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Thinned Waveform Design of MIMO Radar in Interference 

Environment 
Mingjie LIU†a), Chunyang WANG†, Jian GONG†b), Ming TAN††, and Changlin ZHOU†, Nomembers 

SUMMARY To improve multiple input multiple output (MIMO) radar 

performance and reduce computation complexity, we propose a thinned 

waveform design algorithm. We form an optimization problem, which the 

objective function is combined with signal-to-interference-and-noise-ratio 

(SINR) and Cramer-Rao lower bound (CRLB). Waveform code, waveform 

selection and antenna selection can be as optimization variables. We define 

the waveform code-antenna selection vector, which can denote waveform 

code and antenna simultaneous selection. Due to the problem is multivariate 

non-convex optimization, we propose a sequential iterative optimization 

algorithm. The problem is decomposed into two subproblems about 

waveform code and code-antenna selection vector. To optimize the code-

antenna selection vector, we transform the optimization problem into a 

conventional convex problem by logarithms and first-order Taylor 

expansions. For waveform code optimization, we introduced an auxiliary 

variable and solved it by Alternating Direction Method of Multipliers 

(ADMM). Convex (CVX) can solve the subproblems. The simulation result 

shows that the better performance and lower computation complexity by 

the proposed approach than other methods. 

key words: multiple input multiple output (MIMO) radar；  thinned 

waveform design ；  signal-to-interference-and-noise-ratio (SINR) ； 

Cramer-Rao lower bound (CRLB) 

1. Introduction 

Multiple Input and Multiple Output (MIMO) has  excellent 

performance in many aspects, such as target detection, 

parameter estimation, radio frequency stealth, and anti-

interference[1, 2]. 

Compared with the uniform MIMO, the sparse MIMO 

has lower mutual coupling and significant advantages in 

reducing cost and data computation[3-8]. It can also provide 

high-resolution parameter estimation and process more 

sources than physical sensors[9-12]. Many researchers have 

studied various sparse array, including nested arrays, 

coprime arrays, etc. However, some scholars believe that the 

optimal sparse array configuration is the array that has high 

output signal-to-noise-ratio(SNR). [13-17] research the 

unstructured sparse arrays. It can adaptively adjust the array 

structure with the interference environment. [16] introduce 

antenna-pulse selection vector, proposing a novel thinned 

(space-time adaptive processing)STAP by selecting an 

optimum subset of antenna-pulse code pairs that achieves 

the maximum output signal-to-clutter-plus-noise-ratio. 

However, [16] did not consider pulse code design. The 

waveform code design can make MIMO radar processing 

more flexible. It can provide MIMO radar with more 

capabilities, especially anti-interference[18-20]. To further 

improve signal-to-interference-and-noise-ratio(SINR), 

waveform degrees of freedom can be utilized. [21] focused 

on the waveform design for radar and the extended target in 

the environment of electronic warfare. [22] develop and 

present a radar waveform design method that optimizes the 

spectral shape of the radar waveform. [23] proposed a new 

approach based on a Riemannian manifold. [24-26] focus on 

improving target detection capability in the presence of 

interference, proposing design method of transmit 

waveform.  

The signal dimension may be large for large scale 

MIMO. Some researchers researched the thinned waveform 

design, which it can be also called as the joint design of 

waveforms and antenna selection[27-32]. [27] aim low 

system overhead and radar-communication dual function, 

proposing a switchable individual antenna power control 

scheme to optimize waveforms and antenna locations jointly. 

[29] investigate the joint optimization of the waveform 

covariance matrix and the antenna position vector for a 

MIMO radar system to approximate some index. And, in 

order to further reduce the data volume of the sensing system 

signal processing, [31] proposed a waveform optimization 

design method and target parameter estimation technique for 

a compressed sensing MIMO radar based on a 2D antenna 

array. 

In this paper, we consider MIMO radar performance and 

system complexity. We proposed a thinned waveform design 

approach in the interference environment, which is the 

waveform code-antenna selection and discrete code design. 

We combine SINR and Cramer-Rao lower bound (CRLB) to 

form function representing radar performance by 

introducing code-antenna selection vector z and code 

waveform x. Then, we form optimization problems with the 

new function and constraints to improve radar performance. 

Because of multivariate non-convex optimization problems, 

we proposed a sequential iterative optimization algorithm. 

We decompose the problem into two subproblems. They are 

about the problem of z and x, respectively. For the 

optimization of z, we transform the optimization problem 

into a conventional convex problem by logarithms and first-

order Taylor expansions. For optimization of x, we 

introduced an auxiliary variable and solved it by Alternating 
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Direction Method of Multipliers(ADMM). The 

convex(CVX) toolbox can solve the subproblems. Finally, 

we take some simulations. The simulation result shows that 

MIMO radar has good performance and low complexity by 

the proposed approach. 

2. MIMO Signal model 

Consider a collocated narrow band MIMO radar, system, as 

shown in Fig. 1, the MIMO radar has N  transmit antennas 

and M  receive antennas. The interelement space is d. 
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Fig. 1  Collocated MIMO radar. 

Each transmit antenna transmits different waveform 

code. The signal of the n-th transmit antenna is nx , n=1, 2, 

… , N.  (1), (2), , ( )n n n nx x x L=x  . ( )nx l   is the l-th 

signal code, l=1, 2, …, L, L is the number of time samples. 

Suppose one desired signal and J interference signals 

impinge on the array from J+1 narrowband far-field sources. 

The signal received by the array is modeled as 

0 0
1

0 ( ) ( )( ) ( )
J

T T

j jj
j

jθ θ θ θ 
=

= +  +R b a X b a X N  (1) 

where 
1 , ,

T
T T

M
 =  R r r ,

1 L

m

r  is the received signal of 

the m-th received array element, m=1,2, … , M. 

1 , ,
T

T T

N
 =  X x x , is desired signal code matrix, N LX . 

jX  is interference signal code matrix, which interference is 

radar signal-dependent, it can also be considered as 

j =X X  . 
1 , ,

T
T T

M
 =  N n n  is a complex white Gaussian 

noise matrix with zero mean, and it is uncorrelated with the 

desired signal and interference signal. 0   and j   are 

amplitude of desired signal and interference signal, 
1( ) Nθ a   and 

1( ) Nθ b   are transmit steering vector 

and receive steering vector, respectively. They can be 

written as  

( )0 0sin sin
2 2 1

( ) 1, , ,

T
f d θ f d θ

j j N
c ce eθ

  − 
=  
 

a  (2) 

( )0 0sin sin
2 2 1

( ) 1, , ,

T
f d θ f d θ

j j M
c ce eθ

  − 
=  
 

b  (3) 

where 0f  is carrier frequency, d is inter-element space, c is 

electromagnetic wave propagation speed. 

We vectorize model (1). The ML-dimensional received 

complex-valued vector can be expressed as 

( ) ( )0 0
1

J

j j j
j

θ θ 
=

= +  +r Α x Α x n  (4) 

where   1MLvec = r R  ,   1NLvec = x X  , 

  1NL

j jvec = x X   ,   1MLvec = n N  , ( )0θΑ   and

( )jθA   are steering matrix of desired signal and 

interference signal, ( ) ( ) ( )T

Lθ θ θ =   A I b a  , 

( ) ML NLθ A . 

3. MIMO Radar Thinned Waveform Design 

3.1 Output SINR and CRLB 

3.1.1. Output SINR 

Minimum variance distortionless response(MVDR) is an 

adaptive beamforming algorithm based on the maximum 

SINR criterion. The MVDR algorithm can adaptively 

minimize the power of the array output in the desired 

direction and maximize the SINR. The optimum weight 

vector w for minimizing the output variance while keeping 

the desired signal distortionless can be expressed as the 

following optimization problem 

min

s.t. 1.

H

j n

H

s

+

=

w
w R w

w R w
 (5) 

where 
j n+R   is the interference and noise covariance 

matrix. sR  is the received signal covariance matrix. 

By solving the optimal weight vector, we can obtain the 

SINR. 
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where ( ) ( )2

1
j

J
H H

j

H

n jj j θ θ+
=

=  +A AR xx nn  , 0   is echo 

signal amplitude, j  is the j-th interference amplitude.  

We define s as a waveform-steering vector of target, 

( )  00 0( ) ( )T

Lθ θ θ =  = Α x I b a xs  . The SINR also can 

be written as  

 

 

0

0 0

2

1

00S

  

INR ( ) (=

       

)

( ) ) (

H
H T

L

T

j n L

θ θ

θ θ



−

+

   

   

x I b a

R I b a x
 (7) 

We can conclude from (7) that SINR is related to 

( )0θΑ  and x. 

The output SINR also can be written as another 

expression. According to the matrix inversion lemma, the 

interference noise inverse covariance matrix can be written 
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as 

( )( )-1
1 2 H H

j n j j j j j− −

+ = −R I S C + S S S  (8) 

where 
2

j v=C C  ,  H

v j jE=C x x  ,    is noise standard 

deviation, 
1 , ,

T
T T

j J
 =  S s s  , js   is the interference 

waveform-steering vector. We substitute (8) into (6), the 

output SINR also can be written as  

( )( )-1

SINR SNR

SNR

H H

j j j j j

H

H

j j j

H

=

= −

+

+

I S C + S sS S

S S

s

C

S S C

 (9) 

where , j
 =  S s S  , C is the augmented interference 

covariance matrix 

1

1

0 J

J j





 
=  
 

0
C

0 C
 (10) 

3.1.2. CRLB 

Due to noise, radar cannot estimate target parameters 

without any error. The Cramer-Rao Lower Bound gives a 

lower limit to the standard deviation of any unbiased 

parameter estimation. CRLB reflects the radar performance 

in parameter estimation. 

CRLB can be obtained by inverting the Fisher information 

matrix. We only consider the direction of arrival estimation, 

Fishler information is 

1

0 0

2Re n

H

f
 

−  
=  

  

μ μ
R  (11) 

where  0 0 0( ) ( )T

L θ θ  =  μ I b a x  , 
1

n

−
R   is noise 

covariance matrix inverse, 
1 2

n NL NL− −

=R I   in this paper. 

Assuming that the inter-elements spacing between the 

transmit and receive array both are half wavelength, 
0





μ
 

can be written as 

( )

( ) 0

0
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0

0 0 0

cos
2π

      ( ) ( )+ ( ) ( )

L

T T

m n

d
j f

c

θ θ θ θ










 
=  − 

 




μ
I

D b a b a D x

 (12) 

where  0,1, , 1m diag M= −D  ,  0,1, , 1n diag N= −D  . 

( ) ( ) 
( ) 
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2 2

0 0 0
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π cos ( ) ( )+ ( ) ( )N

( ) ( )+ (

S

(

2
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H

H T T
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T T

L m n

f

θ θ θ θ

θ θ θ θ

  
 

  

=

 

x I D b a b a D

I D b a b a D x

      (13) 

3.1.3. Thinned Waveform 

[13] introduce the unstructured arrays design. We can also 

introduce waveform code selection vector to reduce the 

array complexity. If there are Q possible waveform code and 

K available code, we can suppose that that the waveform 

code selection vector is    , 1, , 0,1
Q

iz i Q= = z  . When

0iz = , it denotes the waveform code is not selected, and 

1iz =   denotes the waveform code is selected. There is a 

corresponding selection matrix  0,1
K Q

Z  with 1ijz =  

in the i-th row and the j-th column, where 1, ,i K=  and

 1, ,j Q . The selection vector z and selection matrix Z 

are inner-connected by ( )T diag=Z Z z .The diagonal matrix 

( )diag z  is the waveform code selection operator with the 

vector z populating along the diagonal. The target 

waveform-steering vector and interference waveform-

steering vector after code selection can be written as Zs  

and ZV , respectively. 

Based on the discussion, the received signal model with 

thinned waveform code is  

( ) ( )00
1

J

j
j

jθ θ 
=

= +  +
z z

ZAΑ x xZr n  (14) 

where
1Kzr  ,

1Kzn  ,  0,1
K ML

Z  , z
r   is the 

received signal after selection, z
n   is the noise after 

selection. 

And then, j n+R  can be expressed as 

( ) ( )2

1

H
H

j

J
H H

j n j
j

jθ θ+
=

=  +
z z

R ZAx nAZ x n  (15) 

After introducing the waveform code selection vector, 

the SINR and CRLB can be expressed as 

0 0

1

0

2 

S

 

INR SNR
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H

H

j j j

H
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x Z R Z x

z

z
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3.2. Thinned Waveform Design 

To balance SINR and CRLB, we introduce pareto weight, 
 ( 0 1  ). And we write it as expressions for x and z, 

respectively. 
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where ( ) ( )H

L diag  =    z I z  ,

( ) ( )+ ( ) ( )T T

m nθ θ θ θ =D b a b a D  , 1  , 2  are fixed value, 

which are the adjustment coefficient for adjusting the 

proportion of SINR and CRLB optimization values, 

respectively. 

To improve the radar performance, we establish an 

optimization problem that maximizes F(x, z). We consider 

avoiding the transmitted signal distortions when high power 

amplifiers work in near saturation mode. We consider the 

constant modulus constraint on the waveforms. We assume 

K available code. The optimization problem can be 

formulated as 

 

0

1

max ( , )

. .

0,1
NL

H

F

s t

K=

=



x z

z

z

x x
 (19) 

We can see that (19) is a multivariate non-convex 

problem. It is challenging to solve for x and z. Therefore, we 

propose a sequential iterative optimization algorithm. We 

decompose (19) into two subproblems. They are about the 

problem of z and x, respectively. 

3.2.1. Optimization of z 

For a fixed waveform code x, the optimal z can be obtained 

by rewriting (19) as 

0

max ( )

s.t.

{0,1} .

ML

ML

F

K



=



z

z

z

z

 (20) 

Taking the logarithm of 

( ) ( )H H

jdiag diag+ +B z B C B z B C , We can get  

( ) ( )(
( ) )

( ) 

1

2

1 log

          log

H

H

j

H H

L

F diag

diag

diag

 



 = − +

− +

 +    

B z B C

B z B C

x I z x

 (21) 

Because of  ( ) ( )H H

jdiag diag+ +B z B C B z B C  

and logarithm operation, F F   . For the (20), 

maximizing F is equivalent to maximizing the lower bound 

of F, F  . And we transform the maximization problem into 

a minimization problem. We can get that 

( ) ( )(

( ) )
( ) 

1

2

0

.

m 1 log

          log

s.t.

{0,1}

in
N L

H

H

j

H H

L

N

diag

diag

diag

K

 




− − +

− +

 −    

=



z

B z B C

B z B C

x I z x

z

z

 (22) 

It is difficult to solve (35) due to the non-convex 

objective function and the constraints. Fortunately, the non-

convex problem can be converted to a series of convex 

subproblems by sequential convex programming(SCP), 

which is based on iteratively linearizing the concave 

function ( )log H diag +B z B C  . Utilizing the first-order 

Taylor series to expand the concave function. We can get the 

problem 

( ) ( ) ( )(
( ) )

( ) 

( ) ( )

1

2

.

m n 1

          log

s.t. ,

0 1

i
ML

T
k k

H

H H

L

T

f

diag

diag

K

 




− −

− +

 −   





=

 

z

z z z

B z B C

x I z x

1 z

z

 (23) 

where ( )( )kf z   represents the gradient of 

( )log H diag +B z B C   around ( )k
z  . The i-th element of 

( )( )kf z  is 

( )

( )( )

( )

1
( ) 2 1

k

i

H H k

i n i

f

diag 
−

−

  =
 

+

z

b B z B Λ b
 (24) 

We can solve the problem (23) by CVX. The final 

antenna selection vector is achieved by setting the largest K 

elements of z to one. 

3.2.2. Optimization of x 

After obtaining the waveform code selection vector z, we 

can obtain Z by z. Then, the optimal x can be obtained by 

rewriting (19) as 

( )

( )

0

1

1

2

0max 1

       

s.t. .

( ) ( )

1

HH H

j

H

n

H

θ θ 



−

+

+ 

=

−
x

x Z R Z x

x z x

A A

xx

 (25) 

It can be seen that problem (25) containing a non-

convex objective function, nonlinear equality constraints, is 

non-convex. 

An auxiliary variable h can be introduced to reformulate 

(25) as 
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 (26) 

As shown in the (26), by introducing auxiliary variable 

h, (26) has become a convex problem. We can solve this 

problem by using the ADMM algorithm. 

Firstly, the scaled augmented Lagrangian function of the 

problem (26) is formed as 

( )

( )

( )

1 2

0 0

2
1

1 2

22

2 2

1

1

2

, , ,
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1 H H
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−
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−
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x
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A h
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 (27) 

At the k+1-th iteration, ADMM consists of the following 

update procedures:

( ) ( )1

0 0

2 2
1 2

1 22 2

1 2
1

( ) ( )

1
2 2

1

arg min

H kH H H

n

k

H k k k

j
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+
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1 2
1
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2
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1 12

2
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1
2 2

1
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H
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H
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H
k H k

j n
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+ − +

+
+

+ +

 −
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− − 

=

x Z R Z x

h

A A h hz

hx xh u
   (29) 

( )11

1 1

1( ) 1k k Hk ku u ++ += −+ hx        (30) 

1 1

2 2

1k kk k+ ++= + −x hu u        (31) 

Based on the aforementioned discussion, the proposed 

sequential iterative optimization algorithm for the problem 

(19) is summarized in Table 1. 

Note that the optimization result is largely affected by the 

initial point. In practice, we usually initialize the algorithm 

with multiple feasible points and find the solution with the 

minimum objective function value among all the trials. 
Table 1  The proposed sequential iterative optimization algorithm. 

Algorithm The proposed sequential iterative optimization algorithm 

1:  Initialize ( )0
x  , iteration stop criteria   , maximum number of iterations 

maxi , i=0. 

2:  Set 1i i= + . Substitute ( )i
x  into (20). Obtain the ( )iz  by solving problem 

(23). 

3:  Compute ( )iZ  by ( )iz , and compute 
( )i
j n+R  by (15). 

4:  Substitute ( )iZ  and 
( )i
j n+R  into (25). Obtain the ( )i

x  by (28)~(31). 

5:  Compute ( ) ( ) ( )1i i i
F F

−
= −  by (18). 

6:  If maxi i   or ( )i   , terminate and output ( )i
x   and ( )iz    otherwise, 

return step 2. 

4. Simulation 

The simulation is provided to demonstrate the effectiveness 

of the proposed sequential iterative optimization algorithm. 

For each example, we select 10 available codes. The number 

of transmit antennas and receive antennas is 6N M= =  . 

The carrier frequency 0 9GHzf = , d=0.0167cm. We choose 

310 −=  and max 8i = . 

Simulation 1: In this section, we consider four 

interference signals impinging the array. The angles of 

interference signals are 12 ,15 ,28 , 28−  . The angle of 

desired signal is10 . We set INR=50dB, SNR=20dB. 

Figure 2 shows the output F versus the iteration number. We 

find that the F converges quickly with the proposed 

sequential iterative optimization algorithm. 

 

Fig.2  Algorithm convergence 

Simulation 2: We consider SINR and CRLB under 

various Pareto Weights,   . Figure 3 shows the SINR and 

CRLB with various Pareto Weights. In Figure 3 (a), as the 

Pareto weight increases, SINR shows a downward trend. 

However, we can see that as the Pareto weight increases, 

CRLB shows a downward trend in Figure 3 (b). According 

to the definition of the objective function, as the Pareto 

weight value increases, the weight in the objective function 

increases, and the SINR decreases. 

Moreover, high SINR and low CRLB can not be obtained 

simultaneously. We can only obtain appropriate results by 

adjusting the value of  . To balance the SINR and CRLB, 

this paper sets the Pareto weight 0.5 = . 
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(a) 

 

(b) 

Fig. 3  Radar Performance with various Pareto Weights. (a) SINR (b) 

CRLB. 

Simulation 3: This section considers SINR and CRLB 

optimization with various SNRs. We compare the proposed 

method with the other two cases. Case 1 is the method of 

[16], and case 2 is only waveform optimization with a fixed 

uniform selection vector. The Pareto Weight is 0.5 in all 

cases. The SNR range is 10~30dB. Figure 4 shows the SINR 

and CRLB with various SNRs. In Figure 4 (a), we can see 

that the average SINR of the proposed method is 6.95dB. 

The average SINR of case 1 and case 2 are 4.87dB and 

1.51dB. The SINR of the proposed method is higher than 

case 1 and case 2 with various SNRs. As shown in Figure 4 

(b), we can see that the average CRLB of the proposed 

method is 
48.26 10 ( )− . Moreover, the average CRLB of 

case 1 and case 2 are 
32.44 10 ( )−   and 

31.37 10 ( )−  . 

The optimization result of the proposed method is better 

than other cases. 

 

(a) 

 

(b) 

Fig. 4  Radar Performance with various SNR. (a) SINR (b) CRLB. 

Simulation 4: In actual environments, the target usually 

maneuvers in the air, resulting that the angle of target is 

various. The proposed method is also applicable to target 

various angle. This section considers SINR and CRLB 

optimization with various desired echo signal angles. We 

will prove the advantage of the proposed sequential iterative 

optimization algorithm for various angles. We also compare 

the proposed method with the other two cases. In the 

simulation, the angle is 80 ~ 80−  . Figure 5 shows the 

SINR and CRLB with target angles, 80 ~ 80− . In Figure 5 

(a), the average SINR of the proposed method is 16.23dB. 

Furthermore, the average SINR of case 1 and case 2 are 

14.06 dB and 11.01dB. We can see that the SINR of the 

proposed method is higher than case 1 and case 2 with 

various angles. It proves that the proposed method can better 

suppress interference. In Figure 5 (b), the average CRLB of 

the proposed method is 
46.23 10 ( )− . The average CRLB 

of case 1 and case 2 are 
31.02 10 ( )−  and 

32.13 10 ( )− . 

We can see the CRLB of proposed method is lower than case 

1 and case 2 with various angles. The proposed method has 

better theoretical estimation accuracy. By comparing and 

analyzing, we can conclude that the radar has better 

performance with optimized array parameters with proposed 

method. 

 

(a) 
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(b) 

Fig. 5  Radar Performance with various angle. (a) SINR (b) CRLB. 

5. Conclusions 

In this paper, we proposed a sequential iterative optimization 

algorithm with thinned waveform code to obtain better 

performance. Firstly, we derive the relationship with SINR, 

CRLB, and waveform code x, waveform code-antenna 

selection z, respectively. Then, to better evaluate MIMO 

radar performance, we introduce Pareto weight to combine 

SINR and CRLB. We can get a new function that represents 

radar performance. We establish optimization problems for 

the performance to improve radar performance with the new 

function. Under waveform and selection vector constraints, 

the optimization problem is a multivariate non-convex 

problem. We proposed a sequential iterative optimization 

algorithm. We decompose the problem into two 

subproblems about x and z. For optimization of z, we 

transform the optimization problem into a conventional 

convex optimization problem by logarithms and first-order 

Taylor expansions. For optimization of x, we introduced an 

auxiliary variable and solved it by ADMM. The CVX 

toolbox can solve both subproblems. Finally, the simulation 

experiment shows that the proposed method can obtain the 

higher SINR and lower CRLB than in other cases. We can 

obtain better MIMO radar performance and low array 

complexity. 
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