
DOI:10.1587/transfun.2024EAP1043

Publicized:2024/04/05

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Deep Learning-inspired Automatic Minutiae Extraction From
Semi-automated Annotations

Hongtian ZHAO†a), Member, Hua YANG††, and Shibao ZHENG††, Nonmembers

SUMMARY Minutiae pattern extraction plays a crucial role in finger-1

print registration and identification for electronic applications. However,2

the extraction accuracy is seriously compromised by the presence of con-3

taminated ridge lines and complex background scenarios. General image4

processing-based methods, which rely on many prior hypotheses, fail to ef-5

fectively handle minutiae extraction in complex scenarios. Previous works6

have shown that CNN-based methods can perform well in object detection7

tasks. However, the deep neural networks (DNNs)-based methods are re-8

stricted by the limitation of public labeled datasets due to legitimate privacy9

concerns. To address these challenges comprehensively, this paper presents10

a fully automated minutiae extraction method leveraging DNNs. Firstly, we11

create a fingerprint minutiae dataset using a semi-automated minutiae an-12

notation algorithm. Subsequently, we propose a minutiae extraction model13

based on Residual Networks (Resnet) that enables end-to-end prediction of14

minutiae. Moreover, we introduce a novel non-maximal suppression (NMS)15

procedure, guided by the Generalized Intersection over Union (GIoU) met-16

ric, during the inference phase to effectively handle outliers. Experimental17

evaluations conducted on the NIST SD4 and FVC 2004 databases demon-18

strate the superiority of the proposed method over existing state-of-the-art19

minutiae extraction approaches.20

key words: Minutiae extraction, Fingerprint morphology processing,21

Resnet, GIoU-oriented NMS.22

1. Introduction23

Despite the diverse representative features present in finger-24

prints, including grayscale maps, gradient fields, orientation25

fields, and orientation consistency, the majority of real-world26

recognition systems primarily depend on minutiae [1, 6].27

Minutiae patterns generally consist of ridge endings and28

ridge bifurcations [7]. A ridge ending represents the start29

or end point of a ridgeline, while a bifurcation denotes the30

merging point of two ridgelines into one. Extensive theoret-31

ical proof and statistical analysis demonstrate that these two32

types of minutiae can effectively identify a fingerprint [18–33

20]. Therefore, the accurate and comprehensive extraction34

of minutiae serves as a fundamental problem in this field.35

The problem attracts significant attention as it is cru-36

cial for various automated fingerprint applications, includ-37

ing ecommerce, phone unlock, crime identification, and in-38

telligent security [2–5]. Minutiae extraction is a complex39

pattern recognition problem due to challenges posed by pol-40

luted areas and background noises, and there is still a lack of41

well-solved formulations and optimizations. To address this42
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problem, researchers have proposed different approaches. 43

For example, previous algorithms based on ridge tracing 44

have been used to restore ridges on thinned fingerprint im- 45

ages before extracting minutiae. However, this approach is 46

computationally intensive and involves trivial optimization 47

processes [8]. Recent studies by Tang et al.[9] and Nguyen 48

et al.[10] have explored using local shape structures and tex- 49

ture information for minutiae extraction, including position 50

coordinates and ridge orientation angles. However, these 51

techniques still have limitations, such as generating false 52

minutiae or missing genuine ones. Traditional methods rely 53

on artificial approximations or empirical fingerprint mor- 54

phology processing [11–13, 30], which are often not flexible 55

and struggle to handle complex fingerprints with noise or 56

contamination. Conventional minutiae extraction methods, 57

which are based on hand-designed or empirical approaches, 58

are insufficient in accurately detecting minutiae in perturbed 59

areas due to their limited adaptability and inability to han- 60

dle various disturbances. This leads to information loss and 61

errors. Furthermore, the complexity and diversity of per- 62

turbed fingerprint regions make it challenging for traditional 63

approaches to address most cases. In summary, there are still 64

numerous challenges in precisely formulating the problem of 65

degraded fingerprints. 66

Significant progress has been made in simulated prob- 67

lem solver through the integration of domain knowledge with 68

deep neural networks (DNNs). In complex scenarios, DNNs 69

such as VGGNet [31], InceptionNet [32], MobileNet [33], 70

and EfficientNet [34] demonstrate superior performance over 71

handcrafted features by leveraging their varied hierarchical 72

representation, adaptability, and non-linear processing char- 73

acteristics to learn generic features. In the domain of fin- 74

gerprint analysis, the adoption of an end-to-end inference 75

paradigm by prevalent DNNs-based approaches facilitates 76

efficient minutiae extraction, circumventing the need for it- 77

erative optimization strategies commonly associated with 78

traditional methods. However, the drawback of DNNs is 79

their reliance on well-defined training data. Standard fin- 80

gerprint datasets, such as NIST SD27 [21], are no longer 81

available in world wide web in contemporary time due to 82

privacy security policies, which hinders the development 83

of DNNs-based minutiae extraction. Although some ap- 84

proaches [9, 10, 14] have been proposed to handle this task, 85

they have exhibited poor performance in detecting minutiae 86

patterns in challenging fingerprints. Thus, the extraction of 87

minutiae faces significant challenges in real-life scenarios. 88

To construct a comprehensive set of minutiae for train- 89
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ing DNNs, we study and propose a complete fingerprint90

minutiae annotation pipeline. The extraction module con-91

sists of several crucial steps, including image normaliza-92

tion, segmentation, orientation and frequency estimation,93

enhancement, binarization, and thinning. Subsequently, the94

pipeline extracts minutiae points from the fingerprint skele-95

ton, which retains only vital topological structures (e.g., the96

basic structure of the ridge) while removing redundant in-97

formation in the image. To ensure reliable labeling, we in-98

corporate a manual revision process as post-processing due99

to the underlying assumptions of the annotation approaches.100

Our minutiae annotation method is a semi-automatic tech-101

nique that involves controlled user interactions. In compari-102

son to manual labeling, our method offers ease of operation,103

time savings, reduces the workload for experts, and enhances104

human-machine cooperation. Importantly, we introduce an105

automatic minutiae extraction framework to enhance the ef-106

fectiveness and robustness of minutiae extraction. In con-107

sideration of limited fingerprint databases, we first present108

a semi-automated labeled minutiae dataset. To simulate109

real-life fingerprint recognition scenarios, we develop an110

automatic minutiae extraction system based on DNNs for111

efficient prediction tasks, allowing for easy deployment and112

usability in authentic fingerprint application scenarios.113

This work is an extension of our previous minutiae114

annotation algorithm [15], with several significant improve-115

ments: (1) We propose a ResNet-based neural network for116

automatic minutiae extraction. (2) To enhance the quality117

of detection, we introduce a novel generalized IoU (GIoU)-118

oriented NMS filter to correct falsely extracted minutiae.119

(3) Extensive validation experiments, along with discus-120

sions, demonstrate the effectiveness of the presented dataset121

and automatic minutiae extraction system. In summary, the122

main contributions of our method are as follows:123

• To address the lack of available minutiae datasets, we124

propose a semi-automated annotation method for fin-125

gerprint minutiae. This method integrates automatic126

extraction and manual revision steps to ensure compre-127

hensive and reliable training annotations. Based on it,128

we establish a dependable minutiae dataset that incor-129

porates the expertise of human annotators.130

• To adaptively detect fingerprint feature patterns, we131

propose a novel minutiae extraction model based on132

ResNet-based neural networks. This model simulates133

the fingerprint processing and minutiae extraction pro-134

cedure, including orientation field estimation, finger-135

print segmentation and minutiae extraction. Addition-136

ally, we introduce a GIoU-oriented NMS filter to en-137

hance the quality of minutiae detection.138

• Comprehensive experiments with analysis, discussions139

and comparisons verify the effectiveness of both the140

proposed dataset and the prediction method.141

2. Dataset Construction142

In recent years, on-site fingerprint identification technology143

has advanced with the help of the NIST SD27 public finger- 144

print database. However, this database is no longer publicly 145

available due to permission restrictions. Synthetic datasets 146

from the Fingerprint Verification Competition (FVC) se- 147

ries [23], such as FVC2004 DB4, are limited in both scale and 148

realism compared to real-world scenarios. The NIST SD04 149

dataset, composed of authentic fingerprint images, captures 150

the nuanced details of fingerprint features such as skin tex- 151

ture and pores, which are essential for reliable experimental 152

results. It offers a more challenging test-bed with diverse 153

image quality, noise, and occlusions, thereby better evaluat- 154

ing model robustness and accuracy. In contrast, FVC2004 155

may oversimplify real-world complexities, potentially com- 156

promising recognition performance in practical applications. 157

The NIST SD04 dataset’s rich local and global features, crit- 158

ical for precise fingerprint recognition, are less effectively 159

simulated in synthetic datasets, leading to a performance 160

gap. Therefore, this study employs the NIST SD04 dataset 161

for training and validating deep learning models, substanti- 162

ating the superiority of semi-automatic, human-supervised 163

annotation for enhancing accuracy. Additionally, manual 164

minutiae extraction, known to boost performance in latent 165

fingerprint images [16, 17], underscores the importance of 166

human oversight in data annotation. To address this, we pro- 167

pose a novel and versatile minutiae dataset for investigating 168

minutiae extraction. We describe the dataset in Appendix A 169

and its implementation of a semi-automatic human-computer 170

interaction labeling algorithm in the rest of this section. 171

Minutiae Database Annotation Workflow To ensure accu- 172

rate and comprehensive minutiae annotation, the proposed 173

algorithm involves two main steps: automated minutiae ex- 174

traction and manual revision. Fig. 1 provides an overview 175

of the complete workflow, while the revision step is illus- 176

trated in Fig. 2. The automated extraction process includes 177

various stages, such as image segmentation, normalization, 178

orientation estimation, frequency estimation, enhancement, 179

binarization, thinning, minutiae extraction, and removal of 180

pseudo minutiae points. The output results from automatic 181

extraction are then carefully revised and checked to obtain 182

the final ground truth. 183

Fig. 3 illustrates the intermediate outputs of the key 184

steps in the aforementioned fingerprint minutiae annotation 185

workflow. The algorithm for annotating the fingerprint minu- 186

tiae database has been comprehensively explained in [15]. 187

Therefore, this paper does not repeat the annotation algo- 188

rithm in this module; instead, it directs readers to [15] for a 189

comprehensive understanding of the algorithm. 190

3. Method 191

Deep learning methods in image recognition tasks depend 192

on three key factors: data, algorithm, and model. Section 2 193

have introduced the created dataset, which includes finger- 194

print images and corresponding minutia labels with coor- 195

dinates and orientations. We then provide an overview of 196

our ResNet-based model and the proposed inference method 197

for automated latent fingerprint minutiae extraction. Our 198
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Fig. 1: Minutiae annotation workflow: automated extraction and manual correction.

Fig. 2: Minutiae annotation refinement: process illustrations for addition and deletion
of feature points.
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(h) (i) (j) (k) (l) (m)

(g)

(n)

Fig. 3: Sample results of the presented annotation method, which are mainly corre-
sponding to the output results of interim processes in Fig. 1: (a) Original image in
NIST SD4; (b) Segmentation mask; (c) Normalized image; (d) Orientation distribution
visualization image; (e) Reliability map; (f) Frequency map; (g) Enhanced image; (h)
Binarized image; (i) Mask-operated binarized image; (j) Corroded segmented mask;
(k) Refined skeleton image; (l) Refined skeleton image with extracted minutiae; (m)
The skeleton image with extracted minutiae after post-processing; (n) The output
image obtained by using manual editing from image (m).

focus is on accurately recognizing ending points and bifur-199

cation points using a DNNs-based approach. While previous200

studies have integrated domain knowledge with CNN repre-201

sentation capabilities, such as FingerNet by Tang et al. [9],202

our observations and evaluations indicate limitations and in-203

stability in their minutiae extraction. To improve detection204

accuracy, we propose two optimization strategies: intrin-205

sic feature extraction using ResNet-based structures and a206

GIoU-inspired NMS filter. The key implementation details207

of our method will be described in the following section.208

3.1 Basic FingerNet-oriented Neural Network209

FingerNet, as introduced in [9], is an innovative approach that210

combines domain knowledge and CNN’s feature represen-211

tation abilities to simplify minutiae detection. To simulate212

the classical minutiae extraction process in real-life applica-213

tions, we refine FingerNet [9] and adopt it as the backbone214

network. Based on the residual structure’s prominent fitting215

capability, we propose an enhanced network for fingerprint216

minutiae extraction, enabling the comprehensive utilization 217

of morphological knowledge for learning effective features. 218

Fig. 4 shows the fundamental DNNs-based procedure, 219

which encompasses common tasks such as image normaliza- 220

tion, orientation estimation, segmentation, gabor enhance- 221

ment, and minutiae extraction. Specifically, the input image 222

undergoes initial normalization. Subsequently, the normal- 223

ized image is directed into two pipelines. The first pipeline 224

calculates gradients for orientation estimation and segmen- 225

tation, while the second pipeline employs Gabor filters to 226

compute group filters and shift the operation space from 227

spatial to frequency domain, selecting suitable orientations 228

for image enhancement. The final step of the method in- 229

volves concatenating and merging the enhanced image with 230

the segmented mask, followed by feature extraction from the 231

objective-oriented enhanced fingerprint. In this paper, our 232

emphasis is on orientation estimation and segmentation. We 233

provide a brief discussion on the minutiae extraction mod- 234

ule, with reference to Gabor filters and orientation selection 235

from [9]. We will elaborate on the key implementations in 236

the subsequent sections. 237

3.2 ResNet-based Orientation Estimation, Segmentation, 238

and Minutiae Extraction 239

As one of the most crucial global features of fingerprints, the 240

orientation field significantly impacts Automated Fingerprint 241

Identification Systems (AFIS) and plays a substantial role in 242

subsequent tasks such as feature point detection, fingerprint 243

classification, and matching. In addition to the orientation 244

field, the ROI in a fingerprint is essential for minutiae extrac- 245

tion, providing precise location and guiding information for 246

morphological fingerprint processing and minutiae extrac- 247

tion steps. However, due to limitations imposed by collection 248

devices, external environments, and human factors, captured 249

fingerprints are often contaminated by unforeseen factors 250

like equipment noise and uneven pressure during fingerprint 251

collection. These contamination factors have a detrimen- 252

tal effect on both orientation estimation and segmentation 253

tasks. Conventional orientation estimation methods typi- 254

cally rely on filtering operations, which exhibit robustness 255

against noise. However, such methods may struggle to han- 256

dle situations where ridge lines are heavily contaminated. To 257

achieve accurate orientation field and segmentation maps, 258

the proposed method utilizes an end-to-end trainable neural 259

network to jointly estimate fingerprint orientation and ex- 260

tract foreground ridge/valley lines for subsequent tasks. We 261

conduct a study to assess whether a statistically-driven skip 262

connection neural network architecture can better approxi- 263

mate complex nonlinear transformation operations. 264
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Online Testing

Offline Training

Fig. 4: Minutiae Extraction Framework: This approach entails deep network training offline and subsequent online testing on latent fingerprint images. It utilizes an expanded
Resnet architecture for effective feature extraction, encompassing orientation and segmentation masks for fingerprint enhancement and minutiae extraction. Parameter optimization
is achieved through backpropagation. Upon sufficient training, the network employs GIoU NMS for precise minutiae detection and pseudo minutiae elimination.

Fig. 5: (a), (c) depict the orientation estimation & segmentation, and minutiae extraction structures in FingerNet, while (b), (d) showcase our corresponding structures.

In contrast to the CNN architecture in [9], the proposed265

orientation estimation and segmentation module utilizes a266

ResNet structure to mitigate overfitting, address the issue of267

vanishing gradients, and augment the representational ca-268

pacity of neural networks, with a comparative illustration269

provided in Fig. 5. ResNet [29] has demonstrated outstand-270

ing performance, particularly in scenarios requiring the ex-271

traction of deep features for image detection tasks. These272

structures intricately augment the topological graph derived273

from the original neural networks, and here, it facilitates the274

learning of discriminative orientation fields, segmentation275

information, and intrinsic minutiae features. In addition,276

to provide an objective assessment of ResNet, we will also277

compare its performance with that of established mainstream278

deep learning models such as InceptionNet [32], Xception-279

Net [35], and DenseNet [36] in the experimental section.280

3.3 GIoU-oriented Non-Maximum Suppression for Outlier281

Removal282

Because the predicted minutiae via DNNs may cluster to-283

gether, the Non-maximum suppression (NMS) [24] is usu-284

ally applied as the final step to remove redundant minutiae in285

automatic fingerprint minutiae prediction. Typically, Ref. [9] 286

uses the spatial distance (Euclidean distance) between two 287

points as a measurement for judging whether to delete the 288

detected point. In the conventional NMS method for filter- 289

ing outliers, the extracted minutiae points are sorted based 290

on their scores. The point with the highest score is retained, 291

and the algorithm compares the spatial distance and direc- 292

tion angle difference between each point and the subsequent 293

points. If the distance and angle difference meet the pre- 294

set thresholds, the point is labeled as redundant. However, 295

this method may mistakenly filter out real minutiae points 296

that are close and have small angle difference. To refine 297

the NMS technique, a sophisticated selection algorithm that 298

effectively discerns true minutiae from closely spaced pre- 299

dictions is required to prevent the erroneous exclusion of 300

genuine features. 301

Thanks to Intersection over Union (IoU) [26], we are 302

able to utilize a commonly used metric in object detection 303

and tracking benchmarks. It measures the degree of overlap 304

between predicted and ground-truth bounding boxes [27, 305

28]. While IoU has limitations when dealing with non- 306

overlapping or irregular boundaries, particularly in small 307

object detection tasks. To address this, a generalized version 308
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Fig. 6: GIoU Computation: (a) illustrates IoU, and (b) depicts GIoU.

called Generalized IoU (GIoU) has been introduced in [26].309

In this research on minutiae point extraction, we propose to310

utilize the GIoU metric in NMS as it can compare arbitrary311

shapes and enhance detection quality by correcting false312

minutiae resulting from outliers and noisy entries. The IoU313

between two rectangular areas 𝐴 and 𝐵, as depicted in Fig. 6a,314

can be computed as follows:315

𝐼𝑜𝑈 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛
=

|𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | . (1)

Next, we describe the computation method of GIoU (de-316

picted in Fig. 6b): as for the areas 𝐴 and 𝐵, we first find the317

smallest enclosing convex object𝐶, and compute IoU; based318

on the result, the GIoU is computed by:319

𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈 − |𝐶\(𝐴 ∪ 𝐵) |
|𝐶 | . (2)

In the process of filtering false minutiae using the proposed320

NMS algorithm, each point in the final feature score map is321

considered as a specific region in the original input image. To322

achieve this, we expand a fixed-size rectangular area centered323

on each minutia point. All the extracted minutiae are sorted324

as a queue in descending order by score, denoted as 𝑜𝑟𝑑𝑒𝑟 .325

We determine whether a minutia point in 𝑜𝑟𝑑𝑒𝑟 is deleted326

based on the GIoU evaluation metric. Specifically, loop327

to implement the following operation until 𝑜𝑟𝑑𝑒𝑟 is empty:328

first, the point with the highest score would be set to stored329

point; second, compute GIoUs between the rest points and330

the stored (chosen) point, and if GIoU value is bigger than the331

threshold, the corresponding point would be deleted; third,332

update 𝑜𝑟𝑑𝑒𝑟 by using remained points in the second step.333

By integrating the spatial distance and orientation-334

based selection strategy with the GIoU-inspired selection335

strategy, we concatenate the key stages of the merged NMS336

algorithm to obtain the result with high precision. Alterna-337

tively, to enhance the recognition capability of the presented338

method, we can solely utilize the GIoU-inspired filter. Exper-339

imental comparisons of different NMS methods are available340

in Sec. 4.2.341

4. Experiment342

In this section, we present the experimental details of our343

study. We begin by validating the effectiveness of our novel344

fingerprint minutiae database through a primary verifica-345

tion experiment utilizing an online minutiae extraction al-346

gorithm [9]. Ablation studies are then conducted to assess347

the efficiency and effectiveness of each component in our348

method. Furthermore, we compare the performance of the349

Fig. 7: Left: P-R curve for varying thresholds on the validation dataset. Right: Fin-
gerprint image analysis−(b1) orientation field, (b2) ground-truth annotations, (b3)
detected minutiae, and (b4) overlay of ground truth and detections. Magenta points
represent ground truth, while blue and yellow points represent extracted minu-
tiae. The color scheme is consistent throughout the analysis. The recall rates for the
three test sample groups illustrated in (b) are 0.91, 0.85, and 0.86, respectively, with
corresponding precision rates of 0.93, 0.90, and 0.85. The significant variability in
the performance of the FingerNet model across different test samples primarily stems
from the model’s limited domain adaptability, variations in image quality, and the
architecture’s differential feature extraction capabilities in response to the diverse and
complex patterns present within the test fingerprints. The extracted minutiae points
largely correspond with the ground truth, albeit with some missed points and false
positive detections.

proposed method with state-of-the-art algorithms on both 350

the proposed dataset and public dataset FVC 2004 DB1 and 351

DB2 [23], and analyze and discuss the obtained results. 352

The proposed method was implemented using Keras 353

and TensorFlow and tested on a server equipped with an Xeon 354

E7 v3 processor and GeForce GTX TITAN X GPU. Our 355

experiments utilized a constructed dataset based on NIST 356

SD04 [22] images, with a training-to-test set ratio of 3:1. 357

Each input image had a size of 512×512, and a batch size of 358

1 was utilized to circumvent memory limitations. The neural 359

network was trained end-to-end using the ADAM optimiza- 360

tion method with a learning rate of 0.0001, first moment 361

exponential decay rate 𝛽1 of 0.9, second moment exponen- 362

tial decay rate 𝛽2 of 0.999, and epsilon value of 1×10−8. 363

The model underwent training for 20 epochs. For objec- 364

tive performance assessment, we utilize precision, recall, 𝐹1 365

score, location and orientation error, inference time, and the 366

Precision-Recall (P-R) curve to evaluate the efficacy, effi- 367

ciency, and robustness of the detection methods. 368

4.1 Experimental Evaluation of the Constructed Dataset 369

To assess the newly created minutiae dataset, we performed 370

a 20-epoch training of the FingerNet model [15]. On 371

the FingerNet, we follow the training settings in [15] to 372

validate the effectiveness of the created dataset. We as- 373

sess the P-R curve by testing FingerNet on our dataset 374

(Fig.7 left part) and comparing the results with the 375

ground truth. The minutiae detection threshold is adjusted 376

across [0.00001, 0.01, 0.02, ..., 0.98, 0.99, 0.99999]. Lower 377

thresholds increase recall but decrease precision, and vice 378

versa for higher thresholds. Setting 𝑡ℎ𝑟𝑒𝑠ℎ to 0.75 balances 379

precision (0.8891) and recall (0.8915). Fig.7 (right part) 380

shows three examples from our dataset with closely matched 381

annotations and inferences, confirming the model-dataset 382

synergy. The average inference time per image on a GPU is 383

approximately 0.62 seconds. 384

4.2 Ablation Study 385

In the experiment, we utilize the ResNet-based backbone for 386

orientation estimation, segmentation, and minutiae extrac- 387
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tion, along with comparative experiments involving various388

neural network structures as backbones, which are detailed389

in Appendix B. In the preceding section, we have validated390

the efficacy of the proposed dataset by employing Finger-391

Net. Henceforth, we will employ the well-trained FingerNet392

as the baseline. Here, we first conduct a comprehensive393

performance comparison of different NMS proposals. Next,394

we evaluate the method by analyzing the P-R curves across395

various neural networks and NMS combinations.396

4.2.1 Performance Assessment of NMS Proposals397

To assess the efficacy of GIoU-guided metrics, Euclidean398

distance heuristic metrics, and their combined schemes in399

reducing false minutiae, we perform ablation experiments400

using various non-maximum suppression (NMS) strate-401

gies. These strategies include position and orientation-based402

NMS, GIoU-guided NMS, and a hybrid approach that com-403

bines both methods. All experiments are performed under404

the same conditions. In the comparative experiment, we405

utilize the well-trained FingerNet [9] as the minutiae ex-406

tractor and set the credibility threshold for all minutiae to407

0.75 for fair comparison. Besides, we conduct comparison408

experiments using two sub-datasets formulated in Sec. 2,409

denoted as NISTSD 0406 and NISTSD 0407, which both410

consist of 258 images. Table 1 manifests the overall quanti-411

tative comparison results of the three methods. Meanwhile,412

two test examples from the test sets and results are shown413

in Fig. 8 with corresponding evaluation metrics. From the414

comparison results (including Table 1 and Fig. 8), we ob-415

serve that there exists a trade-off between precision and re-416

call and the GIoU-inspired operation slightly hinders the417

detection precision, while it indeed has some improvements418

over the others in terms of the recall evaluation on the two419

datasets, indicating that the GIoU has better ability to discern420

intricate features and cover more qualified minutiae points421

compared with spatial distance & orientation constrained422

method. That’s mainly because GIoU comprehensively con-423

siders the overlap area, shape, and positional relationship of424

bounding boxes in removing redundancy, adapts to various425

shape variations, reduces the likelihood of erroneous dele-426

tions, and better balances precision and recall, as shown the427

F1-value in Table 1. From the quantitative statistical results,428

we can also see that the precision is highly consistent with the429

location-coordinates and orientation-values errors, which are430

determined by the filter mechanisms, i.e., the combination431

method can significantly improve the precision and related432

two other indexes. In the combination approach, minutiae433

are extracted using dual filters and subsequently integrated434

via an iterative comparison process that retains candidates435

surpassing a defined credibility threshold, enhancing preci-436

sion over single-filter methods. Meanwhile, minutiae within437

the 0 to 𝑡ℎ𝑟𝑒𝑠ℎ distance range undergo deduplication, im-438

proving precision but potentially removing genuine minutiae439

and leading to decreased recall.440

Table 1: The overall quantitative comparison results on NISTSD 0406 and 0407
using different types of NMS algorithms. In the context, “LE” refers to “Location-
coordinates error”, “OE” refers to “Orientation-value error” and “Combination” rep-
resents the combination of distance & orientation and GIoU constraints.

Dataset NMS D&O GIoU Combination

0406

Precision 0.8954 0.8841 0.9178
Recall 0.8887 0.9054 0.8698

F1−value 0.8901 0.8927 0.8914
LE 1.8075 2.0884 1.7740
OE 0.0328 0.0350 0.0313

0407

Precision 0.8887 0.8757 0.9127
Recall 0.8922 0.9109 0.8731

F1−value 0.8884 0.8909 0.8907
LE 1.7781 2.0892 1.7414
OE 0.0332 0.0355 0.0315

Fig. 8: Sample results obtained using different NMS algorithms. The evaluation
metrics used are the F1 score, location-coordinates error (LE), and orientation value
error (OE), and the abbreviations retain their meanings throughout the paper.
The abbreviations “LOC” and “ORI” represent location and orientation, respectively.

4.2.2 Comparative Analysis of Neural Network Inference 441

and NMS Approaches 442

In this section, to comprehensively assess the efficacy of 443

each component within the proposed method, we conducted 444

an exhaustive evaluation of all possible module combi- 445

nations. First, we evaluate the similar minutiae detec- 446

tion methods including FingerNet [9] accompanied with 447

location-coordinate & orientation-inspired NMS, (referred 448

to as FingerNet+LO-NMS) and joint FingerNet and GIoU- 449

inspired post-processing (referred to as FingerNet+GIoU- 450

NMS). Apart from comparison with the baseline algorithm, 451

we also demonstrate the contribution of part of our GIoU- 452

oriented NMS mechanism by replacing it with conventional 453

location-coordinate and orientation-based mode, termed as 454

Ours+LO-NMS, while our complete method is correspond- 455

ing denoted as Ours+GIoU-NMS. Fig. 9 (right part) shows 456

two fingerprint samples (including their groundtruth minu- 457

tiae annotations obtained using the method described in 458

Sec. 2) and four corresponding detection results by the afore- 459
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Fig. 9: P-R curves for minutiae detection using various methods. Yellow: Finger-
Net with coordinate and orientation-based NMS. Red: FingerNet with GIoU-based
NMS. Blue: Proposed model with coordinate and orientation-based NMS. Magenta:
Proposed model with GIoU-based NMS. The right panel displays detection samples
from the proposed dataset under different processing combinations, with comparative
results at optimal thresholds.

mentioned combination methods. Each visual result set is460

divided into two images: the upper fingerprint image con-461

tains the actual or actual and detected minutiae for visual-462

ization, while the lower image is reserved for showing ac-463

tual minutiae or comparing actual minutiae against detected464

ones, displaying either solely the actual minutiae or both ac-465

tual and detected minutiae to enable a detailed comparative466

analysis. From it, we can see that FingerNet+LO-NMS is ca-467

pable of detecting main minutiae roughly, which also leaves468

out some minutiae or detects false minutiae. In comparison,469

Ours+LO-NMS can locate the minutiae more precisely in470

an unknown fingerprint image. A similar phenomenon also471

occurs in the comparison between FingerNet+GIoU-NMS472

and Ours+GIoU-NMS, which verifies the effectiveness of473

the developed end-to-end extractor module. The two groups474

of ablation experiments confirm that leveraging ResNet as475

the backbone network enhances the reliability and efficacy of476

presented detection method. This is mainly because residual477

connections add some value of their own, as well as allowing478

training of deeper networks, which may also make it easier479

to learn a good solution that generalizes well. Similarly, ab-480

lation studies demonstrate that incorporating the enhanced481

NMS module into our detection system yields an adaptive482

filtering effect and credible minutiae outcomes, with qual-483

itative and quantitative comparisons affirming the superior484

performance of the GIoU-based NMS approach.485

Fig. 9 (left part) presents the P-R curves, contrasting486

the detected minutiae against ground truth. The method as-487

sesses minutiae validity using orientation, location, and con-488

fidence score discrepancies. We observe that as the detection489

threshold varies, all the curves show a similar pattern. When490

the threshold is set higher, precision is higher while recall491

is lower. In this case, the curves of FingerNet+LO-NMS,492

FingerNet+GIoU-NMS, Ours+LO-NMS and Ours+GIoU-493

NMS mostly overlap. As the threshold decreases, recall in-494

creases while precision decreases. Notably, the performance495

ranking from high to low is Ours+GIoU-NMS, Ours+LO-496

NMS, FingerNet+GIoU-NMS, and FingerNet+LO-NMS, in-497

dicating that the neural network architecture plays a cru-498

cial role in improving detection accuracy. As the thresh-499

old decreases further, the curves of FingerNet+LO-NMS500

and Ours+LO-NMS as well as FingerNet+GIoU-NMS and501

Ours+GIoU-NMS overlap, indicating that a lower credibil-502

ity threshold leads to more false positive detections. Ad-503

ditionally, the improved NMS shows better adaptability in504

Fig. 10: Runtime performance comparison across NIST SD04 and FVC 2004 datasets.

removing false minutiae points. 505

4.3 Comparison with Other Methods 506

In this section, the overall performance of the proposed 507

method will be validated through comparisons with several 508

state-of-the-art methods. MINDTCT [30] will be included 509

in the comparison, since it is a widely used open source NIST 510

biometrics recognition software. Meanwhile, FingerNet [9] 511

is a pioneering method in minutiae extraction using CNNs. 512

It extracts fingerprint minutiae points by incorporating gen- 513

eral prior knowledge of fingerprints, making it essential for 514

comparison in this study. In addition, the robust minutiae 515

extractor approach in [10] joins in the comparison since it 516

carefully divides computing tasks among different neural 517

networks under a novel architecture, denoted as RME. More 518

specifically, RME uses a two-stage strategy for extracting the 519

minutiae: first CoarseNet is applied to obtain both the minu- 520

tiae score map and minutiae orientation results, and then 521

FineNet is used to conduct candidate minutiae locations re- 522

finement processes. The algorithm implementation can be 523

obtained from public project†. To ensure fairness in com- 524

parison, we retrain CoarseNet on the created dataset with its 525

original settings and also utilize the FineNet model released 526

in [10] as a classifier, as minutiae elements exhibit consistent 527

patterns across different fingerprints, allowing direct usage 528

of a pre-trained minutiae classification model. 529

Table 2 provides a comprehensive performance compar- 530

ison on the NIST SD04, including precision, recall, location- 531

coordinate error, and orientation error. The dataset consists 532

of two sub-datasets, NISTSD 0406 and NISTSD 0407, each 533

containing 258 images. The proposed method outperforms 534

state-of-the-art techniques [9, 10, 30] in terms of precision 535

and recall across both these sub-datasets. This is particu- 536

larly crucial in the domain of personal identity verification. 537

Furthermore, our method achieves the lowest orientation er- 538

rors, while the location errors are comparable to FingerNet 539

and significantly lower than the other two methods, demon- 540

strating our approach’s superiority. We also compare the 541

run-time of the proposed method with two similar DNN 542

methods [9, 10] in Fig. 10, using identical GPU parallel set- 543

tings. Based on this comparison, our method outperforms 544

RME and demonstrates significant speed improvements or 545

approximation gains compared to FingerNet. However, test- 546

ing on the NIST SD04 dataset alone is insufficient to validate 547

the generalizability of the proposed method, thus, two addi- 548

tional datasets, FVC 2004 DB1 and DB2 [23] are exploited 549

to evaluate our method, alongside a comparison with the 550

aforementioned methods. The labeling method in Sec. 2 551

† https://github.com/luannd/MinutiaeNet
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is applied to obtain the minutiae information as ground-552

truth. We conduct two statistical comparisons and show553

the overall test performance in Table. 2. Overall, the pro-554

posed method demonstrates superior performance in terms555

of minutiae extraction. Meanwhile, the speed of our method556

is also compared with two similar deep learning-based ap-557

proaches [9, 10] in the same GPU parallel setting on the558

two datasets, as shown in Fig. 10. The figure demonstrates559

that the processing time for the first set of images is longer560

than that for the second set, which can be attributed to the561

disparity in image sizes between the two groups.562

Fig. 11 provides a detailed comparative visual analy-563

sis of fingerprint samples from two benchmark databases,564

NIST SD4 and FVC 2004. The figure provides a side-by-565

side comparison of the raw fingerprint images with their566

corresponding detection results, showcasing the capabilities567

of four state-of-the-art detection algorithms. To facilitate568

a granular examination of the detection efficacy, the fig-569

ure also features enlarged views of select regions, capturing570

the intricacies of the detection outcomes. These intricate571

visualizations are corroborated by the quantitative metrics572

enumerated in Table 2, ensuring a holistic understanding of573

the detection performance. It is evident from the visualiza-574

tion that MINDTCT exhibits limited accuracy in minutiae575

extraction due to its weaker representation power and its dif-576

ficulty in dealing with blurry and noisy ridge areas. Tang et577

al.’s CNN-based method [9] shows improved performance578

but still suffers from false positives and missed detections579

due to the inadequate learning of distinctive minutiae fea-580

tures. The inadequate detection quality of such methods581

is further substantiated through experimental results on the582

NIST SD04 and FVC 2004 datasets. In contrast, the RME583

method [10], employing a two-stage deep learning approach,584

achieves impressive precision and recall. However, its per-585

formance in detecting complete minutiae is relatively poor,586

possibly due to less effective redundant point removal. The587

proposed method, benefiting from an advanced network ar-588

chitecture and GIoU-oriented NMS operation, demonstrates589

superior accuracy and completeness in the detection results590

of Fig. 11 and Table 2. Notably, the proposed method ex-591

hibits better detection performance, especially in areas with592

intricate details.593

4.4 Discussion594

In Sec. 4.3, we have compared our method with leading595

techniques, including MINDTCT, FingerNet and RME. The596

experimental results reported in the previous sections in-597

dicate that the proposed method surpasses the compared598

techniques in terms of precision and recall across the NIST599

SD04 dataset (including NISTSD 0406 and NISTSD 0407600

two sub-datasets). The effectiveness of the proposed method601

is crucial for applications demanding high accuracy, such as602

criminal investigation, access control systems and financial603

transactions. Furthermore, our approach achieves relatively604

lower orientation errors and shows comparable location er-605

rors against FingerNet, implying an overall superior perfor-606

mance in prediction. 607

We have also evaluated the run-time efficiency of the 608

proposed method against similar DNN-based methods. The 609

observed significant speed improvements over RME and 610

competitive performance compared to FingerNet demon- 611

strate the efficiency of our approach. We further validate the 612

generalizability on the FVC 2004 DB1 and DB2 datasets, 613

where our method consistently delivers robust experimental 614

outcomes. While on DB1 test set, the RME method [10] 615

achieves impressive result, because the patch based minutiae 616

classifier applied can compact embedding of minutiae fea- 617

tures, which is particularly suitable for scenes with concen- 618

trated ROI and fingerprint patterns. Our method also demon- 619

strates good performance on DB1, particularly in terms of 620

detection integrity, surpassing other methods. These results 621

affirm our method’s robustness across varied datasets. 622

The primary strength of the proposal lies in its ability to 623

detect minutiae with enhanced accuracy and completeness. 624

This is facilitated by the innovative network architecture and 625

the implementation of GIoU-oriented NMS operation. The 626

latter contributes to a better detection performance due to its 627

flexible adaptivity, particularly in challenging areas with in- 628

tricate details. The experimental results, supported by quan- 629

titative data and visual analysis, demonstrate the robustness 630

of our method across a range of fingerprint image qualities. 631

Despite achieving high precision and low orientation errors, 632

the need for wider dataset validation, refined location accu- 633

racy in noisy conditions, and improved run-time efficiency 634

for real-time application persists, pointing towards future 635

work in model optimization and lightweight design. 636

5. Conclusion 637

This paper proposes an effective automatic minutiae ex- 638

traction method. To address the lack of comprehensive 639

minutiae datasets, we propose a semi-automated annotation 640

algorithm based on explicit knowledge of morphology to 641

label fingerprint images. Our method effectively fills the 642

gap in the availability of minutiae datasets. We propose a 643

novel end-to-end detection model for AFIS that leverages the 644

ResNet structure and adopts the Highway networks strategy 645

to enhance the extraction of minutiae with higher accuracy. 646

Moreover, we incorporate the GIoU-oriented NMS filter to 647

adaptively remove pseudo minutiae points. Experimental 648

results on different datasets demonstrate that our method 649

achieves competitive performance compared to state-of-the- 650

art approaches for small-scale minutiae detection. Addi- 651

tionally, our method is versatile and applicable to diverse 652

types of minutiae, making it suitable for various real-world 653

fingerprint-related tasks. 654
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Appendix A: Introduction of Fingerprint Dataset 764

The dataset, named the Fingerprint Minutiae Dataset (FMD), 765

comprises the location coordinates and orientation values 766

of each minutia within every fingerprint image. For this 767

dataset, we select 2910 images from the publicly available 768

NIST SD04 dataset [22]. The NIST SD04 dataset is specif- 769

ically distributed for the fingerprint classification task and 770

contains 4000 8-bit encoded images. The selected images 771

are categorized into five classes (Arch, Left Loop, Right 772

Loop, Tented Arch, and Whorl) based on the pattern near the 773

singularity points. Each image has a size of 512×512, with 774

32 rows of pixel blanks at the bottom. The labeling algo- 775

rithm is implemented in MATLAB, and during the labeling 776

process, we manually review and correct any inaccuracies 777

in the minutiae annotations, involving at least two annota- 778

tors. The aligned minutiae points in minutiae dataset are 779

stable and representative, as they can be used to determine 780

the uniqueness of a fingerprint [18–20]. 781

The dataset comprises 2910 fingerprint images with a 782

total of 223,207 minutiae, averaging 76.7 minutiae points 783

per image. We conducted statistical analysis on the dis- 784

tribution of images and minutiae based on original classes 785

and gender divisions. The results are summarized in Ta- 786

ble A· 1. For visualization and analysis purposes, a boxplot 787

(Fig. A· 1) is generated, where the red line represents the me- 788

dian value. The boxplots demonstrate that the interquartile 789

ranges (IQRs) for minutiae counts, when considering vari- 790

ous Level-1 features and across genders, are primarily con- 791

centrated within the 60 to 90 interval. This distribution is 792

consistent with the established fingerprint quality standards, 793

which suggest an acceptable range of 40 to 100 [18]. The 794

distribution of minutiae points demonstrates a relatively bal- 795

anced distribution among different classes and genders, with 796

slightly higher median values for Whorl and Male images. 797

Additionally, a few outliers (e.g., minutiae Num ≥ 110.5 798

for Left Loop) are identified outside of the main intervals. 799

However, these minor deviations are not expected to signif- 800

icantly affect the labeling results, as the overall distribution 801

of minutiae points remains fairly consistent. Therefore, the 802

annotated minutiae dataset meets the requirements for sub- 803

sequent training applications in theory. 804
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Table A· 1: The statistics of minutiae points in different categories and genders

Tuple count Categories of level-1 feature classification Genders
Arch Left Loop Right Loop Tented Arch Whorl Male Female

Image 534 589 606 572 609 2410 500
Minutiae 38123 45299 46971 41572 51242 186551 36656

Table A· 2: The detailed attributes comparison of different datasets

Dataset Image Size Number of Minutiae
Avg Max Min

FVC2004DB1A 640 × 480 40.96 80 11
FVC2004DB3A 300 × 480 40.76 76 11

NISTSD0406 512 × 512 78.01 114 45
NISTSD0407 512 × 512 79.96 121 49

Fig. A· 1: Distribution of minutiae points across Level-1 Features and Genders.

Compared with the revoked NIST SD27, we use more805

fingerprint images for testing, which include 516 finger-806

prints and more than 258 fingerprints in the NIST SD27807

dataset. We compare our minutiae dataset with the FVC808

2004 dataset [23], a benchmark for fingerprint recognition.809

Table A· 2 shows the comparison results, including statisti-810

cal information on the FVC 2004 dataset obtained from [14].811

Compared to the standard fingerprint distribution of [40,812

100], the proposed dataset exhibits a more reasonable distri-813

bution of minutiae counts in each fingerprint.814

Appendix B: Comparative Analysis of Deep Learning815

Models for Minutiae Extraction816

To objectively evaluate the backbone network, we bench-817

marked ResNet and other prevalent architectures, includ-818

ing VGGNet [31], InceptionNet [32], XceptionNet [35],819

DenseNet [36], MobileNet [33], and EfficientNet [34], in820

our experiments. We conducted experiments on publicly821

available fingerprint datasets, including NIST SD04 and822

FVC 2004. For each model, fingerprint feature extraction823

modules were implemented based on their respective core824

ideas. To ensure fair comparison, consistent preprocessing825

and augmentation were performed on all models. In this826

study, we employ the aforementioned F1 Score, LE and OE827

as the evaluation metrics. Because the overall model size re-828

mains relatively consistent, the difference in inference time829

can be considered negligible. Therefore, we focus solely on830

presenting the F1 Score, LE, and OE in our experiments.831

The F1 Score, being the harmonic mean of precision and832

recall, offers a comprehensive representation of the overall833

performance of the detector. The mean localization error834

is a metric that quantifies the average Euclidean distance835

between the predicted and ground truth positions of finger- 836

print minutiae. The mean error of angle is a metric that 837

assesses the average angular deviation between the predicted 838

and actual orientations of fingerprint minutiae. 839

Table A· 3 manifests performance comparison of differ- 840

ent models on fingerprint minutiae extraction task. Fig. A· 2 841

shows two fingerprint image samples obtained from the 842

NISTSD 04 and FVC 2004 datasets, along with the cor- 843

responding minutiae detection results of several state-of- 844

the-art models. In each set, the upper image represents 845

the deep model’s detection results and the corresponding 846

ground truth, while the lower image compares the model’s 847

pure detections with the ground truth minutiae. We observe 848

that although VGGNet performs well in image classification 849

tasks, its performance in fingerprint minutiae extraction is 850

slightly inferior to ResNet, possibly due to its deep hierarchi- 851

cal structure not being suitable for capturing subtle detailed 852

features. The Inception model, with its multi-scale convo- 853

lutional kernel, is capable of capturing details at different 854

levels. The Xception model, utilizing depthwise separa- 855

ble convolution, improves parameter efficiency and helps 856

in learning finer features with limited data, achieving rela- 857

tively better performance on both datasets compared to In- 858

ceptionNet. However, their overall performance is not as 859

good as ResNet. DenseNet facilitates feature propagation 860

and detailed feature acquisition via feature reuse; neverthe- 861

less, as network depth grows, the potential for suboptimal 862

feature reuse may arise, possibly impeding generalization. 863

Moreover, deeper networks are usually harder to train due 864

to issues like noisy gradient updates, which can affect the 865

learning process. Therefore, models that perform well on 866

the NIST SD04 dataset may have poor generalization ability. 867

MobileNet is designed for mobile and embedded devices, 868

and its lightweight structure may be beneficial for deploy- 869

ing fingerprint recognition systems in resource-constrained 870

environments. Nonetheless, its accuracy on NIST SD04 is 871

relatively low. EfficientNet exhibits excellent capability in 872

extracting complex fingerprint features, which contributes 873

to the generation of well-generalized trained models. The 874

findings of our study reveal that while EfficientNet gener- 875

ally outperforms other models in generalization, ResNet has 876

been adopted as the baseline for our investigation. This 877

decision is informed by ResNet’s exemplary proficiency in 878

feature extraction, the ease with which it can be implemented 879

and deployed, and its demonstrated robustness in accurately 880

extracting a diverse range of fingerprint minutiae. 881
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Table A· 3: Comparative ablation study of backbone networks for fingerprint feature estimation: evaluating the impact of VGG, Inception, Xception, DenseNet, MobileNet,
EfficientNet, and ResNet on F1 Score, location-coordinates error (LE), and orientation-values error (OE).

Model
F1/LE/OE NISTSD FVC2004

0406 0407 DB1 DB2
VGGNet 0.8917/1.7958/0.0326 0.8907/1.7711/0.0331 0.3199/5.4717/0.1181 0.4620/3.8472/0.0746
Inception 0.8868/1.9996/0.0356 0.8884/1.9816/0.0354 0.1207/3.9802/0.0792 0.5403/3.7707/0.0674
Xception 0.8913/1.9612/0.0340 0.8966/1.9338/0.0330 0.5650/4.4865/0.0886 0.6054/3.7494/0.0672
DenseNet 0.8946/1.9749/0.0327 0.8979/1.9706/0.0332 0.1642/3.8622/0.0763 0.5035/3.8680/0.0630
MobileNet 0.8881/2.0644/0.0342 0.8873/2.0422/0.0341 0.4674/4.6422/0.0937 0.7799/3.6671/0.0665
EfficientNet 0.8821/2.3007/0.0355 0.8835/2.2956/0.0361 0.5002/5.1321/0.1011 0.7547/3.7846/0.0700

ResNet 0.9007/1.8708/0.0303 0.9021/1.8430/0.0298 0.4977/4.2298/0.0858 0.7239/3.6379/0.0714

Fig. A· 2: Evaluation of fingerprint minutiae detection on sample images from NIST SD4 and FVC 2004 datasets. In the conducted experiments, the employment of ResNet as the
backbone network demonstrates superior robustness in fingerprint minutiae detection across varied image inputs.
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