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PAPER
Deep Learning-Inspired Automatic Minutiae Extraction from
Semi-Automated Annotations

Hongtian ZHAO†a), Member, Hua YANG††, and Shibao ZHENG††, Nonmembers

SUMMARY Minutiae pattern extraction plays a crucial role in finger-
print registration and identification for electronic applications. However,
the extraction accuracy is seriously compromised by the presence of con-
taminated ridge lines and complex background scenarios. General image
processing-based methods, which rely on many prior hypotheses, fail to ef-
fectively handle minutiae extraction in complex scenarios. Previous works
have shown that CNN-based methods can perform well in object detection
tasks. However, the deep neural networks (DNNs)-based methods are re-
stricted by the limitation of public labeled datasets due to legitimate privacy
concerns. To address these challenges comprehensively, this paper presents
a fully automated minutiae extraction method leveraging DNNs. Firstly, we
create a fingerprint minutiae dataset using a semi-automated minutiae an-
notation algorithm. Subsequently, we propose a minutiae extraction model
based on Residual Networks (Resnet) that enables end-to-end prediction of
minutiae. Moreover, we introduce a novel non-maximal suppression (NMS)
procedure, guided by the Generalized Intersection over Union (GIoU) met-
ric, during the inference phase to effectively handle outliers. Experimental
evaluations conducted on the NIST SD4 and FVC 2004 databases demon-
strate the superiority of the proposed method over existing state-of-the-art
minutiae extraction approaches.
key words: minutiae extraction, fingerprint morphology processing,
Resnet, GIoU-oriented NMS

1. Introduction

Despite the diverse representative features present in finger-
prints, including grayscale maps, gradient fields, orientation
fields, and orientation consistency, themajority of real-world
recognition systems primarily depend on minutiae [1], [6].
Minutiae patterns generally consist of ridge endings and
ridge bifurcations [7]. A ridge ending represents the start
or end point of a ridgeline, while a bifurcation denotes the
merging point of two ridgelines into one. Extensive theoret-
ical proof and statistical analysis demonstrate that these two
types of minutiae can effectively identify a fingerprint [18]–
[20]. Therefore, the accurate and comprehensive extraction
of minutiae serves as a fundamental problem in this field.

The problem attracts significant attention as it is cru-
cial for various automated fingerprint applications, including
ecommerce, phone unlock, crime identification, and intel-
ligent security [2]–[5]. Minutiae extraction is a complex
pattern recognition problem due to challenges posed by pol-
luted areas and background noises, and there is still a lack of
well-solved formulations and optimizations. To address this
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problem, researchers have proposed different approaches.
For example, previous algorithms based on ridge tracing
have been used to restore ridges on thinned fingerprint im-
ages before extracting minutiae. However, this approach is
computationally intensive and involves trivial optimization
processes [8]. Recent studies by Tang et al. [9] and Nguyen
et al. [10] have explored using local shape structures and
texture information for minutiae extraction, including po-
sition coordinates and ridge orientation angles. However,
these techniques still have limitations, such as generating
false minutiae or missing genuine ones. Traditional meth-
ods rely on artificial approximations or empirical fingerprint
morphology processing [11]–[13], [30], which are often not
flexible and struggle to handle complex fingerprints with
noise or contamination. Conventional minutiae extraction
methods, which are based on hand-designed or empirical
approaches, are insufficient in accurately detecting minutiae
in perturbed areas due to their limited adaptability and inabil-
ity to handle various disturbances. This leads to information
loss and errors. Furthermore, the complexity and diversity of
perturbed fingerprint regions make it challenging for tradi-
tional approaches to address most cases. In summary, there
are still numerous challenges in precisely formulating the
problem of degraded fingerprints.

Significant progress has been made in simulated prob-
lem solver through the integration of domain knowledgewith
deep neural networks (DNNs). In complex scenarios, DNNs
such as VGGNet [31], InceptionNet [32], MobileNet [33],
and EfficientNet [34] demonstrate superior performance over
handcrafted features by leveraging their varied hierarchical
representation, adaptability, and non-linear processing char-
acteristics to learn generic features. In the domain of fin-
gerprint analysis, the adoption of an end-to-end inference
paradigm by prevalent DNNs-based approaches facilitates
efficient minutiae extraction, circumventing the need for it-
erative optimization strategies commonly associated with
traditional methods. However, the drawback of DNNs is
their reliance on well-defined training data. Standard fin-
gerprint datasets, such as NIST SD27 [21], are no longer
available in world wide web in contemporary time due to
privacy security policies, which hinders the development
of DNNs-based minutiae extraction. Although some ap-
proaches [9], [10], [14] have been proposed to handle this
task, they have exhibited poor performance in detecting
minutiae patterns in challenging fingerprints. Thus, the ex-
traction of minutiae faces significant challenges in real-life
scenarios.
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To construct a comprehensive set of minutiae for train-
ing DNNs, we study and propose a complete fingerprint
minutiae annotation pipeline. The extraction module con-
sists of several crucial steps, including image normaliza-
tion, segmentation, orientation and frequency estimation,
enhancement, binarization, and thinning. Subsequently, the
pipeline extracts minutiae points from the fingerprint skele-
ton, which retains only vital topological structures (e.g., the
basic structure of the ridge) while removing redundant in-
formation in the image. To ensure reliable labeling, we in-
corporate a manual revision process as post-processing due
to the underlying assumptions of the annotation approaches.
Our minutiae annotation method is a semi-automatic tech-
nique that involves controlled user interactions. In compari-
son to manual labeling, our method offers ease of operation,
time savings, reduces the workload for experts, and enhances
human-machine cooperation. Importantly, we introduce an
automatic minutiae extraction framework to enhance the ef-
fectiveness and robustness of minutiae extraction. In con-
sideration of limited fingerprint databases, we first present
a semi-automated labeled minutiae dataset. To simulate
real-life fingerprint recognition scenarios, we develop an
automatic minutiae extraction system based on DNNs for
efficient prediction tasks, allowing for easy deployment and
usability in authentic fingerprint application scenarios.

This work is an extension of our previous minutiae
annotation algorithm [15], with several significant improve-
ments: (1) We propose a ResNet-based neural network for
automatic minutiae extraction. (2) To enhance the quality
of detection, we introduce a novel generalized IoU (GIoU)-
oriented NMS filter to correct falsely extracted minutiae. (3)
Extensive validation experiments, along with discussions,
demonstrate the effectiveness of the presented dataset and
automatic minutiae extraction system. In summary, the main
contributions of our method are as follows:

• To address the lack of available minutiae datasets, we
propose a semi-automated annotation method for fin-
gerprint minutiae. This method integrates automatic
extraction and manual revision steps to ensure compre-
hensive and reliable training annotations. Based on it,
we establish a dependable minutiae dataset that incor-
porates the expertise of human annotators.

• To adaptively detect fingerprint feature patterns, we
propose a novel minutiae extraction model based on
ResNet-based neural networks. This model simulates
the fingerprint processing and minutiae extraction pro-
cedure, including orientation field estimation, finger-
print segmentation and minutiae extraction. Addition-
ally, we introduce a GIoU-oriented NMS filter to en-
hance the quality of minutiae detection.

• Comprehensive experiments with analysis, discussions
and comparisons verify the effectiveness of both the
proposed dataset and the prediction method.

2. Dataset Construction

In recent years, on-site fingerprint identification technology
has advanced with the help of the NIST SD27 public finger-
print database. However, this database is no longer publicly
available due to permission restrictions. Synthetic datasets
from the Fingerprint Verification Competition (FVC) se-
ries [23], such as FVC2004DB4, are limited in both scale and
realism compared to real-world scenarios. The NIST SD04
dataset, composed of authentic fingerprint images, captures
the nuanced details of fingerprint features such as skin tex-
ture and pores, which are essential for reliable experimental
results. It offers a more challenging test-bed with diverse
image quality, noise, and occlusions, thereby better evaluat-
ing model robustness and accuracy. In contrast, FVC2004
may oversimplify real-world complexities, potentially com-
promising recognition performance in practical applications.
The NIST SD04 dataset’s rich local and global features, crit-
ical for precise fingerprint recognition, are less effectively
simulated in synthetic datasets, leading to a performance
gap. Therefore, this study employs the NIST SD04 dataset
for training and validating deep learning models, substanti-
ating the superiority of semi-automatic, human-supervised
annotation for enhancing accuracy. Additionally, manual
minutiae extraction, known to boost performance in latent
fingerprint images [16], [17], underscores the importance of
human oversight in data annotation. To address this, we pro-
pose a novel and versatile minutiae dataset for investigating
minutiae extraction. We describe the dataset in Appendix A
and its implementation of a semi-automatic human-computer
interaction labeling algorithm in the rest of this section.
Minutiae Database AnnotationWorkflow To ensure accu-
rate and comprehensive minutiae annotation, the proposed
algorithm involves two main steps: automated minutiae ex-
traction and manual revision. Figure 1 provides an overview
of the complete workflow, while the revision step is illus-
trated in Fig. 2. The automated extraction process includes
various stages, such as image segmentation, normalization,
orientation estimation, frequency estimation, enhancement,
binarization, thinning, minutiae extraction, and removal of
pseudo minutiae points. The output results from automatic
extraction are then carefully revised and checked to obtain
the final ground truth.

Figure 3 illustrates the intermediate outputs of the key
steps in the aforementioned fingerprint minutiae annotation
workflow. The algorithm for annotating the fingerprintminu-
tiae database has been comprehensively explained in [15].
Therefore, this paper does not repeat the annotation algo-
rithm in this module; instead, it directs readers to [15] for a
comprehensive understanding of the algorithm.

3. Method

Deep learning methods in image recognition tasks depend
on three key factors: data, algorithm, and model. Section 2
have introduced the created dataset, which includes finger-
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Fig. 1 Minutiae annotation workflow: automated extraction and manual correction.

Fig. 2 Minutiae annotation refinement: process illustrations for addition
and deletion of feature points.

Fig. 3 Sample results of the presented annotation method, which are
mainly corresponding to the output results of interim processes in Fig. 1:
(a) original image in NIST SD4; (b) segmentation mask; (c) normalized
image; (d) orientation distribution visualization image; (e) reliability map;
(f) frequency map; (g) enhanced image; (h) binarized image; (i) mask-
operated binarized image; (j) corroded segmentedmask; (k) refined skeleton
image; (l) refined skeleton image with extracted minutiae; (m) the skeleton
image with extracted minutiae after post-processing; (n) the output image
obtained by using manual editing from image (m).

print images and corresponding minutia labels with coor-
dinates and orientations. We then provide an overview of
our ResNet-based model and the proposed inference method
for automated latent fingerprint minutiae extraction. Our
focus is on accurately recognizing ending points and bifur-
cation points using a DNNs-based approach. While previous
studies have integrated domain knowledge with CNN repre-
sentation capabilities, such as FingerNet by Tang et al. [9],
our observations and evaluations indicate limitations and in-
stability in their minutiae extraction. To improve detection
accuracy, we propose two optimization strategies: intrin-
sic feature extraction using ResNet-based structures and a
GIoU-inspired NMS filter. The key implementation details
of our method will be described in the following section.

3.1 Basic FingerNet-Oriented Neural Network

FingerNet, as introduced in [9], is an innovative approach that
combines domain knowledge and CNN’s feature represen-
tation abilities to simplify minutiae detection. To simulate
the classical minutiae extraction process in real-life applica-
tions, we refine FingerNet [9] and adopt it as the backbone
network. Based on the residual structure’s prominent fitting
capability, we propose an enhanced network for fingerprint
minutiae extraction, enabling the comprehensive utilization
of morphological knowledge for learning effective features.

Figure 4 shows the fundamental DNNs-based proce-
dure, which encompasses common tasks such as image nor-
malization, orientation estimation, segmentation, gabor en-
hancement, and minutiae extraction. Specifically, the input
image undergoes initial normalization. Subsequently, the
normalized image is directed into two pipelines. The first
pipeline calculates gradients for orientation estimation and
segmentation, while the second pipeline employs Gabor fil-
ters to compute group filters and shift the operation space
from spatial to frequency domain, selecting suitable orien-
tations for image enhancement. The final step of the method
involves concatenating andmerging the enhanced imagewith
the segmented mask, followed by feature extraction from the
objective-oriented enhanced fingerprint. In this paper, our
emphasis is on orientation estimation and segmentation. We
provide a brief discussion on the minutiae extraction mod-
ule, with reference to Gabor filters and orientation selection
from [9]. We will elaborate on the key implementations in
the subsequent sections.

3.2 ResNet-Based Orientation Estimation, Segmentation,
and Minutiae Extraction

As one of the most crucial global features of fingerprints, the
orientation field significantly impactsAutomated Fingerprint
Identification Systems (AFIS) and plays a substantial role in
subsequent tasks such as feature point detection, fingerprint
classification, and matching. In addition to the orientation
field, the ROI in a fingerprint is essential for minutiae extrac-
tion, providing precise location and guiding information for
morphological fingerprint processing and minutiae extrac-
tion steps. However, due to limitations imposed by collection
devices, external environments, and human factors, captured
fingerprints are often contaminated by unforeseen factors
like equipment noise and uneven pressure during fingerprint
collection. These contamination factors have a detrimen-
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Fig. 4 Minutiae extraction framework. This approach entails deep network training offline and subse-
quent online testing on latent fingerprint images. It utilizes an expanded Resnet architecture for effective
feature extraction, encompassing orientation and segmentation masks for fingerprint enhancement and
minutiae extraction. Parameter optimization is achieved through backpropagation. Upon sufficient train-
ing, the network employs GIoU NMS for precise minutiae detection and pseudo minutiae elimination.

Fig. 5 (a), (c) depict the orientation estimation and segmentation, and minutiae extraction structures
in FingerNet, while (b), (d) showcase our corresponding structures.

tal effect on both orientation estimation and segmentation
tasks. Conventional orientation estimation methods typi-
cally rely on filtering operations, which exhibit robustness
against noise. However, such methods may struggle to han-
dle situations where ridge lines are heavily contaminated. To
achieve accurate orientation field and segmentation maps,
the proposed method utilizes an end-to-end trainable neural
network to jointly estimate fingerprint orientation and ex-
tract foreground ridge/valley lines for subsequent tasks. We
conduct a study to assess whether a statistically-driven skip
connection neural network architecture can better approxi-
mate complex nonlinear transformation operations.

In contrast to the CNN architecture in [9], the proposed
orientation estimation and segmentation module utilizes a
ResNet structure to mitigate overfitting, address the issue of
vanishing gradients, and augment the representational ca-

pacity of neural networks, with a comparative illustration
provided in Fig. 5. ResNet [29] has demonstrated outstand-
ing performance, particularly in scenarios requiring the ex-
traction of deep features for image detection tasks. These
structures intricately augment the topological graph derived
from the original neural networks, and here, it facilitates the
learning of discriminative orientation fields, segmentation
information, and intrinsic minutiae features. In addition,
to provide an objective assessment of ResNet, we will also
compare its performancewith that of establishedmainstream
deep learning models such as InceptionNet [32], Xception-
Net [35], and DenseNet [36] in the experimental section.
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3.3 GIoU-Oriented Non-Maximum Suppression for Out-
lier Removal

Because the predicted minutiae via DNNs may cluster to-
gether, the Non-maximum suppression (NMS) [24] is usu-
ally applied as the final step to remove redundant minutiae in
automatic fingerprintminutiae prediction. Typically, Ref. [9]
uses the spatial distance (Euclidean distance) between two
points as a measurement for judging whether to delete the
detected point. In the conventional NMS method for filter-
ing outliers, the extracted minutiae points are sorted based
on their scores. The point with the highest score is retained,
and the algorithm compares the spatial distance and direc-
tion angle difference between each point and the subsequent
points. If the distance and angle difference meet the pre-
set thresholds, the point is labeled as redundant. However,
this method may mistakenly filter out real minutiae points
that are close and have small angle difference. To refine
the NMS technique, a sophisticated selection algorithm that
effectively discerns true minutiae from closely spaced pre-
dictions is required to prevent the erroneous exclusion of
genuine features.

Thanks to Intersection over Union (IoU) [26], we are
able to utilize a commonly used metric in object detec-
tion and tracking benchmarks. It measures the degree
of overlap between predicted and ground-truth bounding
boxes [27], [28]. While IoU has limitations when dealing
with non-overlapping or irregular boundaries, particularly in
small object detection tasks. To address this, a generalized
version called Generalized IoU (GIoU) has been introduced
in [26]. In this research onminutiae point extraction, we pro-
pose to utilize the GIoU metric in NMS as it can compare
arbitrary shapes and enhance detection quality by correcting
false minutiae resulting from outliers and noisy entries. The
IoU between two rectangular areas A and B, as depicted in
Fig. 6(a), can be computed as follows:

IoU =
Intersection

Union
=
|A ∩ B |
|A ∪ B |

. (1)

Next, we describe the computation method of GIoU (de-
picted in Fig. 6(b)): as for the areas A and B, we first find
the smallest enclosing convex object C, and compute IoU;
based on the result, the GIoU is computed by:

GIoU = IoU −
|C\(A ∪ B)|
|C |

. (2)

Fig. 6 GIoU computation: (a) illustrates IoU, and (b) depicts GIoU.

In the process of filtering false minutiae using the proposed
NMS algorithm, each point in the final feature score map is
considered as a specific region in the original input image. To
achieve this, we expand a fixed-size rectangular area centered
on each minutia point. All the extracted minutiae are sorted
as a queue in descending order by score, denoted as order .
We determine whether a minutia point in order is deleted
based on the GIoU evaluation metric. Specifically, loop
to implement the following operation until order is empty:
first, the point with the highest score would be set to stored
point; second, compute GIoUs between the rest points and
the stored (chosen) point, and if GIoU value is bigger than the
threshold, the corresponding point would be deleted; third,
update order by using remained points in the second step.

By integrating the spatial distance and orientation-
based selection strategy with the GIoU-inspired selection
strategy, we concatenate the key stages of the merged NMS
algorithm to obtain the result with high precision. Alterna-
tively, to enhance the recognition capability of the presented
method, we can solely utilize theGIoU-inspired filter. Exper-
imental comparisons of different NMSmethods are available
in Sect. 4.2.

4. Experiment

In this section, we present the experimental details of our
study. We begin by validating the effectiveness of our novel
fingerprint minutiae database through a primary verifica-
tion experiment utilizing an online minutiae extraction al-
gorithm [9]. Ablation studies are then conducted to assess
the efficiency and effectiveness of each component in our
method. Furthermore, we compare the performance of the
proposed method with state-of-the-art algorithms on both
the proposed dataset and public dataset FVC 2004 DB1 and
DB2 [23], and analyze and discuss the obtained results.

The proposed method was implemented using Keras
andTensorFlow and tested on a server equippedwith anXeon
E7 v3 processor and GeForce GTX TITAN X GPU. Our
experiments utilized a constructed dataset based on NIST
SD04 [22] images, with a training-to-test set ratio of 3:1.
Each input image had a size of 512×512, and a batch size of
1 was utilized to circumvent memory limitations. The neural
network was trained end-to-end using the ADAM optimiza-
tion method with a learning rate of 0.0001, first moment
exponential decay rate β1 of 0.9, second moment exponen-
tial decay rate β2 of 0.999, and epsilon value of 1×10−8.
The model underwent training for 20 epochs. For objec-
tive performance assessment, we utilize precision, recall, F1
score, location and orientation error, inference time, and the
Precision-Recall (P-R) curve to evaluate the efficacy, effi-
ciency, and robustness of the detection methods.

4.1 Experimental Evaluation of the Constructed Dataset

To assess the newly created minutiae dataset, we performed
a 20-epoch training of the FingerNet model [15]. On
the FingerNet, we follow the training settings in [15] to
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Fig. 7 Left: P-R curve for varying thresholds on the validation dataset.
Right: fingerprint image analysis–(b1) orientation field, (b2) ground-truth
annotations, (b3) detected minutiae, and (b4) overlay of ground truth and
detections. Magenta points represent ground truth, while blue and yellow
points represent extractedminutiae. The color scheme is consistent through-
out the analysis. The recall rates for the three test sample groups illustrated
in (b) are 0.91, 0.85, and 0.86, respectively, with corresponding precision
rates of 0.93, 0.90, and 0.85. The significant variability in the performance
of the FingerNet model across different test samples primarily stems from
the model’s limited domain adaptability, variations in image quality, and
the architecture’s differential feature extraction capabilities in response to
the diverse and complex patterns present within the test fingerprints. The
extracted minutiae points largely correspond with the ground truth, albeit
with some missed points and false positive detections.

validate the effectiveness of the created dataset. We as-
sess the P-R curve by testing FingerNet on our dataset
(Fig. 7 left part) and comparing the results with the ground
truth. The minutiae detection threshold is adjusted across
[0.00001,0.01,0.02, ...,0.98,0.99,0.99999]. Lower thresh-
olds increase recall but decrease precision, and vice versa
for higher thresholds. Setting thresh to 0.75 balances pre-
cision (0.8891) and recall (0.8915). Figure 7 (right part)
shows three examples from our dataset with closely matched
annotations and inferences, confirming the model-dataset
synergy. The average inference time per image on a GPU is
approximately 0.62 seconds.

4.2 Ablation Study

In the experiment, we utilize the ResNet-based backbone for
orientation estimation, segmentation, and minutiae extrac-
tion, along with comparative experiments involving various
neural network structures as backbones, which are detailed
in Appendix B. In the preceding section, we have validated
the efficacy of the proposed dataset by employing Finger-
Net. Henceforth, we will employ the well-trained FingerNet
as the baseline. Here, we first conduct a comprehensive
performance comparison of different NMS proposals. Next,
we evaluate the method by analyzing the P-R curves across
various neural networks and NMS combinations.

4.2.1 Performance Assessment of NMS Proposals

To assess the efficacy of GIoU-guided metrics, Euclidean
distance heuristic metrics, and their combined schemes in
reducing false minutiae, we perform ablation experiments
using various non-maximum suppression (NMS) strate-
gies. These strategies include position and orientation-based
NMS, GIoU-guided NMS, and a hybrid approach that com-
bines both methods. All experiments are performed under

Table 1 The overall quantitative comparison results onNISTSD0406 and
0407 using different types of NMS algorithms. In the context, “LE” refers
to “Location-coordinates error”, “OE” refers to “Orientation-value error”
and “Combination” represents the combination of distance & orientation
and GIoU constraints.

the same conditions. In the comparative experiment, we
utilize the well-trained FingerNet [9] as the minutiae ex-
tractor and set the credibility threshold for all minutiae to
0.75 for fair comparison. Besides, we conduct comparison
experiments using two sub-datasets formulated in Sect. 2,
denoted as NISTSD 0406 and NISTSD 0407, which both
consist of 258 images. Table 1 manifests the overall quanti-
tative comparison results of the three methods. Meanwhile,
two test examples from the test sets and results are shown
in Fig. 8 with corresponding evaluation metrics. From the
comparison results (including Table 1 and Fig. 8), we ob-
serve that there exists a trade-off between precision and re-
call and the GIoU-inspired operation slightly hinders the
detection precision, while it indeed has some improvements
over the others in terms of the recall evaluation on the two
datasets, indicating that the GIoU has better ability to discern
intricate features and cover more qualified minutiae points
compared with spatial distance & orientation constrained
method. That’s mainly because GIoU comprehensively con-
siders the overlap area, shape, and positional relationship of
bounding boxes in removing redundancy, adapts to various
shape variations, reduces the likelihood of erroneous dele-
tions, and better balances precision and recall, as shown the
F1-value in Table 1. From the quantitative statistical results,
we can also see that the precision is highly consistent with the
location-coordinates and orientation-values errors, which are
determined by the filter mechanisms, i.e., the combination
method can significantly improve the precision and related
two other indexes. In the combination approach, minutiae
are extracted using dual filters and subsequently integrated
via an iterative comparison process that retains candidates
surpassing a defined credibility threshold, enhancing preci-
sion over single-filter methods. Meanwhile, minutiae within
the 0 to thresh distance range undergo deduplication, improv-
ing precision but potentially removing genuine minutiae and
leading to decreased recall.
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Fig. 8 Sample results obtained using different NMS algorithms. The
evaluation metrics used are the F1 score, location-coordinates error (LE),
and orientation value error (OE), and the abbreviations retain their mean-
ings throughout the paper. The abbreviations “LOC” and “ORI” represent
location and orientation, respectively.

4.2.2 Comparative Analysis of Neural Network Inference
and NMS Approaches

In this section, to comprehensively assess the efficacy of
each component within the proposed method, we conducted
an exhaustive evaluation of all possible module combi-
nations. First, we evaluate the similar minutiae detec-
tion methods including FingerNet [9] accompanied with
location-coordinate & orientation-inspired NMS, (referred
to as FingerNet+LO-NMS) and joint FingerNet and GIoU-
inspired post-processing (referred to as FingerNet+GIoU-
NMS). Apart from comparison with the baseline algorithm,
we also demonstrate the contribution of part of our GIoU-
oriented NMS mechanism by replacing it with conventional
location-coordinate and orientation-based mode, termed as
Ours+LO-NMS, while our complete method is correspond-
ing denoted asOurs+GIoU-NMS. Figure 9 (right part) shows
two fingerprint samples (including their groundtruth minu-
tiae annotations obtained using the method described in
Sect. 2) and four corresponding detection results by the afore-
mentioned combination methods. Each visual result set is
divided into two images: the upper fingerprint image con-
tains the actual or actual and detected minutiae for visual-
ization, while the lower image is reserved for showing ac-
tual minutiae or comparing actual minutiae against detected
ones, displaying either solely the actual minutiae or both ac-
tual and detected minutiae to enable a detailed comparative
analysis. From it, we can see that FingerNet+LO-NMS is ca-
pable of detecting main minutiae roughly, which also leaves
out some minutiae or detects false minutiae. In comparison,
Ours+LO-NMS can locate the minutiae more precisely in
an unknown fingerprint image. A similar phenomenon also

Fig. 9 P-R curves for minutiae detection using various methods. Yellow:
FingerNetwith coordinate and orientation-basedNMS.Red: FingerNetwith
GIoU-based NMS. Blue: Proposed model with coordinate and orientation-
based NMS. Magenta: Proposed model with GIoU-based NMS. The right
panel displays detection samples from the proposed dataset under different
processing combinations, with comparative results at optimal thresholds.

occurs in the comparison between FingerNet+GIoU-NMS
and Ours+GIoU-NMS, which verifies the effectiveness of
the developed end-to-end extractor module. The two groups
of ablation experiments confirm that leveraging ResNet as
the backbone network enhances the reliability and efficacy of
presented detection method. This is mainly because residual
connections add some value of their own, as well as allowing
training of deeper networks, which may also make it easier
to learn a good solution that generalizes well. Similarly, ab-
lation studies demonstrate that incorporating the enhanced
NMS module into our detection system yields an adaptive
filtering effect and credible minutiae outcomes, with qual-
itative and quantitative comparisons affirming the superior
performance of the GIoU-based NMS approach.

Figure 9 (left part) presents the P-R curves, contrasting
the detected minutiae against ground truth. The method as-
sesses minutiae validity using orientation, location, and con-
fidence score discrepancies. We observe that as the detection
threshold varies, all the curves show a similar pattern. When
the threshold is set higher, precision is higher while recall
is lower. In this case, the curves of FingerNet+LO-NMS,
FingerNet+GIoU-NMS, Ours+LO-NMS and Ours+GIoU-
NMS mostly overlap. As the threshold decreases, recall in-
creases while precision decreases. Notably, the performance
ranking from high to low is Ours+GIoU-NMS, Ours+LO-
NMS, FingerNet+GIoU-NMS, and FingerNet+LO-NMS, in-
dicating that the neural network architecture plays a cru-
cial role in improving detection accuracy. As the thresh-
old decreases further, the curves of FingerNet+LO-NMS
and Ours+LO-NMS as well as FingerNet+GIoU-NMS and
Ours+GIoU-NMS overlap, indicating that a lower credibil-
ity threshold leads to more false positive detections. Ad-
ditionally, the improved NMS shows better adaptability in
removing false minutiae points.

4.3 Comparison with Other Methods

In this section, the overall performance of the proposed
method will be validated through comparisons with several
state-of-the-art methods. MINDTCT [30] will be included
in the comparison, since it is a widely used open sourceNIST
biometrics recognition software. Meanwhile, FingerNet [9]
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Table 2 Comparative performance on NISTSD 0406, 0407, and FVC2004 DB1 and DB2 datasets,
evaluated by Precision, Recall, Location Error, and Orientation Error. All results are derived from
uniform quantitative testing protocols.

is a pioneering method in minutiae extraction using CNNs.
It extracts fingerprint minutiae points by incorporating gen-
eral prior knowledge of fingerprints, making it essential for
comparison in this study. In addition, the robust minutiae
extractor approach in [10] joins in the comparison since it
carefully divides computing tasks among different neural
networks under a novel architecture, denoted as RME. More
specifically, RME uses a two-stage strategy for extracting the
minutiae: first CoarseNet is applied to obtain both the minu-
tiae score map and minutiae orientation results, and then
FineNet is used to conduct candidate minutiae locations re-
finement processes. The algorithm implementation can be
obtained from public project†. To ensure fairness in com-
parison, we retrain CoarseNet on the created dataset with its
original settings and also utilize the FineNet model released
in [10] as a classifier, as minutiae elements exhibit consistent
patterns across different fingerprints, allowing direct usage
of a pre-trained minutiae classification model.

Table 2 provides a comprehensive performance compar-
ison on the NIST SD04, including precision, recall, location-
coordinate error, and orientation error. The dataset consists
of two sub-datasets, NISTSD 0406 and NISTSD 0407, each
containing 258 images. The proposed method outperforms
state-of-the-art techniques [9], [10], [30] in terms of preci-
sion and recall across both these sub-datasets. This is partic-
ularly crucial in the domain of personal identity verification.
Furthermore, our method achieves the lowest orientation er-
rors, while the location errors are comparable to FingerNet
and significantly lower than the other two methods, demon-
strating our approach’s superiority. We also compare the
run-time of the proposed method with two similar DNN
methods [9], [10] in Fig. 10, using identical GPU parallel set-
tings. Based on this comparison, our method outperforms
RME and demonstrates significant speed improvements or
approximation gains compared to FingerNet. However, test-
ing on the NIST SD04 dataset alone is insufficient to validate
the generalizability of the proposed method, thus, two addi-
tional datasets, FVC 2004 DB1 and DB2 [23] are exploited
to evaluate our method, alongside a comparison with the
aforementioned methods. The labeling method in Sect. 2
is applied to obtain the minutiae information as ground-

†https://github.com/luannd/MinutiaeNet

Fig. 10 Runtime performance comparison across NIST SD04 and FVC
2004 datasets.

truth. We conduct two statistical comparisons and show
the overall test performance in Table 2. Overall, the pro-
posed method demonstrates superior performance in terms
of minutiae extraction. Meanwhile, the speed of our method
is also compared with two similar deep learning-based ap-
proaches [9], [10] in the same GPU parallel setting on the
two datasets, as shown in Fig. 10. The figure demonstrates
that the processing time for the first set of images is longer
than that for the second set, which can be attributed to the
disparity in image sizes between the two groups.

Figure 11 provides a detailed comparative visual anal-
ysis of fingerprint samples from two benchmark databases,
NIST SD4 and FVC 2004. The figure provides a side-by-
side comparison of the raw fingerprint images with their
corresponding detection results, showcasing the capabilities
of four state-of-the-art detection algorithms. To facilitate
a granular examination of the detection efficacy, the fig-
ure also features enlarged views of select regions, capturing
the intricacies of the detection outcomes. These intricate
visualizations are corroborated by the quantitative metrics
enumerated in Table 2, ensuring a holistic understanding of
the detection performance. It is evident from the visualiza-
tion that MINDTCT exhibits limited accuracy in minutiae
extraction due to its weaker representation power and its dif-
ficulty in dealing with blurry and noisy ridge areas. Tang et
al.’s CNN-based method [9] shows improved performance
but still suffers from false positives and missed detections
due to the inadequate learning of distinctive minutiae fea-
tures. The inadequate detection quality of such methods
is further substantiated through experimental results on the
NIST SD04 and FVC 2004 datasets. In contrast, the RME
method [10], employing a two-stage deep learning approach,
achieves impressive precision and recall. However, its per-
formance in detecting complete minutiae is relatively poor,
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Fig. 11 Comparative analysis of fingerprint minutiae detection on NISTSD 0406, NISTSD 0407,
FVC2004 DB1, and FVC2004 DB2 datasets. The first row presents experimental results for NIST SD4,
and the second row for FVC 2004 datasets.

possibly due to less effective redundant point removal. The
proposed method, benefiting from an advanced network ar-
chitecture and GIoU-oriented NMS operation, demonstrates
superior accuracy and completeness in the detection results
of Fig. 11 and Table 2. Notably, the proposed method ex-
hibits better detection performance, especially in areas with
intricate details.

4.4 Discussion

In Sect. 4.3, we have compared our method with leading
techniques, including MINDTCT, FingerNet and RME. The
experimental results reported in the previous sections in-
dicate that the proposed method surpasses the compared
techniques in terms of precision and recall across the NIST
SD04 dataset (including NISTSD 0406 and NISTSD 0407
two sub-datasets). The effectiveness of the proposed method
is crucial for applications demanding high accuracy, such as
criminal investigation, access control systems and financial
transactions. Furthermore, our approach achieves relatively
lower orientation errors and shows comparable location er-
rors against FingerNet, implying an overall superior perfor-
mance in prediction.

We have also evaluated the run-time efficiency of the
proposed method against similar DNN-based methods. The
observed significant speed improvements over RME and
competitive performance compared to FingerNet demon-
strate the efficiency of our approach. We further validate the
generalizability on the FVC 2004 DB1 and DB2 datasets,
where our method consistently delivers robust experimental
outcomes. While on DB1 test set, the RME method [10]
achieves impressive result, because the patch based minutiae
classifier applied can compact embedding of minutiae fea-
tures, which is particularly suitable for scenes with concen-
trated ROI and fingerprint patterns. Ourmethod also demon-
strates good performance on DB1, particularly in terms of

detection integrity, surpassing other methods. These results
affirm our method’s robustness across varied datasets.

The primary strength of the proposal lies in its ability to
detect minutiae with enhanced accuracy and completeness.
This is facilitated by the innovative network architecture and
the implementation of GIoU-oriented NMS operation. The
latter contributes to a better detection performance due to its
flexible adaptivity, particularly in challenging areas with in-
tricate details. The experimental results, supported by quan-
titative data and visual analysis, demonstrate the robustness
of our method across a range of fingerprint image qualities.
Despite achieving high precision and low orientation errors,
the need for wider dataset validation, refined location accu-
racy in noisy conditions, and improved run-time efficiency
for real-time application persists, pointing towards future
work in model optimization and lightweight design.

5. Conclusion

This paper proposes an effective automatic minutiae ex-
traction method. To address the lack of comprehensive
minutiae datasets, we propose a semi-automated annotation
algorithm based on explicit knowledge of morphology to
label fingerprint images. Our method effectively fills the
gap in the availability of minutiae datasets. We propose a
novel end-to-end detection model for AFIS that leverages the
ResNet structure and adopts the Highway networks strategy
to enhance the extraction of minutiae with higher accuracy.
Moreover, we incorporate the GIoU-oriented NMS filter to
adaptively remove pseudo minutiae points. Experimental
results on different datasets demonstrate that our method
achieves competitive performance compared to state-of-the-
art approaches for small-scale minutiae detection. Addi-
tionally, our method is versatile and applicable to diverse
types of minutiae, making it suitable for various real-world
fingerprint-related tasks.
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Appendix A: Introduction of Fingerprint Dataset

The dataset, named the FingerprintMinutiaeDataset (FMD),
comprises the location coordinates and orientation values
of each minutia within every fingerprint image. For this
dataset, we select 2910 images from the publicly available
NIST SD04 dataset [22]. The NIST SD04 dataset is specif-
ically distributed for the fingerprint classification task and
contains 4000 8-bit encoded images. The selected images
are categorized into five classes (Arch, Left Loop, Right
Loop, Tented Arch, andWhorl) based on the pattern near the
singularity points. Each image has a size of 512×512, with
32 rows of pixel blanks at the bottom. The labeling algo-
rithm is implemented in MATLAB, and during the labeling
process, we manually review and correct any inaccuracies
in the minutiae annotations, involving at least two annota-
tors. The aligned minutiae points in minutiae dataset are
stable and representative, as they can be used to determine
the uniqueness of a fingerprint [18]–[20].

The dataset comprises 2910 fingerprint images with a
total of 223,207 minutiae, averaging 76.7 minutiae points
per image. We conducted statistical analysis on the dis-
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Table A· 1 The statistics of minutiae points in different categories and genders.

Fig. A· 1 Distribution of minutiae points across Level-1 features and
genders.

Table A· 2 The detailed attributes comparison of different datasets

tribution of images and minutiae based on original classes
and gender divisions. The results are summarized in Ta-
ble A· 1. For visualization and analysis purposes, a boxplot
(Fig. A· 1) is generated, where the red line represents the me-
dian value. The boxplots demonstrate that the interquartile
ranges (IQRs) for minutiae counts, when considering vari-
ous Level-1 features and across genders, are primarily con-
centrated within the 60 to 90 interval. This distribution is
consistent with the established fingerprint quality standards,
which suggest an acceptable range of 40 to 100 [18]. The
distribution of minutiae points demonstrates a relatively bal-
anced distribution among different classes and genders, with
slightly higher median values for Whorl and Male images.
Additionally, a few outliers (e.g., minutiae Num ≥ 110.5
for Left Loop) are identified outside of the main intervals.
However, these minor deviations are not expected to signif-
icantly affect the labeling results, as the overall distribution
of minutiae points remains fairly consistent. Therefore, the
annotated minutiae dataset meets the requirements for sub-
sequent training applications in theory.

Compared with the revoked NIST SD27, we use more
fingerprint images for testing, which include 516 finger-
prints and more than 258 fingerprints in the NIST SD27
dataset. We compare our minutiae dataset with the FVC
2004 dataset [23], a benchmark for fingerprint recogni-
tion. Table A· 2 shows the comparison results, including
statistical information on the FVC 2004 dataset obtained
from [14]. Compared to the standard fingerprint distribution
of [40,100], the proposed dataset exhibits a more reasonable

distribution of minutiae counts in each fingerprint.

Appendix B: Comparative Analysis of Deep Learning
Models for Minutiae Extraction

To objectively evaluate the backbone network, we bench-
marked ResNet and other prevalent architectures, includ-
ing VGGNet [31], InceptionNet [32], XceptionNet [35],
DenseNet [36], MobileNet [33], and EfficientNet [34], in
our experiments. We conducted experiments on publicly
available fingerprint datasets, including NIST SD04 and
FVC 2004. For each model, fingerprint feature extraction
modules were implemented based on their respective core
ideas. To ensure fair comparison, consistent preprocessing
and augmentation were performed on all models. In this
study, we employ the aforementioned F1 Score, LE and OE
as the evaluation metrics. Because the overall model size re-
mains relatively consistent, the difference in inference time
can be considered negligible. Therefore, we focus solely on
presenting the F1 Score, LE, and OE in our experiments.
The F1 Score, being the harmonic mean of precision and
recall, offers a comprehensive representation of the overall
performance of the detector. The mean localization error
is a metric that quantifies the average Euclidean distance
between the predicted and ground truth positions of finger-
print minutiae. The mean error of angle is a metric that
assesses the average angular deviation between the predicted
and actual orientations of fingerprint minutiae.

Table A· 3 manifests performance comparison of dif-
ferent models on fingerprint minutiae extraction task. Fig-
ure A· 2 shows two fingerprint image samples obtained from
the NISTSD 04 and FVC 2004 datasets, along with the
corresponding minutiae detection results of several state-
of-the-art models. In each set, the upper image represents
the deep model’s detection results and the corresponding
ground truth, while the lower image compares the model’s
pure detections with the ground truth minutiae. We observe
that although VGGNet performs well in image classification
tasks, its performance in fingerprint minutiae extraction is
slightly inferior to ResNet, possibly due to its deep hierarchi-
cal structure not being suitable for capturing subtle detailed
features. The Inception model, with its multi-scale convo-
lutional kernel, is capable of capturing details at different
levels. The Xception model, utilizing depthwise separa-
ble convolution, improves parameter efficiency and helps
in learning finer features with limited data, achieving rela-
tively better performance on both datasets compared to In-
ceptionNet. However, their overall performance is not as
good as ResNet. DenseNet facilitates feature propagation
and detailed feature acquisition via feature reuse; neverthe-
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Table A· 3 Comparative ablation study of backbone networks for fingerprint feature estimation:
evaluating the impact of VGG, Inception, Xception, DenseNet, MobileNet, EfficientNet, and ResNet on
F1 Score, location-coordinates error (LE), and orientation-values error (OE).

Fig. A· 2 Evaluation of fingerprint minutiae detection on sample images from NIST SD4 and FVC
2004 datasets. In the conducted experiments, the employment of ResNet as the backbone network
demonstrates superior robustness in fingerprint minutiae detection across varied image inputs.

less, as network depth grows, the potential for suboptimal
feature reuse may arise, possibly impeding generalization.
Moreover, deeper networks are usually harder to train due
to issues like noisy gradient updates, which can affect the
learning process. Therefore, models that perform well on
the NIST SD04 dataset may have poor generalization ability.
MobileNet is designed for mobile and embedded devices,
and its lightweight structure may be beneficial for deploy-
ing fingerprint recognition systems in resource-constrained
environments. Nonetheless, its accuracy on NIST SD04 is
relatively low. EfficientNet exhibits excellent capability in
extracting complex fingerprint features, which contributes
to the generation of well-generalized trained models. The
findings of our study reveal that while EfficientNet gener-
ally outperforms other models in generalization, ResNet has
been adopted as the baseline for our investigation. This
decision is informed by ResNet’s exemplary proficiency in
feature extraction, the ease with which it can be implemented
and deployed, and its demonstrated robustness in accurately
extracting a diverse range of fingerprint minutiae.
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