
DOI:10.1587/transfun.2024EAP1034

Publicized:2024/07/05

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.xx XXXX 2023
1

PAPER
Speech Emotion Detection using Fusion on Multi-Source Low-Level
Information Based Recurrent Branches

Jiaxin WU†, Bing LI†∗a), Li ZHAO††, and Xinzhou XU†††b), Nonmembers

SUMMARY The task of Speech Emotion Detection (SED) aims at judg-
ing positive class and negetive class when the speaker expresses emotions.
The SED performances are heavily dependent on the diversity and promi-
nence of emotional features extracted from the speech. However, most of
the existing related research focuses on investigating the effects of single
feature source and hand-crafted features. Thus, we propose a SED approach
using multi-source low-level information based recurrent branches. The fu-
sion multi-source low-level information obtain variety and discriminative
representations from speech emotion signals. In addition, focal-loss func-
tion benifit for imbalance classes, resulting in reducing the proportion of
well-classified samples and increasing the weights for difficult samples on
SED tasks. Experiments on IEMOCAP corpus demonstrate the effective-
ness of the proposed method. Compared with the baselines, MSIR achieve
the significant performance improvements in terms of Unweighted Average
Recall and F1-score.
key words: Speech emotion detection, multi-source low-level information,
recurrent branches, convolutional recurrent network

1. Introduction

As the important medium for obtaining and disseminating
information in human communication, speech signals not
only contain linguistics information, but also contain rich
paralinguistic information (e.g., emotion features) [1]. Typi-
cal paralinguistic topics such as Speech Emotion Recognition
(SER) have been researched and applied extensively, which
making Human Computer Interaction (HCI) [2] more intel-
ligent and efficient. As another prominent topic in paralin-
guistic, Speech Emotion Detection (SED) learn implicit par-
alinguistic features from speech naturally and detect emotion
states in speech signals by distinguishing the values of differ-
ent parameters [3], [4], which providing valuable assistance
in the field of stress-related occupations and psychological
counseling.

The research in relation to the SED task relies on feature
extraction module and classification module primarily. Most
existing works focus on obtaining the accuracy of emotion
detection through exploiting priori knowledges [5], [6], Mel
spectrogram [7]–[9] and paralinguistic feature sets [10], [11]
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to identifying the paralinguistic content. The recent research
of deep learning provides SER with Deep Neural Networks
(DNNs) [12]–[14] to structure emotion representations from
raw features. Then, the DNNs are applied as the feature
extractor on Mel spectrogram to obtain the deep emotion
representations [15]–[17], which are utilized to predict emo-
tion classes.

Nevertheless, despite of these works in SER for the
models above, the research in relation to the SED tasks still
exist two issues to address. First, most existing DNN-based
emotion detection tasks focus on utilizing the fixed types of
features [18]–[20] as the underlying features which leads to
the loss of high-level representations in speech emotion sig-
nals [21]. Second, most of the existing works achieved their
detection performance through each sample’s unweigted loss
[22]–[24], without take into account the degradation of emo-
tion detection performance due to the majority of negative
class samples among the [25]–[27] and the lack of reason-
able weights design between easily classified samples and
difficult samples.

In order to address the first issue, we propose inclusion
of the multi-source Low-Level Information (LLI) to obtain
high-level representations and more prominent features in
SED tasks. The LLI include three components: We utilise
the Convolutional Recurrent (CR) branch to process the log-
Mels features, while we employ the Low-Level Descriptor
(LLD) and wav2vec branches to approach the low-level de-
scripors and wav2vec 2.0 features, respectively. Afterwards,
to address the second challenge, the Focal-Loss (FL) func-
tion is employed to emphasizes on the weights for difficult
samples to reduce influence from easily classified training
samples.

In this letter, we propose the Multi-Source low-level in-
formation based recurrent Branches (MSIR) approach for
SED. The CR branch utilises Convolutional Recurrent Neu-
ral Network (CRNN) to approach the 2D-log-Mels features.
The LLD branch employs Recurrent Neural Network (RNN)
to process 3D-LLD features. The wav2vec branch makes use
of RNN to address wav2vec 2.0 features. Further, we employ
focal-loss to the concatenation of three branches. The major
contribution of this paper can be summarized as follows:

• For the speech emotion detection tasks, we propose an
MSIR approach using recurrent neural networks on low-level
information for each utterance, while employing focal-loss
to address the easily classified samples and difficult samples.

• Within the proposed fusion approach, we design the
LLI containing 2D-log-Mels, 3D-LLD and wav2vec 2.0 fea-
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tures as the input of recurrent branches with attention mecha-
nism, which obtains more advanced depth features and more
diverse emotional information for SED tasks.

• Within the proposed approach, we employ the focal-
loss by control the weight parameters to balance the easily
classified samples and difficult samples.

The rest of the paper is organized as follows. Section
2 reviews the related work, while Section 3 introduces the
details of the proposed scheme in this paper. Then, we
present the experiments and their corresponding analysis of
results in Section 4.

2. Related Work

2.1 Emotion Detection in Speech

As previously works mentioned, spectrum features extracted
from raw speech signals are extensively applied for SER.
The prosody features and log-Mel spectrograms from audio
samples [28], [29] are utilized as the input of DNN models
to recognize emotions.

In view of the success of most SER tasks are applied in
idealized scenarios, we consider a more detailed and targeted
SED tasks. Lalitha et al. [30] analizes the performance of
emotion detection on DNN, which adopts various perceptual
features as the input to obtain important emotion information.
Further, [31], [32] apply Mel spectrograms as the input of a
Gate Recurrent Unit (GRU) based RNN, which is used to
summarize emotion representations to detection depression
emotions from audio.

On emotional spaces, in addition to conventional
valence-arousal cases [33], Atmaja et al. [34] employ three-
dimensional emotion model with valence, arousal, and dom-
inance to characterize categorical emotion, where acoustic
features extracted by CNN and LSTM, respectively. Addi-
tionally, the study in [35] utilizes four dimensions arousal-
expectancy-power-valence to describe emotional states, and
perform Relevance Units Machine (RUM) to predict emo-
tions.

Further, Mirheidari et al. [36] proposes emotion de-
tection through recognition different degrees of Expressed
Emotion, which exploits LLD extracted from audio seg-
ments. Moreover, Zou et al. [37] concatenated multiple
levels acoustic features to predicte emotions, where spec-
trogram extracted by Convolutional Neural Network (CNN),
MFCC extracted by Bi-directional Long Short-Term Mem-
ory networks (Bi-LSTM) and wav2vec 2.0 extracted by the
transformer-based network, then fused by co-attention mech-
anism to achieve competitive performance. Although hand-
crafted features are very effective in distinguishing speech
emotions, most of them are low-level features.

2.2 Deep Learning in Speech Emotion Analysis

DNNs are frequently used to learn hidden frequency and
time domain representations in speech signals, also repeat-
edly employed in SER systems. Nevertheless, there is a lack

of in-depth investigations of implementing aggregation ap-
proaches over different time steps in SER tasks [38]. To
obtain time-dependent features, Luo et al. use RNN to learn
long-time context from multiple frame-level LLDs [39], [40].
Meanwhile, attention mechanisms have been included to fo-
cus on the emotionally-relevant parts [41]–[43]. Further-
more, Liu et al. [44], [45] proposes Long Short-Term Mem-
ory networks (LSTM) with convolution filters on different
scales, which is designed to extract emotion-relevant fea-
tures from different domains in emotion classification task.

Similarly, DNNs have also been applied in the SED task,
[46] using a CNN model for SED, achieving high average
accuracy on three main emotions. Then, an RNN network
[47] is used to emotion detection in dialogue, which provides
better contextual information for the utterance and obtained
better emotion detection results. After that, the Bi-LSTM
[48] is applied to extract acoustic features in the classification
model of neutral emotion detection.

Further, the combination of Convolutional Neural Net-
work and Temporal Convolution Network (CNN-TCN) [49]
is adopted as feature extraction module, which obtaines
local spectral features for emotion detection. Currently,
Bidirectional Encoder Representations from Transformers
(BERT) [50] is employed to exploring contextual informa-
tion to improve performance in emotion recognition, which
indicating effectiveness and generalization capability of fine-
tuning. Meanwhile, the low-rank adaptation [51] is utilized
for parameter-efficient fine-tuning to reduce the training pa-
rameters of large language models, which achieves good
performance in empathy detection and emotion classifica-
tion tasks. In contrast, we employ a CNN-LSTM network
with an attention mechanism for SED, containing a CNN net-
work to capture information in the temporal dimension, and
LSTM is used to capture temporal correlations between fea-
tures. In addition, the attention mechanism assigns weights
to emotional features with different strengths to obtain more
distinctive features.

3. Proposed Methodology

In this section, we introduce our proposed MSIR for SED as
shown in Fig. 1. First, the 2D-log-Mel sepctrograms (static
features and first order delta) extracted from the raw speech
signals are used as the input of the CR branch. Then, we
generate the 3D-LLD and wav2vec 2.0 features from raw
speech signals as the input to Bi-LSTM. Finally, through
fusing the three branches, emotional states can be detected
in speech.

3.1 The Convolutional Recurrent Branch

For the convolutional recurrent branch, the convolutional lay-
ers are adept in extracting locally invariant features from the
input sequence, and the recurrent layer capture the temporal
correlation between frames to obtain global features. Given a
speech signal, we split the signal into frames with Hamming
windows and Fast Fourier Transform (FFT) is performed for
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Fig. 1 The architecture of the proposed MSIR model. The 2D-log-Mels is first fed to Convolutional
Recurrent Branch (CR Branch). The 3D-LLD and wav2vec 2.0 features are used as the inputs of Low-
Level Descriptor Branch (LLD Branch) and wav2vec Branch, respectively. The multi-source low-level
information with focal-loss are fed to the softmax classifier.

each frame to obtain frequency-domain information. Then,
the frequency-domain information is weighted using Mel-
filter bank 𝑛 to obtain the energy 𝑦𝑛 for each Mel frequency
band. The energy of each Mel frequency band is logarithmic
to obtain the log-Mel spectrogram 𝑙𝑛. In addition, the first
order delta of the static log-Mels is calculated as 𝑙𝑑𝑛 .

The input of convolutional layer is the 2D-log-Mels
feature M (𝐿 ×𝑊 × 𝐾), where 𝐿 is the frame number, and
𝑊= 40 is the channels number of Mels while 𝐾= 2 represent
the static features and first order delta of Mels. The output
feature map of the convolutional layer is C (𝐿 ×𝑊𝑐 × 𝐾),
where 𝑊𝑐 represents the feature dimension after convolu-
tional operation and the activation function is Leaky-ReLU.
Then, the max-pooling layer is used to reduce dimension-
ality and control overfitting, the output feature maps P is
expressed as

P = POOL
(
𝜎Leaky-ReLU (CONV𝑚×𝑛 (M))

)
(1)

where 𝜎Leaky-ReLU (·) represents the activation function
Leaky-ReLU, 𝑚 × 𝑛 represents the size of the convolution
kernel is 5 × 3. POOL(·) represents the max-pooling opera-
tion.

Before passing the output feature of CNN modules to
the long short-term memory network, the Fully-Connected
(FC) layer is added for each low-level unit to reduce feature
dimension with no loss in accuracy. The LSTM module up-
dates the value of the cell through operations between gate
functions, which effectively storing and acquiring contextual
information. In this work, the Bi-LSTM is adopted to obtain
the present and future information in an utterance. Ad-

ditionally, in order to obtain discriminative utterance-level
representations, we employ an attention layer to focus on
emotion relevant parts for SED. Accordingly, the output of
convolutional recurrent branch can be presented as

PCR = DBiLSTM (P) ⊙ (𝜔P · 𝜎tanh (DBiLSTM (P))) , (2)

with

DBiLSTM (P) =
[
D(F)

LSTM (P)T,D(B)
LSTM (P)T

]T
, (3)

where P is the output of CNN moduel, DBiLSTM (P) consists
of D(F)

LSTM (P) and D(B)
LSTM (P) representing the forward and

backward output of Bi-LSTM respectively, and 𝜔P repre-
sents weight vector learned from DBiLSTM (P). Then, 𝜎tanh (·)
represents the tanh activation function [31]. Accorrdingly,
the PCR is the final output of convolutional recurrent branch
with attention.

3.2 The Low-Level Descriptor and wav2vec Branches

We obtain 65 low-level descriptors and their delta descrip-
tors from the input speech signal. The LLDs contain the
categories of loudness, energy, Zero-Crossing Rate (ZCR),
the 1–26 RelAtive Spectral TrAnsform (RASTA) auditory
band, Mel Frequency Cepstrum Coefficient (MFCC) 1–14
without 0-th coefficient, spectral features, and F0-related
features. We extract the 130-dimensional LLDs using the
openSMILE toolkit [52].

The pre-trained wav2vec branch through self-
supervised learning employ the wav2vec 2.0 to obtain mean-
ingful speech representations from raw signals [37]. Fig. 1
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shows the wav2vec branch composed of three blocks. The
feature encoder contains several convolutional blocks, which
encodes the raw audio G into latent speech representations
L1,L2, ...,Lj, where 𝑗 is the time step. Lj is normalized to
zero mean and unit variance. Specifically, CNN blocks are
composed of temporal convolution layer, layer normalization
and gaussian error linear unit activation function.

Then, Lj are fed to the transformer-based contextualized
encoder module which gain contextualized representations
R1,R2, ...,Rj by aggregating multiple time steps. Finally,
we take the latent speech representations Lj from the CNN
blocks as input to the quantization module and obtain em-
bedding Qj after discretization by product quantization. The
contrastive loss is employed to optimize the context repre-
sentations deriving from contextualized encoder module and
the discretization embeddings. We add the L2 regulariza-
tion and diversity loss to increase the use of the quantized
codebook representations [53]. Finally, contrastive loss is
optimized at each step to obtain the trained contextualized
representation Rj as part of SED acoustic features. Note that
we freeze the wav2vec 2.0 model (with built-in contrastive
loss) and regard it as the feature extractor.

Finally, the LLD features and wav2vec 2.0 features are
utilized as input to two Bi-LSTM networks with attention
layer, respectively. The output of low-level descriptor branch
and wav2vec branch are present as

PLLD = 𝜔LLD · 𝜎tanh (DBiLSTM (LLD)) , (4)

Pw2v = 𝜔Rj · 𝜎tanh
(
DBiLSTM (Rj)

)
, (5)

where DBiLSTM (P) = D(F)
LSTM (P) + D(B)

LSTM (P) represents
the forward and backward output of Bi-LSTM, respec-
tively. Specifcally, 𝜔LLD and 𝜔Rj represent the weights for
DBiLSTM (LLD) and DBiLSTM (Rj), respectively. In addition,
𝜎tanh (·) represents the tanh activation function [31]. Ac-
cordingly, the PLLD and Pw2v are the final output of LLD
and wav2vec branches, respectively.

3.3 Multi-Source Concatenated Features with Focal-Loss

Then, we fuse the three branches as the multi-source low-
level information. The utterance-level representations S as

S = [PCR
T,PLLD

T,Pw2v
T]T (6)

The concatenations of LLI is the input of fully-
connected layers. Similar to the previous works, the soft-
max activation function is applied to compute the emotion
predictive probabilities.

Focal-loss is commonly used to solve category imbal-
ance and classification difficulties in object detection tasks,
which also exist in SED tasks. Therefore, this paper uses
the Focal-Loss (FL) function to minimize the divergence
between predicted labels and the ground truth.

First, in order to solve the problem of imbalance be-
tween positive and negative samples, the weighting factor
Z ∈ [0, 1] is increased as shown in Eq.(7). When the number

of positive samples is much larger than the negative samples,
then control Z ∈ [0, 0.5] to increase the weight of negative
samples and decrease the weight of positive samples. When
Z = 0.5, it is the standard cross-entropy function.

Although the weighting factor balances the positive and
negative samples, it does not address the balance problem of
simple and hard samples. Therefore, the modulating factor
(1 − 𝑝) \ is added to the function, where 𝑝 represents the
network’s estimated probability for positive cases and 1 − 𝑝
is negative cases, the \ is focus factor. By adjusting \ to
reduce the loss contribution of simple samples and increase
the weight of hard samples. The FL is generated as shown
in

L𝐹𝐿 (𝑝) = −Z (1 − 𝑝) \ log (𝑝) , (7)

where Z is weighting factor, \ ≥ 0 is focus factor, and
(1 − 𝑝) \ is the modulating factor. When simple positive
samples are correctly classified, 𝑝 tends to 1, (1 − 𝑝) \ tends
to 0, and the contribution to the total loss is very small.

4. Experiments

4.1 Experimental Preparation

1) Date and Features: To evaluate the performance of our
proposed method, we test it on the Interactive Emotional
Dyadic Motion Capture (IEMOCAP) [54] database collected
by the University of Southern California. The database con-
tains approximately 12 hours of data in total including 10
professional actors. Each dialogue is performed by two ac-
tors of different genders, contains a total of 5 dialogues, and
each dyadic dialogue is segmented into utterances. The aver-
age duration of each utterance is 4.5 seconds. The utterances
are labeled with six emotion labels (happy, sad, neutral, an-
gry, excited, and frustrated). In this paper, happy (595) and
excited (1 041) is combined into happy, so we predict the four
most representative emotions among them: neutral (1 708),
sad (1 084), angry (1 103), and happy (1 636), with a total
of 5 531 utterances as in related works on IEMOCAP [32],
[37], [43], [44].

In the experiments, the log-Mels features are extracted
by python-speech-features 0.6 toolkit. The openSMILE fea-
ture extract toolkit [52] (2.4.1 version) is utilized to extract
LLDs (static features, first order delta (Δ) and second or-
der delta (Δ2)). Note that the transformers 4.26.1 toolkit is
employed to extract wav2vec 2.0 features, based on the pre-
trained wav2vec2-base-960h model. Moreover, this SED
system is implemented in PyTorch 0.4.0 version, accelerated
by CUDA 9.0. Specifically, the dimensionality of the input
features for each branch is shown in Table 2.

2) Evaluation Setups: In the experiment, we employ z-
score to normalize the experimental data. In order to reduce
the influence of over-fitting, the Session-Independent (SI)
strategy is adopted in our experiment, setting the first four
sessions as the training set and the last session as the test
set. The Unweighted Average Recall (UAR) is given by the
average of four classes recall values as the metric to evaluate
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the performance. It is consistent with most other works
on IEMOCAP. In addition, we use F1-score to evaluate the
classification accuracy of our proposed model.

3) Experimental Parameters: For the CR branch, the
first convolutional layer contains 128 kernels accompanied
by batch normalization (momentum of 0.99, the weight de-
cay of 0.001), and each of the other convolutional layers
includes 256 kernels. Note that, We only use a max-pooling
layer after the first convolutional layer, with the size 2 and
the stride of 2, employing zero padding.

For the wav2vec branch, the feature encoder mod-
ule contains 7 blocks and each block with 512 channels.
The convolutional with strides (5, 2, 2, 2, 2, 2, 2) and kernel
widths (10, 3, 3, 3, 3, 2, 2). The raw audio encodes into a
sequence of embeddings with a stride of 20ms and a re-
ceptive field of 25ms. The contextualized encoder mod-
ule uses 12 transformer blocks with 8 attention heads each,
model dimension 768. The proposed MSIR is implemented
using Python platform and TensorFlow framework. We
use the Adaptive moment estimation (Adam) optimizer in
our experiments and the range of initial learning rate is
{5 × 10−6, 10−6, 5 × 10−5, 10−5, 5 × 10−4, 10−4, 5 × 10−3,
10−3, 5 × 10−2, 10−2}. The architecture is trained with the
batch size of 64. The model parameters are optimized by
minimizing the loss function within 100 epochs.

4.2 Experimental Results and Analysis

4.2.1 Comparison between Approches

First, we examine the UAR and F1-score performances us-
ing different low-level information and their concatenations
for different recurrent branches with different loss functions.
The low-level information consist of 2D-log-Mels, 3D-log-
Mels, 1D-LLD, 2D-LLD, 3D-LLD, and wav2vec 2.0, while
we consider different RNN branches with different loss.
The feature sets of the Computational Paralinguistics Chal-
lenge (ComParE) [55] and the extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS) are the baselines. Table
1 lists the UAR and F1-score of different approaches (includ-
ing baselines and the proposed MSIR) on SED. The results
suggest that RNN branches outperform baselines and obtain
absolute improvements of UAR and F1-score on SED. This
indicates that low-level information with recurrent branches
can retain and obtain effective emotional information. Fur-
thermore, the results demonstrate that the UAR of 2D-log-
Mels on Attention-based Convolutional Recurrent Neural
Network (ACRNN) is better than [18]. Thus, we employ this
feature in our following experiments. We utilize LLDs (in-
cluding 1D-LLD, 2D-LLD, 3D-LLD) as the input of RNN
(the module refer to as LLF-LSTM in [36]) and concate-
nate the obtained features into ACRNN (2D), respectively.
Compared with LLF-LSTM (1D-LLD) and LLF-LSTM (2D-
LLD), the concatenation of ACRNN (2D) and LLF-LSTM
(3D-LLD) obtains relative improvement of 1.5% and 0.9%
on UAR, 2.7% and 1.5 % on F1-score, respectively.

Meanwhile, in order to obtain more plentiful emo-

Table 1 The Unweighted Average Recall (%) and F1-score (%) com-
parison between the proposed MSIR and other different RNN architectures
with multi-source low-level information on SED, where the baselines are
obtained by the Support Vector Machines.

Approaches \ Metrics UAR (%) F1-score (%)

ComParE [54] 64.8 60.1
eGeMAPS [55] 62.6 65.3
ACRNN (2D) [18] 75.0 60.7
ACRNN (3D) [18] 74.8 60.7
ACRNN (2D) +LLF-LSTM (1D-LLD) [39] 77.4 62.9
ACRNN (2D) +LLF-LSTM (2D-LLD) [39] 78.0 64.1
ACRNN (2D) +LLF-LSTM (3D-LLD) [39] 78.9 65.6
MLAI-Co.Att [37] 79.1 69.1
w2v-EN [56] 74.3 58.9
LLF-LSTM (3D-LLD) [39] 79.4 66.3
LLF-LSTM (3D-LLD)+w2v-EN [56] 79.8 67.8

MSIR (w/o FL) 80.9 71.1
MSIR 82.1 71.2

Table 2 Dimensionality of input features or representations for each
branch.

Branches Descriptors # Features

Convolutional Recurrent Branch log-Mels 40
log-Mels (Δ) 40

Low-Level Descriptor Branch
LLD 65
LLD (Δ) 65
LLD (Δ2) 65

wav2vec Branch wav2vec 2.0 768

tional representations, we obtain the wav2vec 2.0 feature,
while concatenate with ACRNN (2D) and LLF-LSTM (3D-
LLD) features (This architecture is the Multi-Source low-
level information based recurrent Branches without Focal-
Loss (MSIR (w/o FL)). The results of Table 1 expresses that,
the UAR and F1-score of (MSIR (w/o FL)) are 80.9% and
71.1% which obtain an absolute improvement for baselines.
Besides, compared with the concatenation of ACRNN (2D)
and LLF-LSTM (3D-LLD) features, we also concatenate
wav2vec 2.0 (which as the input of w2v-EN is similar to [56]
without dense layer) and LLF-LSTM (3D-LLD), which gain
improvement of 0.9% UAR and 2.2% F1-score, indicating
that contextual emotional representation contains more emo-
tional information and effective for improving SED tasks. In
particular, compared with the concatenation of two branches,
multi-source low-level information have better performance
for the SED task.

4.2.2 Ablation Studies

Further, in order to process the imbalance between positive
samples and negative samples as well as simple samples and
hard samples, we employ focal-loss function for SED. Table
1 demonstrates that we obtain 1.2% UAR and 0.1% F1-score
further improvement compared with MSIR (w/o FL), which
indicate that the focal-loss is effectiveness for imbalance
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Fig. 3 The column graphs of F1-score for the proposed approach MSIR
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classes. Specifically, we present the column graph results
of UAR and F1-score for the proposed approach MSIR and
MSIR (w/o FL) in Fig. 2 and Fig. 3.

We make a comparison between our proposed system
MSIR and other recurrent branches for “happy”, “neutral”,
“sad”, “angry” emotions on Sensitivity (True Positive Rate
noted as ‘TPR’; %) and Specificity (True Negative Rate
noted as ‘TNR’; %). The results of Table 3 and Table 4
imply that MSIR achieved the highest Specificity of happy,
neutral, sad, and angry, which are 87.3%, 86.0%, 96.6%,
and 98.4%, respectively. Besides, the Sensitivity of neu-
tral, sad, and angry with the MSIR (w/o FL) architecture are
63.1%, 67.7%, and 78.8%, which higher than only using two
branches. This verifies that multi-source fusion features can
achieve better performance.

For the purpose of making class-wise comparison, the
confusion matrices of four emotions on the proposed system
MSIR in Fig. 4a, 4b, 4c, and 4d, respectively. The results

Table 3 The Sensitivity (True Positive Rate noted as ‘TPR’; %) of
“happy”, “neutral”, “sad”, “angry” emotions obtained by four methods
respectively.

Approaches \ Emotions Happy Neutral Sad Angry

ACRNN (2D) 65.2 56.7 64.0 51.1+LLF-LSTM (3D-LLD) [39]

MSIR (w/o FL) 60.2 63.1 67.7 78.8

LLF-LSTM (3D-LLD) 63.6 62.2 59.6 65.7+w2v-EN [56]

MSIR 57.5 59.3 64.1 70.7

Table 4 The Specificity (True Negative Rate noted as ‘TNR’; %) of
“happy”, “neutral”, “sad”, “angry” emotions obtained by four methods
respectively.

Approaches \ Emotions Happy Neutral Sad Angry

ACRNN (2D) 84.7 81.3 94.7 98.0+LLF-LSTM (3D-LLD) [39]

MSIR (w/o FL) 86.1 80.2 95.1 97.8

LLF-LSTM (3D-LLD) 81.5 80.8 96.4 97.4+w2v-EN [56]

MSIR 87.3 86.0 96.6 98.4
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Fig. 4 Confusion matrices (including recalls and the numbers) of the
proposed MSIR on four emotons.

express that the proposed approach obtain the recalls of four
emotions, where “happy” is 57.4% (for ‘positive’) and 87.3%
(for ‘negative’), “neutral” is 59.3% (for ‘positive’) and 86.0%
(for ‘negative’), “sad” is 64.1% (for ‘positive’) and 96.6%
(for ‘negative’), and “angry” is 70.7% (for ‘positive’) and
98.4% (for ‘negative’). This verifies the performance of the
proposed approach on both of the classes.

Finally, we consider comparing the parameter Z of FL
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Fig. 5 The line graph of the focal-loss with different value of weighting
factor (where focusing parameter \=2).

in four emotions (where we set \ = 2 as the same as most of
the previous works), and the performance are all better than
Cross Entropy (CE) (i.e., we examine the best UAR results
for the proposed MSIR approaches compared with MSIR
(w/o FL)), as shown in Fig. 5a, 5b, 5c, and 5d, respectively.
The UAR of “happy” with the Z=0.75 is 0.9% better than
CE. The UAR of “sad” with the Z=0.25, 0.55, 0.65 are better
than CE, where UAR is 1.2% better than CE when Z=0.65.
The UAR of “angry” with the alpha=0.25, 0.65 are better
than CE, where UAR is 0.9% better than CE when Z=0.25.
In particular, the UAR of “neutral” for all parameters of Z is
better than CE. When Z=0.75, the UAR is 1.8% better than
CE which obtain the largest performance improvement. By
adding focusing parameter \, the contribution of simple sam-
ples in the loss is reduced and expands the range of samples
accepting low loss. By adjusting the value of weighting fac-
tor Z , which balances the importance of positive and negative
samples and improves the performance of the model.

5. Conclusion

This paper presented a novel approach for detecting speech
emotions using recurrent branches through fusing on low-
level information. We first extracted low-level information
from audio segments to generate emotion representations.
These low-level information were input to different recur-
rent branches, outputting the concatenation of the features.
Next, we utilized the focal-loss to dispose the imbalance of
classes in SED tasks. The experimental results on IEMO-
CAP dataset show the superior performance of the proposed
approach, compared with existing research and baselines.
Future work may focus on investigating more effective low-
level infomation for the different branches, it is also expected
the other pre-trained models. Additionally, we would like to
explore transfer learning for solving cross-domain speech

emotion detection problem [57]–[59].
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