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PAPER
Hardware Trojan Detection Method Based on Enhanced Local
Outlier Factor

Tingyuan NIE†, Member, Jingjing NIE††, and Kun ZHAO†††, Nonmembers

SUMMARY The globalization of the Integrated Circuit (IC) supply
chain has introduced the risk of Hardware Trojan (HT) insertion. We
propose an unsupervised Hardware Trojan detection method based on the
Enhanced Local Outlier Factor (ELOF) algorithm to detect HT efficiently.
This method extracts structural and testability features and employs the
scoring mechanism of the ELOF algorithm to emphasize the deviation of
suspicious HT nets from clusters. Experimental results on Hardware Trojan
libraries show that the method achieves an average prediction accuracy (A)
of 97.36%, a True Negative Rate (TNR) of 97.81%, a precision (P) of
40.94%, and an F-measure of 49.28%, all of which outperform the Local
Outlier Factor (LOF) algorithm and Cluster-Based Local Outlier Factor
(CBLOF) algorithm. Notably, the method exhibits superior performance in
terms of True Positive Rate (TPR), reaching 70.86%, indicating its efficiency
in identifying HT and reducing false negatives. The results demonstrate
that the proposed algorithm and feature combination in the approach can
significantly enhance the efficiency of Trojan detection.
key words: hardware Trojan detection, gate-level netlist, feature extraction,
unsupervised learning, enhanced local outlier factor

1. Introduction

Integrated circuits (ICs) serve as the core components of
hardware devices and play a vital role in determining the
security of Internet of Things (IoT) systems. The globaliza-
tion of the IC provides opportunities for implanting Hard-
ware Trojans (HTs), leading to issues of information leakage,
functional alterations, and decreased hardware reliability [1].

HTs are malicious modules or unauthorized circuit
components inserted at various stages of an IC’s lifecycle.
Existing HT detection methods can be categorized into two
major classes: pre-silicon detection and post-silicon detec-
tion [2]. Due to factors such as the difficulty of acquiring
golden chips, susceptibility to noise, high costs, and the
need for specialized equipment, post-silicon detection meth-
ods have shown limited efficiency in practical applications,
and we do not introduce post-silicon detection methods here.

The pre-silicon detection method can be divided into
dynamic detection and static detection [3]. Dynamic de-
tection methods detect Trojans by applying external stimuli
and observing the circuit’s response. However, Trojan cir-
cuits are not easily triggered, and the activation is covert.
Static detection methods do not require simulation testing

†The author is with the the School of Information and Con-
trol Engineering, Qingdao University of Technology at Qingdao
266520, China (E-mail: tynie@qut.edu.cn).

††The author’s E-mail is niejingjingqjb@163.com.
†††The author’s E-mail is sterling1982@163.com.

and solely rely on the differences between Trojan and nor-
mal circuits. The method is based on the combinational and
sequential testability features of Hardware Trojan, forming
a 6-dimensional feature vector [4].

Machine learning-based detection methods have sub-
stantially improved the efficiency of HT detection. It is
generally categorized into supervised learning and unsuper-
vised learning. Supervised learning learns the relationship
between input and their corresponding output labels, en-
abling it to make accurate predictions. Hasegawa et al.
identified five structural features of HT by analyzing the
differences between Trojan and normal nets. Using the Sup-
port Vector Machine (SVM) for gate-level netlist classifi-
cation, they tuned parameters, significantly improving TPR
[3]. Furthermore, research incorporating Neural Network
(NN) algorithms made progress based on these five Trojan
structural features [5]. Subsequently, a more detailed analy-
sis involving 51 Trojan structural features is proposed. They
employed a Random Forest (RF) classifier, adjusting param-
eters to select 11 crucial features that played a significant
role in enhancing F-measure [6]. To further enhance de-
tection performance, 11 features were selected from the 51
structural features. Multiple Layer Neural Network (MNN)
algorithms were then applied for Trojan detection in gate-
level netlists [7]. Dong et al. introduced a HT detection
method based on eXtreme Gradient Boosting (XGBoost).
By introducing five new structural features and using an
XGBoost classifier, they selected 49 key features out of 56,
efficiently achieving machine learning-based HT detection
[8]. In [9], the introduction of boundary nets and Trojan
nets for machine learning training provided high efficiency
in identifying Trojans. Stacked autoencoder and stacked
sparse autoencoder models were implemented in [10] for
Trojan detection, yielding excellent results. Unsupervised
learning emphasizes discovering patterns, structures, or reg-
ularities from unlabeled data. Reference [11] utilizes the
K-means clustering algorithm for HT detection. However,
it is only applicable for detecting combinational trigger-type
Trojans and is inefficient for sequential trigger-type Trojans.
Unsupervised anomaly detection identifies anomalous data
exhibiting different or unexpected behavior within a dataset,
also known as outliers or anomalies. Reference [12] reviews
local anomaly detection algorithms focusing on the Local
Outlier Factor (LOF) algorithm. The LOF is a density-based
outlier detection algorithm assessing whether a data point
is an outlier by considering the neighbor points. The LOF
algorithm calculates the Local Reachability Density (LRD)
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of the data point and determines the LOF by comparing it
with the average LRD of neighboring points. The magnitude
of the LOF is used to assess the degree of anomaly for that
point. The algorithm PL-HTD (PCA and LOF Hardware
Trojan Detection) proposed in Reference [2] combines Prin-
cipal Component Analysis (PCA) and the LOF algorithm,
demonstrating the efficiency of using unsupervised learning
to detect HTs. However, it only considers local information
of anomalous points which results in lower detection ac-
curacy. Reference [13] introduces the Cluster-Based Local
Outlier Factor (CBLOF) algorithm incorporating the scor-
ing mechanism of XGBoost. CBLOF calculates the value
for each net to distinguish between normal and Trojan nets.

The current unsupervised HT detection methods exhibit
insufficient feature representation when dealing with diverse
types of HTs, potentially leading to low detection efficiency.
We propose the Enhanced Local Outlier Factor (ELOF) HT
detection method and the main contributions are as follows.
Enhancement of HT discrimination: The ELOF consid-
ers local and global information on suspicious nets compre-
hensively, emphasizing the degree of deviation of outliers.
Thereby it makes the discriminations between the normal and
Trojan nets more pronounced and improves the efficiency.
Highlighted performance to traditional methods: Com-
pared with existing techniques, the method exhibits out-
standing performance in unsupervised HT identification. It
achieves a better balance between precision and TPR, re-
duces false negatives, and improves accuracy.
Integration of HT features: The ELOF integrates the struc-
tural and testability features of HTs to improve the recogni-
tion of different types of HTs and reduce false negatives.

2. Hardware Trojan Detection Method Based on ELOF

The unsupervised HT detection method proposed in this
paper follows approximately five main steps:
Step 1 Input Gate-Level Netlist: The input of our model
is a gate-level netlist file containing the implanted Trojan
circuit. We select benchmark circuits from Hardware Trojan
libraries as the subjects of our research.
Step 2 Feature Extraction: By constructing a directed
graph model of the gate-level netlist, we extract 56 structural
features of the Trojan nets. We perform testability analysis
to extract six testability features of the nets. The netlist file
is transformed into the data required for learning algorithms.
Step 3 Feature Dimensionality Reduction: Using XG-
Boost on the selected dataset, we calculate importance scores
for the 56 structural features and choose the top 16 features,
which, when combined with the six testability features, form
a 22-dimensional feature vector.
Step 4 Normalization of Feature Data: To mitigate the
negative impact of varying feature value ranges on model
training, the data is normalized during data preprocessing to
transform the dataset into a standard normal distribution.
Step 5 Detection of HT in Gate-Level Netlist: Calculate
the ELOF scores for each net by applying the proposed al-
gorithm. The magnitude of the score is used to distinguish

between sets of normal and Trojan nets, with higher scores
indicating a higher likelihood of a net being a Trojan.

Previous research has demonstrated the efficiency of
feature-based HT detection techniques [14]. The detection
techniques rely on signal testability features or netlist struc-
tural features [15]. The automatic feature extraction-based
deep learning methods have shown the capability for HT
detection. Unfortunately, such methods primarily focus on
structural features and neglect testability features. In this
paper, we collect both structural features and testability fea-
tures for Trojans. Each type presents distinct characteristics
of different Trojans that help improve the model.

Hasegawa et al. [6] proposed 51 structural features for
HT. Subsequently, Dong et al. [8] introduced a new feature,
”in gate x”, represents the number of 𝑥-level logic gates
away from net 𝑛, resulting in a total of 56 structural features.
We extract the structural features by abstracting gate-level
netlists into directed graphs. Circuit testability is typically
analyzed using the SCOAP (Sandia Controllability / Observ-
ability Analysis Program) algorithm [16]. It conducts testa-
bility analysis by calculating six metrics for each net, includ-
ing combinational 0 controllability (CC0), combinational 1
controllability (CC1), combinational observability (CO), se-
quential 0 controllability (SC0), sequential 1 controllability
(SC1), and sequential observability (S0). It considers both
combinational trigger-type Trojans and sequential trigger-
type Trojans. Compared to normal nets, Trojan nets exhibit
lower testability, resulting in higher SCOAP values. In this
study, we use the open-source tool Testability Measurement
Tool to extract the SCOAP values of nets.

Based on the benchmark circuit selected in this pa-
per, utilizing XGBoost’s inherent scoring system, 56 features
were evaluated for their importance. Among them, 16 fea-
tures obtained scores exceeding 10,000 points, i.e., 𝑓0 − 𝑓4,
𝑓28 − 𝑓29, 𝑓34, 𝑓45, 𝑓46, 𝑓48, 𝑓50, 𝑓52 − 𝑓55. The features
represent the number of logic-gate fan-ins 𝑥-level away from
the net 𝑛, the number of up to 𝑥-level loops from the input or
output side of the net 𝑛, the number of constants up to 𝑥-level
away from the input side of the net 𝑛, the minimum level to
the primary input or output from the net 𝑛, the minimum
level to any multiplexer from the input or output side of the
net 𝑛, and the number of logic-gate 𝑥-level away from the
net 𝑛. We select these 16 structural features and 6 testability
features to form a 22-dimensional feature vector.

As shown in Algorithm 1, the proposed ELOF algo-
rithm comprehensively considers local and global informa-
tion of the data points under examination. The ELOF algo-
rithm calculates a clustering coefficient, indicating the de-
gree to which the point deviates from the cluster. The ELOF
value is obtained by multiplying the LOF value by the clus-
tering coefficient to assess the point’s anomaly level. The
following are the key definitions used in the ELOF algorithm.
Definition 1: 𝑘-distance

The 𝑘-distance of point 𝑝, denoted as 𝑘 𝑑𝑖𝑠𝑡 (𝑝), is the
distance between point 𝑝 and its 𝑘-th nearest neighbor. Here,
𝑘 is a natural number. In regions of higher density, the value
of 𝑘 𝑑𝑖𝑠𝑡 (𝑝) is smaller, and vice versa.



NIE et al.: HARDWARE TROJAN DETECTION METHOD BASED ON ENHANCED LOCAL OUTLIER FACTOR
3

Definition 2: 𝑘-distance neighborhood
The 𝑘-distance neighborhood of point 𝑝, denoted as

𝑁𝑘 (𝑝), is a set of points within and on the circle centered at
point p with a radius of 𝑘 𝑑𝑖𝑠𝑡 (𝑝), as shown in formula (1).
𝑁𝑘 (𝑝) represents the 𝑘 neighbors of point 𝑝.

𝑁𝑘 (𝑝) = {𝑜 ∈ 𝐷\ {𝑝} |𝑑 (𝑝, 𝑜) ≤ 𝑘 𝑑𝑖𝑠𝑡 (𝑝) } (1)

Definition 3: Reachability distance
The reachability distance of point 𝑝 concerning point

𝑜, denoted as 𝑟𝑒𝑎𝑐ℎ 𝑑𝑖𝑠𝑡𝑘 (𝑝, 𝑜), is defined as the maximum
between the direct distance between points 𝑜 and 𝑝 and the
𝑘 nearest neighbor distance of point 𝑜, as shown in formula
(2).

𝑟𝑒𝑎𝑐ℎ 𝑑𝑖𝑠𝑡𝑘 (𝑝, 𝑜) = max {𝑘 𝑑𝑖𝑠𝑡 (𝑜) , 𝑑 (𝑝, 𝑜) } (2)

Definition 4: Local reachability density
The local reachability density of point 𝑝 is the reciprocal

of the average reachability distance based on the 𝑀𝑖𝑛𝑃𝑡𝑠
nearest neighbors of 𝑝. 𝑀𝑖𝑛𝑃𝑡𝑠 represents the number of
nearest neighbors in the data point’s local neighborhood.

𝑙𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠 (𝑝) = 1/
∑

𝑜∈𝑁𝑀𝑖𝑛𝑃𝑡𝑠 (𝑝) 𝑟𝑒𝑎𝑐ℎ 𝑑𝑖𝑠𝑡𝑀𝑖𝑛𝑃𝑡𝑠 (𝑝, 𝑜)
|𝑁𝑀𝑖𝑛𝑃𝑡𝑠 (𝑝) |

(3)

Definition 5: Local outlier factor
The local outlier factor (LOF) of point 𝑝 is defined

as the ratio of the average local reachability density of the
𝑀𝑖𝑛𝑃𝑡𝑠 nearest neighbors of point p to its local reachability
density, as shown in formula (4). The LOF value close to 1
indicates that the data point is likely to belong to the same
cluster as its neighbors.

𝐿𝑂𝐹𝑀𝑖𝑛𝑃𝑡𝑠 (𝑝) =
∑

𝑜∈𝑁𝑀𝑖𝑛𝑃𝑡𝑠 (𝑝)
𝑙𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠 (𝑜)
𝑙𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠 (𝑝)

|𝑁𝑀𝑖𝑛𝑃𝑡𝑠 (𝑝) |
(4)

Definition 6: Large clusters and small clusters
To distinguish between large and small clusters, param-

eter 𝛼(0≤𝛼≤1) is used. When the proportion of large clus-
ters reaches over 90%, these clusters are called large clusters
(LC), while others are called small clusters (SC). If the cur-
rent number of clusters is 𝛽 times the number of clusters in
the next cluster (usually 𝛽 = 5). It is considered that the first
few clusters are large clusters, while the other clusters are
small clusters. If one of the two conditions is met, large and
small clusters can be identified. Let 𝐶 = {𝐶1, 𝐶2, ...𝐶𝑘} be
the set of clusters generated by the K-means clustering al-
gorithm sorted in descending order based on the number of
elements, it meets |𝐶1 | ≥ |𝐶2 | ≥ ... ≥ |𝐶𝑘 |. Define two pa-
rameters 𝛼 and 𝛽, and let 𝑏 be the boundary between small
clusters and large clusters. The value of 𝑏 should satisfy
either of the following two conditions in formula (5).

{
( |𝐶1 | + |𝐶2 | + ... + |𝐶𝑏 | ) ≥ |𝐷 | ∗ 𝛼
|𝐶𝑏 |

|𝐶𝑏+1 |
≥ 𝛽

(5)

Large Cluster 𝐿𝐶 = {𝐶𝑖 |𝑖 ≤ 𝑏}, and Small Cluster

Algorithm 1 Enhanced Local Outlier Factor Algorithm.
Input: Clusters from Clustering Algorithm

𝑎, 𝛽: coefficients for cluster size ratio
Output: ELOF scores
1: for each cluster in the set of clusters do
2: Classify cluster as large or small based on 𝑎 and 𝛽

3: for each net in the cluster do
4: Calculate cluster coefficient (𝐶) of the net
5: Calculate local outlier factor (LOF) of the net
6: Calculate ELOF score for the net using 𝐶 and LOF
7: end for
8: end for
9: return ELOF anomaly scores

𝑆𝐶 = {𝐶 𝑗 | 𝑗 > 𝑏}.
Definition 7: ELOF anomaly value

The ELOF anomaly value of point 𝑝 is defined as the
product of its LOF value and the distance from the point to
the center of the nearest large cluster center, as shown in
formula (6).

𝐸𝐿𝑂𝐹 (𝑝) = 𝐿𝑂𝐹 (𝑝) ∗𝐶 (6)

Where 𝐶 = 𝑚𝑖𝑛(𝑑𝑖𝑠𝑡 (𝑝, 𝐶𝑖)) represents the clustering
coefficient, indicating the degree to which a point deviates
from the cluster. ”𝐶𝑖” represents large cluster.

LOF takes into account the density difference between a
point and its neighboring points, considering local informa-
tion, and plays a fundamental role in detecting outliers. If a
point’s LOF value is greater than 1, it indicates that the point
is sparser compared to its neighbors, making it a potential
outlier. ELOF enhances the anomaly detection capability of
LOF by introducing the clustering coefficient 𝐶) to empha-
size the degree to which an outlier deviates. 𝐶 represents
the distance from a data point to the nearest center of a large
cluster, reflecting how far the point is from the cluster center
and incorporating global information. Specifically, if a point
already has a high LOF value (indicating it is considered an
outlier) and 𝐶 is also large (indicating that it is far from the
cluster center), the ELOF value will be even larger, further
highlighting the point’s anomaly. The ELOF considers local
and global information on suspicious nets, and emphasizes
the degree of outlier deviation, enhancing the accuracy of
identifying potential Trojans while reducing false positives.

3. Experiment

We take the Trust Hub Hardware Trojan Library as the re-
search benchmark suit. Additionally, we have chosen two
circuits, s1423-T401 and s1423-T402, from the TRIT-TS
benchmark [17]. In practical operations, only the internal
nets in the gate-level netlist are considered, while the bound-
ary nets are ignored. Fig. 1 lists the quantities of Trojan nets
and normal nets in various benchmark circuits.

The classification of HTs is assessed using four values:
true positives, false positives, false negatives, and true nega-
tives. To evaluate the performance of the model, we employ
five metrics: TPR (True Positive Rate), TNR (True Negative
Rate), Precision, F-measure, and Accuracy. For the details,
please refer to [2]. The examples in Fig. 1 show that the
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Fig. 1 Statistical results of the normal nets and Trojan nets.

number of normal nets in the netlist is much larger than that
of Trojan nets. Even if some of the Trojan nets are correctly
detected, the accuracy would still be high.

The hardware platform for this experiment is an In-
tel Core i5-6500 3.2GHz processor with 16GB of RAM,
running on the 64-bit Windows 10 Professional operating
system. To achieve optimal performance, we conducted a
series of experiments using the ELOF algorithm based on
the selected 22-dimensional feature vectors. The parame-
ter 𝐾 represents the number of clusters needed for K-means
clustering, we set the value of 𝐾 to 8. We adjust the contam-
ination parameter𝐶 that represents the anomalies proportion
to achieve a better performance for the classifications. Em-
pirically, the value of parameter 𝐶 should be limited to the
range [0, 0.5] [13]. A higher value of C means more normal
nets tend to be misidentified as Trojan nets. We first investi-
gated the related studies and determined an initial value for
parameter 𝐶. We tuned it gradually until the classification
performance reached a relative optimal. In the study, it was
set to 0.05 for the RS232 series benchmarks, 0.01 for the
s15850 and s35932 series, 0.005 for the s38417 series, and
0.1 for the s1423 series. And 𝛼 and 𝛽 are coefficients deter-
mining small and large clusters, indicating the ratio of points
in large clusters to those in small clusters. In previous work,
it has been demonstrated that taking 𝛼 = 0.9 and 𝛽 = 5 can
achieve the best detection results through multiple experi-
ments [13]. In practice, larger or smaller values of 𝛼 and 𝛽
will lead to a degradation of Trojan detection performance.
Moreover, under the premise of unsupervised learning, the
settings can be applied to unseen samples during training.

We conduct a performance analysis of the unsupervised
learning model. Based on a 22-dimensional feature vector,
we apply the ELOF algorithm for HT detection. The detec-
tion results are shown in Table 1, which details the values of
parameters 𝐾 and 𝐶, various metrics tested on specific cir-
cuits. The average TPR is 70.86%, indicating the algorithm’s
commendable capability in identifying Trojans. The average
TNR is 97.81%, suggesting that the algorithm almost consis-
tently classifies normal nets correctly. The average precision
(P) is 40.94%, revealing room for improvement in the over-
all performance of our algorithm. Furthermore, the average
F-measure is 49.28%, considering both precision and TPR,
indicating good balance although there is still potential for

further optimization. The average prediction accuracy (A)
is 97.36%, demonstrating the accuracy and reliability of our
algorithm in Trojan detection. To reduce the misclassifica-
tions and improve the classification performance, we have
adopted strategies like parameter adjustments and showed
positive results. In the future, we will develop algorithms
to solve the imbalance of learning data and further reduce
the misclassifications of Trojans. Another feasible method
is to use stacking learning techniques to improve the whole
performance of Trojan detection.

To validate the efficiency of our detection method, we
conduct a series of comparisons. Firstly, we independently
implemented the LOF, CBLOF, and ELOF algorithms using
the 22-dimensional feature vector in the same environment.
The comparative results are shown in Table 2. We compared
the average values of the metrics for the three methods to
determine their superiority or inferiority. Table 2 shows the
ELOF algorithm proposed in this paper performs well in
various metrics. The average TPR is 70.86%, which rep-
resents an improvement of 29.38% and 10.80% compared
to the LOF and CBLOF algorithms, respectively, indicat-
ing that the algorithm can more efficiently identify Trojans.
Secondly, the average TNR is 97.81%, with improvements
of 0.95% and 0.12% compared to LOF and CBLOF. The av-
erage precision (P) is 40.94%, with improvements of 18.53%
and 3.86%. The average F-measure is 49.28%, with improve-
ments of 22.15% and 5.33%, indicating that the algorithm
achieves a better balance between precision and TPR. The
average prediction accuracy (A) is 97.36%, with improve-
ments of 1.83% and 0.22%, suggesting that the algorithm has
a certain advantage in accurately identifying Trojans. The
comparative results indicate that the proposed method has
advantages and performs better in HT detection compared
with the LOF and CBLOF.

Furthermore, we compared the performance of our
proposed detection algorithm with state-of-the-art tech-
niques including Boundary Net Structure (BNS) [9], Stacked
Autoencoder (SA) [10] and Stacked Sparse Autoencoder
(SSAE) [10], as well as Support Vector Machine (SVM)
[5] and Neural Network (NN) [5]. The specific comparison
results are shown in Table 3. The bold in the table indi-
cates that our is stronger than the other five algorithms. In
most cases, our algorithm demonstrates the best performance
among the benchmark circuits.

We extracted 56 structural features and six testability
features to expand Trojan coverage. Sixteen high-importance
features were selected from the 56 structural features us-
ing XGBoost’s intrinsic scoring mechanism, forming a 22-
dimensional feature vector. We conducted experiments sep-
arately based on 56 structural features, 6 testability features,
and the combined 22-dimensional feature vector to verify
the efficiency of the feature combination. The results are
shown in Table 4. Firstly, when experimenting with only the
56 structural features, the average TPR is 34.67%, the aver-
age TNR is 97.09%, the average precision P is 22.73%, the
average F-measure is 26.43%, and the average accuracy A
is 95.96%. This indicates that the performance of detection
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Table 1 Classification results based on ELOF algorithm.
ELOF K C TN FP FN TP TPR TNR P F A

RS232-T1000 250 0.05 293 5 0 10 100.00% 98.32% 66.67% 80.00% 98.38%
RS232-T1100 250 0.05 285 7 3 8 72.73% 97.60% 53.33% 61.54% 96.70%
RS232-T1200 250 0.05 293 4 2 11 84.62% 98.65% 73.33% 78.57% 98.06%
RS232-T1300 250 0.05 297 8 0 7 100.00% 97.38% 46.67% 63.64% 97.44%
RS232-T1500 250 0.05 290 4 0 11 100.00% 98.64% 73.33% 84.62% 98.69%
s15850-T100 250 0.01 2396 9 11 15 57.69% 99.63% 62.50% 60.00% 99.18%
s35932-T100 250 0.01 6333 55 4 9 69.23% 99.14% 14.06% 23.38% 99.08%
s35932-T200 200 0.01 6262 53 1 10 90.91% 99.16% 15.87% 27.03% 99.15%
s35932-T300 200 0.01 6353 36 5 28 84.85% 99.44% 43.75% 57.73% 99.36%
s38417-T100 200 0.005 5766 24 7 4 36.36% 99.59% 14.29% 20.51% 99.47%
s38417-T300 200 0.005 5779 23 28 5 15.15% 99.60% 17.86% 16.39% 99.13%
s1423-T401 200 0.1 525 39 16 21 56.76% 93.09% 35.00% 43.30% 90.85%
s1423-T402 200 0.1 514 49 8 9 52.94% 91.30% 15.52% 24.00% 90.17%

Average 70.86% 97.81% 40.94% 49.28% 97.36%

Table 2 Classification comparison for ELOF, LOF, and CBLOF.

Test data TPR(%) TNR(%) P(%) F(%) A(%)
LOF CBLOF ELOF LOF CBLOF ELOF LOF CBLOF ELOF LOF CBLOF ELOF LOF CBLOF ELOF

RS232-T1000 30.00 100.0 100.0 95.97 98.32 98.32 20.00 66.67 66.67 24.00 80.00 80.00 93.83 98.38 98.38
RS232-T1100 45.45 72.73 72.73 96.58 97.60 97.60 33.33 53.33 53.33 38.46 61.54 61.54 94.72 96.70 96.70
RS232-T1200 30.77 76.92 84.62 96.30 98.32 98.65 26.67 66.67 73.33 28.57 71.43 78.57 93.55 97.42 98.06
RS232-T1300 42.86 85.71 100.0 96.07 97.05 97.38 20.00 40.00 46.67 27.27 54.55 63.64 94.87 96.79 97.44
RS232-T1500 36.36 100.0 100.0 96.26 98.64 98.64 26.67 73.33 73.33 30.77 84.62 84.62 94.10 98.69 98.69
s15850-T100 46.15 57.69 57.69 99.50 99.63 99.63 50.00 62.50 62.50 48.00 60.00 60.00 98.93 99.18 99.18
s35932-T100 69.23 76.92 69.23 99.14 99.15 99.14 14.06 15.63 14.06 23.38 25.97 23.38 99.08 99.11 99.08
s35932-T200 72.73 9.09 90.91 99.13 99.02 99.16 12.70 1.59 15.87 21.62 2.70 27.03 99.08 98.86 99.15
s35932-T300 72.73 54.55 84.85 99.37 99.28 99.44 37.50 28.13 43.75 49.48 37.11 57.73 99.24 99.05 99.36
s38417-T100 18.18 27.27 36.36 99.55 99.57 99.59 7.14 10.71 14.29 10.26 15.38 20.51 99.40 99.43 99.47
s38417-T300 15.15 15.15 15.15 99.60 99.60 99.60 17.86 17.86 17.86 16.39 16.39 16.39 99.13 99.13 99.13
s1423-T401 24.32 45.95 56.76 90.96 92.38 93.09 15.00 28.33 35.00 18.56 35.05 43.30 86.86 89.52 90.85
s1423-T402 35.29 58.82 52.94 90.76 91.47 91.30 10.34 17.24 15.52 16.00 26.67 24.00 89.14 90.52 90.17

Average 41.48 60.06 70.86 96.86 97.69 97.81 22.41 37.08 40.94 27.14 43.95 49.28 95.53 97.14 97.36

Table 3 Comparison of different metrics with the state-of-the-art methods.
TPR(%) TNR(%) A(%)Test data BNS[9] SA[10] SSAE[10] SVM[5] NN[5] ELOF BNS[9] SA[10] SSAE[10] SVM[5] NN[5] ELOF BNS[9] SA[10] SSAE[10] SVM[5] NN[5] ELOF

RS232-T1000 100.00 100.00 100.00 53.33 42.22 100.00 98.20 96.14 97.22 30.83 66.92 98.32 98.40 96.51 97.46 34.08 63.34 98.38
RS232-T1100 69.00 92.70 94.00 58.33 100.00 72.73 96.80 91.50 94.30 27.00 62.33 97.60 93.80 92.80 96.13 28.21 63.78 96.70
RS232-T1200 100.00 95.20 95.40 80.00 70.00 84.62 95.80 98.33 99.33 25.57 52.13 98.65 96.30 98.13 99.07 27.30 52.70 98.06
RS232-T1300 100.00 100.00 100.00 88.89 22.22 100.00 99.70 98.62 98.98 25.84 73.15 97.38 99.70 98.70 99.05 27.69 71.66 97.44
RS232-T1500 97.40 91.30 100.00 83.33 66.67 100.00 97.50 97.00 99.34 23.51 65.89 98.64 97.50 96.50 99.36 25.80 65.92 98.69
s15850-T100 – – – 92.59 88.89 57.69 – – – 65.75 75.55 99.63 – – – 66.04 75.69 99.18
s35932-T100 – – – 93.33 100.00 69.23 – – – 59.77 84.56 99.14 – – – 59.85 84.59 99.08
s35932-T200 – – – 100.00 87.50 90.91 – – – 59.18 86.88 99.16 – – – 59.29 86.88 99.15
s35932-T300 – – – 27.03 100.00 84.85 – – – 57.99 58.59 99.44 – – – 57.82 58.82 99.36
s38417-T100 – – – 100.00 100.00 36.36 – – – 75.65 72.22 99.59 – – – 75.70 72.28 99.47
s38417-T300 – – – 100.00 75.00 15.15 – – – 71.60 76.10 99.60 – – – 71.82 76.09 99.13

using only structural features is relatively low. Secondly,
when experimenting with the 6 testability features, the av-
erage TPR is 37.40%, TNR is 97.26%, P is 24.31%, F is
28.31%, and A is 96.29%. Relying solely on testability fea-
tures still does not yield satisfactory detection results. By
using the 22-dimensional combined features proposed in this
paper, the average TPR significantly improves to 70.86%,
while TNR remains high at 97.81%. Precision (P) increases
to 40.94%, F-measure improves to 49.28%, and accuracy
(A) is 97.36%. The results demonstrate that the method
significantly enhances the Trojan detection performance by
combining structural and testability features.

4. Conclusion

We proposed an unsupervised Hardware Trojan detection
method based on the ELOF. It extracts the structural and
testability features of HTs to employ the scoring mechanism
to emphasize the deviation of suspicious Trojan nets from
clusters, thereby improving the ability of Trojan coverage

and distinguishing between normal and Trojan nets. Exper-
imental results on the benchmark circuits demonstrated that
the method achieved an average prediction accuracy (A) of
97.36%, TNR of 97.81%, precision (P) of 40.94%, and F-
measure of 49.28%. The proposal performed exceptionally
well in TPR, reaching 70.86%. The improvements indicated
its capability to identify Trojans more accurately and reduce
the false negative rate. It demonstrates the efficiency of com-
bining structural and testability features for Trojan detection.
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