural network coupled
with a convolutional block attention module (1D-CBAM-
ResNet) for the automatic learning and identification of one-
dimensional intermediate frequency (IF) signals in a single
process, thereby enhancing signal emitter identification
(SEI) precision. This model integrates a one-dimensional
residual building unit (1D-RBV) and a one-dimensional
convolution block attention module (1D-CBAM), effectively
consolidating channel and spatial data to identify pulse
fingerprint features precisely.

The effectiveness of deep learning depends on large
amounts of labeled training data [9]. However, collecting and
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annotating these data in the realworld is both challenging and
time-consuming. To address the shortcomings of existing
technologies, we propose a semi-supervised REI method
based on virtual adversarial training (VAT) [10], solving
the problem of inaccurate device category identification due
to insufficient sample volume. Semi-supervised learning
can generate decision boundaries, capturing underlying
structures more accurately with embedded information. It
balances the need for human expertise in feature extraction
and the capability of automated systems to handle large-
scale data. By utilizing both labeled and unlabeled data,
semi-supervised learning (SSL) can improve the accuracy
and efficiency of radar transmitter identification, especially
in situations where labeled data is scarce or costly to obtain.
Considering the dynamic nature of modern electronic
warfare, this approach is particularly important, as new
radar systems and signal types are continuously evolving.
Therefore, exploring SSL techniques in the field of REI is
not only a natural evolution of the field but also a necessary
step in developing more complex and effective electronic
surveillance and countermeasure systems.

This paper proposes a VAT-based REI method using
SSL designed for scenarios with a scarcity of labeled training
samples. Two objective functions are designed to extract
the semantic features of radar signals: computing cross-
entropy loss for labeled samples andVAT loss for all samples.
Additionally, a pseudo-labeling approach is employed for
unlabeled samples. The main contributions of this paper are
summarized as follows: (1) We propose a VAT-based SS-
REI (SS-VAT) method that incorporates VAT within an SSL
framework. Thismethod is designed to address the challenge
of REI in situations where labeled training samples are
scarce. The process utilizes twoobjective functions to extract
semantic features from radar signals: cross-entropy loss for
labeled samples, VAT loss for all samples, and a pseudo-
labeling approach for unlabeled samples. (2) We conduct
the experiments and verify the proposed method from
different aspects. The experimental results demonstrate that
the SS-VAT method outperforms existing SS-REI methods
regarding recognition performance. This showcases the
method’s efficacy in leveraging labeled and unlabeled data
to achieve superior REI accuracy. (3) We innovatively use
VAT within an SSL framework, which helps to enhance
the model’s robustness and generalization capabilities. This
method can effectively utilize many unlabeled data from
real-world scenarios.

2. Related Works

2.1 SSL-Based Methods

SSL has become increasingly popular in a variety of real-
world scenarios. This popularity stems mainly from the
challenges and high costs of annotating large datasets.
Within this field, there are several methodologies, each
offering unique strategies to capitalize on unlabeled data.
These include consistency regularization methods, pseudo-

labelingmethods, deep generativemethods, and graph-based
methods [15]. Such diverse approaches enable the effective
use of unlabeled data, greatly enhancing the versatility and
robustness of DL models. This is particularly beneficial
when acquiring labeled data is either scarce or expensive.

• Consistency regularization methods, grounded on the
smoothness or manifold assumption principles, entail
incorporating similarity constraints into the final loss
functions. This strategic integration encourages DL
models to generate similar predictions for slightly
altered versions of the same input signals [13].
Consequently, combining consistency regularization
with a supervised classification backbone yields a
straightforward and highly effective SSL approach.

• The Pseudo-labeling is a classical self-training method
[14]. The pseudo-labeling method uses the probability
output of unlabeled training samples as their pseudo-
labels. Then, it regularizes the training process
of the depth model by using these pseudo-labeled
samples [15]. The key is to generate high-confidence
pseudo labels so unlabeled training samples can be
selected confidently. Yang et al. [16], incorporated
pseudo labels into SEI. Longi et al. [17] introduced
a SEI method based on pseudo labels. This
framework iteratively generated pseudo labels and
assigned weighted importance to individual samples
based on the number of unlabeled samples and the
learning phase.

• Deep generative methods, such as Generative
Adversarial Networks (GANs) [18], Convolutional
Auto-Encoders (CAEs) [19] and their variants, can
learn the data distribution from unlabeled training
samples. Therefore, SemiSEI methods based on an
unsupervised component such as Auxiliary Classifier
GAN (ACGAN) [20], Improved GAN [21] or CAE.
In comparison to methods lacking a corresponding
generator or decoder, deep generative methods manifest
notable enhancements in identification performance,
particularly when operating under conditions of
limited labeled training samples. Nonetheless, it is
imperative to acknowledge the inherent limitations
of GAN-based techniques, which are susceptible
to training instabilities and are prone to model
collapses. Overcoming these issues necessitates
the implementation of a myriad of intricate training
strategies. Concurrently, CAE, while incorporating
unlabeled training samples into the training pipeline
solely through target reconstruction, may not fully
exploit the latent information embedded within these
unlabeled samples.

• In the graph-based method, the distribution of labeled
data and unlabeled data is regarded as nodes on the
graph, and the label propagation algorithm is used for
learning [22].
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2.2 Adversarial Training-Based Methods

Adversarial training is a crucial technique to strengthen
the defenses of neural networks [23], [24]. We introduce
slight, carefully crafted disturbances to the input data during
training. While these perturbations are small, they can trick
the neural network intomaking errors. The network learns to
withstand such disruptions andmaintain accuracy by training
with these modified inputs. This approach is commonly
adopted to protect against adversarial attacks. These attacks
involve altering input data minimally yet strategically to
fool the model into incorrect predictions. Adversarial
training effectively counters such threats, making it a
reliable defense mechanism [25]. Moreover, this method
is not only defensive. It can also be repurposed to create
adversarial attacks [26]. Attackers can generate adversarial
inputs that lead a model to make mistakes, exploiting the
model’s vulnerabilities. In addition to its use in security,
adversarial training adapts to semi-supervised learning [27].
It leverages unlabeled data in a method known as Virtual
Adversarial Training (VAT). This variation helps improve
model performance when labeled data is scarce, using the
abundance of unlabeled data to inform the training process.

RF signal fingerprints, uniquely influenced by minor
hardware differences in emitters, are typically subtle and
can be disrupted by noise, leading to misidentification. We
employ adversarial training for our Convolutional Neural
Network (CNN) to mitigate this issue. Enriching the
training set with adversarial examples bolsters the network’s
detection capabilities and fortifies its resilience. Central to
adversarial training is the generation of these adversarial
examples. In practice, a nominal perturbation, denoted
as ∆x and considered a random variable, is introduced
to the input vector of a trained CNN. This randomness
is crucial as it allows the model to simulate a range of
potential perturbations that might affect the input data,
thus reflecting the various types and degrees of noise and
distortions that data may encounter in the real world. The
variability introduced by this random perturbation forces the
model to learn to generalize well across a broader range of
input variations, rather than overfitting to specific adversarial
examples. This perturbation is calibrated to maximize the
network’s loss function. When this loss peaks, the input
x + ∆x is deemed an adversarial sample, as discussed by
Kokalj-Filipovic and Sadeghi. Such perturbations typically
cause the CNN to make classification errors. To combat
this, the CNN is trained using the adjusted input x + ∆x
alongside the true label ytrue. This training step markedly
enhances the CNN’s proficiency in identifying adversarial
examples, thereby substantially improving the robustness of
the network against these minute yet effective disturbances,
in line with the findings of Kokalj-Filipovic and Sadeghi
[25], [26].

2.3 VAT-Based Methods

The adversarial training algorithm trains a CNN in
a supervised learning model, where all the training
samples must be labeled. However, in noncooperative
communication scenarios, only a small number of signal
samples are labeled. Using a small number of labeled
samples to train the CNN through adversarial training results
in poor generalization capacity. To exploit the information
in the unlabeled signals, we adopted VAT [10] to employ
the labeled and unlabeled training data and to smoothen the
output space of the neural network. This minimized the
change in the output of the neural network where its input
was locally perturbed. Therefore, VAT proved effective for
SSL.

However, in the SSL model, there are many unlabeled
training samples such as q(y | xu). Therefore, unlabeled
training samples cannot be used to train the CNN through
adversarial training algorithms. Note that, for a large amount
of labeled training samples, p(y | x, θ) approaches q(y | x).
We can use virtual labels probabilistically generated from
p(y | x, θ) rather than labels unknown to the user. We
then compute the adversarial direction based on these virtual
labels. The loss function for VAT can be expressed as

Ladv(x, θ) = D[p(y | x, θ), p(y | x + radv, θ)], (1)

where θ represents the weight parameters of the neural
network in the current training state and radv represents
the virtual adversarial sample: After obtaining the virtual
adversarial samples, the full loss function is given by

LDS
adv(x, θ) =

∑
(x,y)∈Dl

L(x, y, θ) + λadv
∑
x∈Du

Ladv(x, θ),

(2)

where Dl and Du represent the labeled and unlabeled training
dataset, respectively; λadv > 0 represents the regularization
coefficient that needs to be set in advance. L(x, y; θ)
represents the supervised loss function of the CNN.

Labeled data and a large amount of unlabeled data are
used to carry out semisupervised training. The labeled
data was combined with the unlabeled data to conduct
virtual adversarial training. Supervised learning can use
labeled data to guide network training. The loss function
of VAT Ladv(x, θ) can be regarded as a measure of the local
smoothness of the current network, and its optimization can
smooth the network output space. λadv, as the regularization
coefficient, is used to control the relative balance between
supervised learning and virtual adversarial training, ensuring
the effect of semi-supervised training. Finally, the parameter
θ of the CNN is tuned according to the backpropagation
algorithm.

Compared to traditional Generative Adversarial
Networks (GANs), Virtual Adversarial Training (VAT)
offers amore direct and stablemethod to enhance themodel’s
resistance to data perturbations. Unlike GANs, VAT avoids
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the instability and mode collapse often seen in training, as it
does not rely on the dynamic balance between generators and
discriminators. This makes VAT more reliable in practical
applications, especially when the number of labeled samples
is limited. Through this method, VAT effectively utilizes
a large amount of unlabeled data, improving the model’s
generalization performance and ensuring that the model
performs well on new, unknown data regarding classification
or prediction capabilities.

3. Signal Model, System Model, and Problem
Formulation

The received signal model can be expressed as

r(t) = s(t) ∗ h(t) + n(t), (3)

where r(t) is the received radar signal at time t, s(t) is the
transmitted signal, h(t) is impulse response of the channel
between transmitter and receiver, n(t) denotes noise, and ∗
means the convolution operation.

In this paper, we outline a system model rooted in
the domain of Radio Emission Identification (REI) using
advanced deep learning techniques, as illustrated in Fig. 1.
Our systematic methodology unfolds across four distinct yet
interconnected phases:

1. Data Acquisition: We commence by meticulously
gathering a substantial dataset of signal transmissions
from an array of devices functioning in real-world
scenarios.

2. Model Training: Following data collection, we
preprocess the data to be compatible with neural
network algorithms. The data is then utilized to train the
neural network, crafting an intelligent model capable of
making accurate predictions.

3. Model Deployment: After training, we strategically
deploy the sophisticated model onto actual devices
within operational environments, ensuring seamless
integration.

4. Model Prediction: In the final stage, our deployed
model stands ready to authenticate and classify signals
of unknown origins, effectively discerning between
various emission sources.

Acknowledging the inherent complexities of real-world
environments and the limitations imposed by the scarcity
of labeled data samples, we supplement our approach

Fig. 1 System model of deep learning-based REI.

with a Semi-Supervised Radio Emission Identification (SS-
REI) technique. This enhancement is designed to refine
the model’s efficacy and extend its applicability under
constrained conditions.

Here, we define X as the input samples space and Y
as the category space. Consider an input sample xk ∈ X,
representing a radar signal in IQ format, and its true category
y ∈ Y. In the SS-REI problem, the training dataset
Dt comprises both labeled and unlabeled data, specifically
Dt = Dl ∪ Dul . Here, Dl = {(x

n
l
, yn

l
)|n = 1, · · · , L} is the

labeled training dataset, and Dul = {(x
m
ul
)|m = 1, . . . ,N−L}

is the unlabeled training dataset, where xn
l
and xm

ul
represent

the labeled and unlabeled samples, respectively, and yn
l

represents the sample labels, L is the count of labeled
samples and N − L is the count of unlabeled samples.
Typically, N − L is much greater than L. The objective in a
typicalmachine learning framework for SS-REI is to discover
a function f ∈ F from f ∈ F : X → Y that minimizes the
expected error. Formally, this can be represented as:

min
f ∈F

εem = min
f ∈F
E(x,y)∼Dl

L( f (x), y) + E(x,y)∼Dul
Lul(∗),

(4)

where E denotes the expected value, L( f (x), y) is the
loss function comparing the predicted f (x) with the actual
category, and Lul(∗) is an additional loss function that
leverages the unlabeled training data to improve the model’s
accuracy. This auxiliary loss function can be based onMean
Square Error or Kullback-Leibler divergence.

4. The Proposed VAT-Based SS-SEI Method

Within this portion of the text, we delve into the specifics
of the proposed SS-VAT method. Initially, we provide a
comprehensive overview of the framework, elaborating on
the functionalities and advantages of each element within
the proposed SS-VAT method. Subsequently, we outline the
training procedure specific to the proposed SS-VAT method.

The framework of our method is shown in Fig. 2,
encapsulating a dual-sample feeding mechanism, a profound
deep neural network infrastructure, and a pair of intricately
formulated objective functions, meticulously designed to
harness the full potential of SSL with VAT. At the heart

Fig. 2 The frame of SS-VAT method.
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Fig. 3 The structure of CVNN.

of our innovative method lies the deployment of a Complex-
Valued Neural Network (CVNN) [38], which is specifically
adept at extracting and distilling the intricate interplay and
coupling information present among the myriad components
of radar signals. This specialized capability significantly
enhances the overall effectiveness and precision of our
SS-VAT methodology. The detailed architecture of the
CVNN, showcasing its complex layers and operational
intricacies, is vividly illustrated in Fig. 3. Within the
realm of real-time testing and application, this meticulously
optimized deep neural network is strategically employed
to classify and predict outcomes based on a diverse array
of test samples fed into the system. This predictive
mechanism is not only a testament to the network’s advanced
analytical capabilities but also underscores the method’s
adaptability and efficacy in handling real-world radar signal
identification and classification challenges, thereby setting a
new benchmark in the domain of REI.

The training dataset undergoes a strategic bifurcation
into two fundamentally distinct categories: labeled and
unlabeled samples, setting the stage for our model to traverse
this dual terrain with a nuanced approach. To adeptly
navigate through this composite landscape, our framework
employs a sophisticated, multifaceted loss function strategy
that meticulously balances the model’s learning from both
terrains. During the initial phases of the model’s training,
there is a deliberate emphasis on absorbing and integrating
knowledge predominantly from the labeled portion of the
dataset. This critical phase of learning is rigorously
quantified through the application of the cross-entropy loss
function. This function serves as a mathematical conduit
to measure the divergence between the model’s predictions
and the actual ground truths, effectively enabling the precise
calculation of the supervised loss component of the training
process. The essence of the cross-entropy loss lies in its
ability to encapsulate the disparity between the expected
outcomes and the model’s inferences, thereby providing a
robustmechanism to guide themodel’s learning in alignment
with the labeled data’s inherent truths. This calculated
approach ensures that, right from its nascent stages, the
model is steered towards achieving a deep, nuanced
understanding of the data it is taskedwith deciphering, laying
a solid foundation for subsequent phases of training where
the untapped potential of unlabeled data is progressively
harnessed. The cross-entropy loss is expressed as

LC( f (xi; wm), y) =
1
L

L∑
i=1

yi log
1

f (xi)
, (5)

where wm is hyperparameter space, f is the model, xi are
the labeled samples, L is the number of labeled samples, LC

is the loss of classification backbone.
As the training epochs advance, the model incre-

mentally shifts its focus towards the exploitation of the
unlabeled dataset. This is achieved through the model’s
autonomous generation of pseudo-labels [14], an innovative
technique that maximizes the utility of unlabeled datasets.
Concurrently, the model also calculates the VAT loss for
both labeled and unlabeled datasets, thereby maintaining
a balanced learning trajectory. A prominent characteristic
of this framework is the integration of VAT, a refined
form of adversarial training applicable in SSL contexts.
In our proposed SS-VAT method, VAT is employed for
the extraction of generalized semantic features from both
labeled samples (xl) and unlabeled samples (xul). VAT
introduces the concept of local distributional smoothness
(LDS), defined as themodel’s resilience to virtual adversarial
directions, gauged through divergence. The VAT loss LV AT

is given by:

LV AT (x∗, θ) = D[ f (y |x∗, θ̂), f (y |x∗ + padv, θ)], (6)

where x∗ represents either xl or xul , D[ f , f ′] signifies the
Kullback-Leibler divergence in our SS-VAT approach, θ̂
denotes the current model weights, and padv is the virtual
adversarial perturbation.

In summary, the framework elucidated in this study
represents a cutting-edge approach in the realm of SSL.
By harmonizing the strengths of VAT with a dual dataset
utilization strategy, the model demonstrates a heightened
performance capability. It is adept at efficiently harnessing
both labeled and unlabeled data, exhibiting adaptability
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Table 1 The performance of the SS-VAT method in comparison to others.

Fig. 4 The confusion matrix of the four methods.

across varying proportions of available labels, and achieving
commendable levels of accuracy and generalization, even
in the face of complex and multifaceted data landscapes.
Following the aforementioned design, the target loss function
for model optimization during the training phase can be
articulated as

Lobjective = LC + LV AT . (7)

For easy understanding of our work, the training procedure
is described in Algorithm 1.

5. Experimental Setup and Results

Our evaluation of the proposed SS-VAT method utilizes the
dataset presented in the paper [11]. The dataset is a synthetic
one, designed to closely simulate various conditions of
actual radar signal reception. This includes the addition
of multipath Rayleigh fading and Gaussian white noise.
The synthetic dataset, by simulating potential interferences
and signal degradation, aims to approximate real-world

conditions as closely as possible, thereby enhancing the
model’s robustness against various environmental noises and
disturbances, making it suitable for evaluating REI methods.
Although the synthetic dataset is designed to mimic the
characteristics of real-world data to improve the model’s
generalization ability in actual environments, there may still
be differences in statistical distribution compared to ground
truth datasets. The long signal dataset (signal-to-noise ratio
(SNR) is 10 dB) with 13 categories is selected as the dataset
for evaluation. For our analysis, we established seven SSL
scenarios. These scenarios are defined by the varying ratios
of labeled training samples to the total training dataset,
specified as {1%, 2.5%, 5%, 10%, 20%, 30%, 50%}.

Our methods are developed using PyTorch (version
1.12.0 with Python 3.8.13). For parameter optimization,
we utilize the Adam optimizer with a learning rate of
lrm = 0.001 and the default initial settings of Adam. The
model optimization in our study is carried out using a
combined loss function. The intensity of the perturbation
in VAT is set to ε = 1.0. The training is conducted over
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300 iterations with a batch size of 32, and the experiments
are executed on an NVIDIA GeForce GTX 2080Ti GPU. In
our study, the SS-VAT method is benchmarked against three
contemporary SS-REI approaches: CVNN [38], SSRCNN
[39], and DRCN [40]. To ensure an equitable comparison,
while preserving the fundamental concepts of thesemethods,
we employ the identical dataset in IQ format, the same data
preprocessing techniques, optimizer, learning rate, and basic
network architecture.

The efficacy of the proposed methodologies has
undergone stringent assessment via a gamut of experiments,
each set against a backdrop of varying proportions of labeled
samples. Detailed accounts of the accuracy in identification
are encapsulated in Table 1. It suggests a universal trend
across all methods: an upsurge in labeled training samples
invariably catalyzes enhanced outcomes. This trend is rooted
in the reality that an enriched repository of labeled samples
furnishes the model with a nuanced comprehension of the
intrinsic sample distribution. Such enrichment empowers the
model to sculpt more precise decision boundaries, thereby
elevating the caliber of identification performance.

It is noteworthy that our method demonstrates
remarkable recognition performance in scenarios where the
labeled training samples constitute only 1%, 2.5%, and 5%
of the total training dataset, achieving recognition accuracies
of 48.69%, 68.15%, and 80.46%, respectively. These figures
significantly surpass the capabilities of other methods.
Such impressive results under sample scarcity underscore
the robustness of the proposed approach. However, in
scenarios with 30% and 50% labeled samples, our method
shows recognition performance at 88.62% and 92.69%,
respectively, slightly below that of the other methods. The
reason may lie in the sufficiency of labeled samples, where
the added perturbations in our proposed method could limit
the enhancement of recognition performance. As shown in
Fig. 4, we presented the confusion matrix of the proposed
method as well as other comparison methods. It can
be observed that, overall, the main classification errors
occur in the samples of the fourth, sixth, and seventh
categories. Moreover, compared to other methods, which
have more or less misclassified samples in other categories,
our method’s misclassifications are more concentrated, and
50 samples of the sixth category are wrongly classified into
the second category, whichmight be due to the similar spatial
distributions that these two categories of samples exhibit.

6. Conclusion

In this paper, a VAT method based on SSL framework
was proposed to solve the problem of insufficient labeled
dataset and a large number of unlabeled training dataset in
the real radar signal recognition scene. Specifically, we
designed two objective functions to extract the semantic
features of the radar signal. In the early training cycle,
the model learns mainly from the labeled data, using the
cross-entropy between the model prediction label sample
and the real label to calculate the supervised loss for the

supervised portion of the data. As the training progresses,
it begins to take advantage of the unlabeled data, using
pseudo-labels that the model predicts itself. An important
advantage of this method is its efficient use of computational
resources. By incorporating unlabeled data into the training
process, the VAT-based SS-REI method reduces the need for
extensive labeled datasets, which are often costly and labor-
intensive. This utilization not only extends the practical
applicability of the model in environments where labeled
data are scarce but also helps maintain the efficiency and
scalability of model training. Additionally, this method
calculates VAT losses separately for labeled and unlabeled
samples, ensuring the model can handle the wide variability
and noise common in real radar signal environments. This
approach inherently enhances the model’s robustness and
generalization capabilities. We evaluated the proposed SS-
VAT method on a radar dataset. Simulation results show
that this method has better recognition performance than
the latest SS-REI method. This shows that our approach
improves model robustness and generalization.
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