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PAPER
Analysis of superstable phenomena generated by piecewise-constant
chaotic spiking oscillator with state-dependent switching

Yusuke MATSUOKA†, Member

SUMMARY This paper analyzes the superstable periodic orbits (SS-
POs) generated by a piecewise-constant chaotic spiking oscillator. For this
oscillator, the oscillation and reset of states are repeated, which generates
chaos and SSPOs. A one-dimensional return map described by the dy-
namics is theoretically derived. This map has discontinuous points. A
theoretical analysis of border-collision bifurcations is performed to clarify
the regions of the SSPOs in the parameter space.
key words: Bifurcation phenomenon, Superstable periodic orbit, Border-
collision bifurcation, Chaotic spiking oscillator

1. Introduction

Chaotic phenomena have been studied for nonlinear prob-
lems and chaos and related bifurcations have been exten-
sively studied for various chaotic circuits [1]-[4]. Chaos
appears in encryption [5], communication using matched fil-
ters [6], and the control of permanent-magnet synchronous
generators [7]. The analysis of chaotic phenomena is thus
important for engineering applications.

This paper analyzes a piecewise-constant chaotic spik-
ing oscillator (PWCCSO), which is a chaotic circuit. The
dynamics of the PWCCSO considered in this paper are as
follows. Two state variables oscillate as time evolves. If
one state reaches a threshold level, a spike is output and
the state is instantaneously reset to a base level. The oscil-
lation and reset of states are repeated. It is assumed that
the base level depends on the value of another state (i.e.,
state-dependent switching is assumed). The PWCCSO pro-
duces chaos, periodic orbits, and superstable periodic orbits
(SSPOs). We confirm the basic phenomena using numer-
ical simulations and derive a one-dimensional (1D) return
map that describes the dynamics to analyze the generated
phenomena. The PWCCSO has a piecewise-constant vector
field and a piecewise-linear trajectory. Therefore, the de-
rived 1D return map can be described by explicit equations,
making the theoretical analysis relatively simple.

Based on the 1D return map, we consider the gener-
ated phenomena in the parameter space. In particular, the
1D return map generates SSPOs with various periods when
a certain parameter condition is assumed. Border-collision
bifurcations (BCBs) are generated for various parameter val-
ues because the 1D return map is piecewise-linear and has
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discontinuous points. We calculate the bifurcation parame-
ter values at which the BCBs occur and theoretically obtain
the regions of the SSPO periods in the parameter space. A
period-increment bifurcation (PIB) scenario is observed for
the PWCCSO. PIBs related to basic PIBs appear. We theo-
retically show that the bifurcations are alternately generated.

The novelty and significance of this paper are as follows.
The 1D return map of the PWCCSO is nonlinear and has
discontinuous points. It is known that non-smooth 1D return
maps produce different bifurcation phenomena than those
produced by smooth maps [8]-[11]. Tramontana et al. [12]
studied a piecewise-linear map with discontinuous points
derived from a financial market dynamics model. The maps
studied in [8]-[11] are mainly 1D maps consisting of two
lines. The shapes of the maps in [8] and [11] have two
straight lines and a discontinuity between them. The map
in [9] has two lines with negative and positive slopes. A
conditional analysis was conducted in [10] for various line
shapes. The present study derives a 1D map that comprises
four straight lines and mainly examines the dynamics of the
SSPO on three lines, which have a more intricate shape than
that of those in [8]-[10]. In [11], models consisting of three
lines were also analyzed, but the focus was on trajectories
consisting of two lines and it was stated that it is difficult to
fully analyze regions where the trajectory consists of three
lines.

As previously stated in [8], piecewise linear maps with
a discontinuity point can result in the coexistence (bistabil-
ity) of stable periodic orbits with different periods for the
same parameters and different initial values. This can make
the analysis challenging. The present study focuses on maps
with a flat segment that causes SSPOs and where the slopes
of the other segments are greater than 1. This ensures that
stable periodic orbits other than SSPOs do not occur and that
coexisting phenomena almost do not occur. Consequently,
it is only necessary to focus on the SSPO bifurcation and a
theoretical analysis can be carried out relatively easily. Fur-
thermore, the construction of a bifurcation theory for SSPOs,
such as the fold bifurcation of the superstable version, is also
beneficial. It is important to note that while the maps in
[8]-[11] are defined from mathematical models, the maps
in the present study can potentially be included in concrete
continuous dynamics models.

The PWCCSO can generate various SSPOs that are
superstable for initial states but very sensitive to parameter
change [13]. SSPOs appear in various applications, such as
some neuron models [14]-[15], a chaos control system [16],
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Fig. 1 Dynamics of PWCCSO. (a) Vector field and example of
trajectory in phase plane and (b) example of waveform 𝑥.

an impact system [17], a switching circuit [18], an electronic
oscillator [19], a model related to economics [20], and a
model for natural resource harvesting policies [21]. The
PWCCSO in [22] had a constant reset level and produced
only chaos and divergence. The PWCCSO in the present
study produces more varied phenomena. Ref. [23] derived
a basic circuit model and observed basic phenomena using
numerical simulations. However, they did not perform an
analysis of the BCBs and did not consider the SSPO periods.

2. Basic dynamics and typical phenomena

The dynamics and reset rule of the PWCCSO considered in
this paper are described by equation (1).{ 𝑑𝑥

𝑑𝜏 = sgn(𝑥 − 𝛾𝑦)
𝑑𝑦
𝑑𝜏 = sgn(𝑥)

for 𝑥(𝜏) < 1,

(𝑥(𝜏+), 𝑦(𝜏+)) = (𝛼𝛾𝑦(𝜏) + 𝛽, 𝑦(𝜏)) if 𝑥(𝜏) = 1,

(1)

where 𝜏 is dimensionless time and 𝑥(𝜏) and 𝑦(𝜏) are dimen-
sionless variables. It is assumed that 𝑧(𝜏) is the output of
the spike-train 𝑧(𝜏) = 1 (or 0) for 𝑥(𝜏) = 1 (or 𝑥(𝜏) ≠ 1).
𝛼, 𝛽, and 𝛾 are system parameters and real numbers. sgn is
the signum function:

sgn(𝑥) =


1 for 𝑥 > 0,
0 for 𝑥 = 0,
−1 for 𝑥 < 0.

(2)

The ranges of the three parameters are restricted for simplic-
ity as follows.

1 < 𝛾, 0 < 𝛼 < 1, 𝛽 < 1 − 𝛼. (3)

Fig. 1 (a) shows the vector field and an example of
the trajectory in the phase plane. The vector field is divided
into four regions (green arrows in the figure) bounded by
the two lines 𝑥 − 𝛾𝑦 = 0 and 𝑥 = 0. Therefore, for 1 < 𝛾,
the trajectory that starts an initial state divergently rotates
counter-clockwise around the origin. If the state 𝑥 reaches
the threshold 𝑥 = 1, 𝑥 is instantaneously reset to the base
line 𝑥 = 𝛼𝛾𝑦 + 𝛽. The system again follows the differential
equation and the two states divergently oscillate. 𝛼 and 𝛾
correspond to the slope of the base line and 𝛽 corresponds
to the 𝑥-intercept. 𝛾 also corresponds to the bounded line of
the vector field.

Fig. 2 Typical examples of attractors for 𝛾 = 4.7 and 𝛼 = 0.2. (a)
Chaotic attractor for 𝛽 = 0.12, (b) periodic attractor for 𝛽 = 0.18,
(c) chaotic attractor for 𝛽 = 0.26, and (d) periodic attractor for
𝛽 = 0.77.

Fig. 3 Definition of 1D return map. Examples of trajectories for
(a) 𝑓1 and 𝑓2 and (b) 𝑓3 and 𝑓4.

Fig. 1 (b) shows an example of the waveform of 𝑥.
Because the trajectory is piecewise-linear, the 1D return map
described below can be explicitly described and rigorously
analyzed. Fig. 2 shows typical attractors obtained from
numerical simulations. Figs. 2 (a) and (c) show chaotic
attractors and Figs. 2 (b) and (d) show periodic attractors.
The PWCCSO generates various phenomena.

3. Derivation of 1D return map and phenomena in pa-
rameter space

To analyze the generated phenomena, the 1D return map is
defined as follows. Let 𝑦𝑛 and 𝑦𝑛+1 be the 𝑛-th and 𝑛 + 1-
th points that the trajectory reaches, respectively, on the
negative 𝑦 axis. 1D return map 𝐹 can be described by
𝑦𝑛+1 = 𝐹 (𝑦𝑛) because 𝑦𝑛+1 is uniquely determined by 𝑦𝑛.

𝐹 :𝐷→𝐷, 𝑦𝑛+1=𝐹 (𝑦𝑛), 𝐷= {𝑥, 𝑦 |𝑥 = 0, 𝑦 < 0}. (4)
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Fig. 4 Typical 1D return maps for 𝛾 = 4.7 and 𝛼 = 0.2. (a)
Chaotic orbit for 𝛽 = 0.12, (b) periodic orbit for 𝛽 = 0.18, (c)
chaotic orbit for 𝛽 = 0.26, and (d) periodic orbit for 𝛽 = 0.77.
Parameters in these figures correspond to Fig. 2.

As shown in Fig. 3, 𝐹 (𝑦𝑛) is calculated as four piecewise
trajectories. The partial mappings are denoted 𝑓1 (𝑦𝑛) to
𝑓4 (𝑦𝑛). 𝑓1 (𝑦𝑛) corresponds to no reset of the trajectory and
𝑓2 (𝑦𝑛) to 𝑓4 (𝑦𝑛) correspond to resets of the trajectory. Using
elementary calculation, 𝐹 can be described using explicit
functions as follows.

𝑦𝑛+1= 𝐹 (𝑦𝑛)

𝐹 (𝑦𝑛)=


𝑓1 (𝑦𝑛) for 1

𝛾 − 1 ≤ 𝑦𝑛 < 0,
𝑓2 (𝑦𝑛) for 𝛽

𝛾 (1−𝛼) − 1 ≤ 𝑦𝑛 < 1
𝛾 − 1,

𝑓3 (𝑦𝑛) for− 𝛽
𝛾𝛼−1 ≤ 𝑦𝑛 < 𝛽

𝛾 (1−𝛼) − 1,
𝑓4 (𝑦𝑛) for 𝑦𝑛 < − 𝛽

𝛾𝛼 − 1,

(5)

where 𝑓1 (𝑦𝑛) = (1+𝛾)2

(1−𝛾)2 𝑦𝑛, 𝑓2 (𝑦𝑛) = (1+𝛾)
(1−𝛾) (1+𝛼𝛾)𝑦𝑛+

1+𝛾
1−𝛾 (1+

𝛼𝛾 + 𝛽), 𝑓3 (𝑦𝑛) = (1 − 𝛼𝛾)𝑦𝑛 + (1 − 𝛼𝛾 − 𝛽), and 𝑓4 (𝑦𝑛) =
(1 + 𝛼𝛾)𝑦𝑛 + (1 + 𝛼𝛾 + 𝛽).

For 𝑓3 (𝑦𝑛), the trajectory after a reset moves toward the
bottom left. The point at which it hypothetically touches
the 𝑦 axis is determined as 𝑦𝑛+1. This approach is applied
without loss of generality because the trajectory passes along
the same line and then reaches the same point on the 𝑦 axis,
which does not affect the analysis. Fig. 4 shows examples of
the 1D return map corresponding to the parameters in Fig.
2. We set initial state 𝑦1 to a negative value near 0 to avoid
the divergence of the trajectory. To examine the generated
phenomena, we give the following definitions.

Def. 1: A point 𝑦𝑝 ∈ 𝐼 is said to be a periodic point
with period 𝑘 if 𝑦𝑝 = 𝐹𝑘 (𝑦𝑝), 𝑦𝑝 ≠ 𝐹 𝑗 (𝑦𝑝), for 1 ≤ 𝑗 < 𝑘 ,
where 𝐹𝑘 denotes the 𝑘-fold composition of 𝐹 ( 𝑗 does not
exist for 𝑘 = 1) and 𝐼 is an invariant interval.

Fig. 5 Bifurcation diagram and Lyapunov exponent for 𝛾 = 4.7
and 𝛼 = 0.2.

Def. 2: Periodic points with period 𝑘 are re-
garded as unstable, stable, and superstable for initial states
|𝐷𝐹𝑘 (𝑦𝑝) | > 1, |𝐷𝐹𝑘 (𝑦𝑝) | < 1, and |𝐷𝐹𝑘 (𝑦𝑝) | = 0, re-
spectively, where 𝐷𝐹 ≡ 𝑑

𝑑𝑦𝑛
𝐹. An orbit of superstable peri-

odic points {𝐹 (𝑦𝑝), . . . , 𝐹𝑘 (𝑦𝑝)} is referred to as an SSPO
with period 𝑘 , abbreviated as k-SSPO.

Figs. 4 (a) and (c) ((b) and (d)) show chaotic (peri-
odic) orbits corresponding to chaotic (periodic) attractors.
It should be noted that the periods of a periodic orbit and
the number of points that touch the negative 𝑦 axis in the
periodic attractor may be different because of 𝑓3.

A bifurcation diagram and Lyapunov exponent 𝜆 for
various values of 𝛽 obtained from a numerical simulation
with 𝛾 = 4.7 and 𝛼 = 0.2 are shown in Fig. 5, where 𝜆 was
calculated as follows.

𝜆𝑁 = 1
𝑁

∑𝑁
𝑘=1 (𝑙𝑛|

𝑑𝐹 (𝑦𝑛)
𝑑𝑦𝑛

|), 𝜆 = lim𝑁→∞ 𝜆𝑁 , (6)

In general, the observed phenomenon tends to become more
periodic as 𝛽 increases. With an increase in 𝛽, the interval of
𝑓3 (𝑦𝑛) becomes wider and the orbit tends to become stable.

We now consider the phenomena in the parameter
space. As shown in Fig. 4 (b), let𝑌4 be the intersection point
of the line 𝑦𝑛 = 𝑦𝑛+1 and segment 𝑓4 (𝑦𝑛). 𝑌4 = − 1+𝛼𝛾+𝛽

𝛼𝛾

can be calculated. If 𝑌4 > 𝑓1 ( 1
𝛾 − 1) is satisfied, the orbit

may diverge even if the initial state is near 0. The value of
𝛽 = 𝛽𝑑𝑖𝑣 that satisfies 𝑌4 = 𝑓1 ( 1

𝛾 − 1) is given.

𝛽𝑑𝑖𝑣 = −𝛼( 1 + 3𝛾
1 − 𝛾

) − 1. (7)

Fig. 6 shows the line 𝛽𝑑𝑖𝑣 in 𝛽–𝛾 space. When 𝛽 > 𝛽𝑑𝑖𝑣 ,
there is an invariant interval 𝐼1 = [ 𝑓1 ( 1

𝛾 −1), 𝑓3 ( 𝛽
𝛾 (1−𝛼) −1)],

as shown in Fig. 4 (b), so the orbit does not diverge if the
initial state is taken in the range of 𝑌4 < 𝑦1 < 0. Hereafter,
we consider that the parameter condition 𝛽 > 𝛽𝑑𝑖𝑣 and initial
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Fig. 6 Distribution of Lyapunov exponent in parameter space
for 𝛼 = 0.2. Red and black regions show negative and positive
Lyapunov exponents, respectively. We performed numerical simu-
lations for parameter regions 𝛽 > 𝛽𝑑𝑖𝑣 and 𝛽 < 1 − 𝛼.

Fig. 7 Examples of 1D return map for 𝛾 = 4.7 and 𝛼 = 1
𝛾 . (a)

SSPO with a long period for 𝛽 = 0.09 and (b) 2-SSPO for 𝛽 = 0.52.

state 𝑌4 < 𝑦1 < 0 are satisfied. Fig. 6 shows the distribution
of the Lyapunov exponent in 𝛽–𝛾 space obtained from a
numerical simulation. The red and black regions respectively
show negative and positive Lyapunov exponents. In general,
when 𝛾 increases, the stable region narrows and the chaotic
region expands. Eventually, only the chaotic region remains.

4. Consideration of bifurcation phenomena and theo-
retical analysis of SSPOs

In this section, we focus on SSPOs and mainly consider the
bifurcation phenomena in the parameter space. Hereafter,
we set the parameter condition as follows.

𝛾𝛼 = 1. (8)

In this case, the equation of the 1D return map is given as

Fig. 8 Bifurcation diagram for 𝛾 = 4.7 and 𝛼 = 1
𝛾 . The al-

most orbit is the SSPO. SSPOs with 2, 3, 4, . . . periods appear as 𝛽
decreases.

Fig. 9 Distribution of SSPO periods in parameter space for 𝛼 =
1
𝛾 . The color shows the number of SSPO periods. It should be
noted that more than 15 periods are indicated by the color for 15
periods. Black lines indicate the bifurcation set of the BCB derived
from the theoretical results.

𝑦𝑛+1= 𝐹 (𝑦𝑛) =
𝑏2𝑦𝑛 for 1

𝛾 − 1 ≤ 𝑦𝑛 < 0,
2𝑏𝑦𝑛 + 𝑏(2 + 𝛽) for 𝛽

𝛾−1 − 1 ≤ 𝑦𝑛 < 1
𝛾 − 1,

−𝛽 for− 𝛽 − 1 ≤ 𝑦𝑛 < 𝛽
𝛾−1 − 1,

2𝑦𝑛 + 2 + 𝛽 for 𝑦𝑛 < −𝛽 − 1,

(9)

where 𝑏 ≡ 1+𝛾
1−𝛾 . By the condition given in equation (8), 𝑓3

becomes 𝑓3 (𝑦𝑛) = −𝛽 and 𝑦𝑛+1 does not depend on 𝑦𝑛. The
1D return map has a flat segment and generates SSPOs [13].

Fig. 7 shows examples of a typical map. The orbit be-
comes an SSPO if it starts from the flat segment and returns.
Although Fig. 7 (b) shows a 2-SSPO, the 1D return map
can generate an SSPO with a very long period for certain
parameter values, as shown in Fig. 7 (a). Fig. 8 shows a
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Fig. 10 1D return map related to BCB of SSPO with 𝑚 = 2 for
𝛾 = 4.7 and 𝛼 = 1

𝛾 . Shape of 1D return map and orbit near borders
(a) 𝛽𝑎2 for 𝛽 = 0.379, and (b) 𝛽𝑏2 for 𝛽 = 0.728.

bifurcation diagram. At first glance, the region around 𝛽 = 0
appears chaotic; however, a very complex SSPO with a long
period is generated. It should be noted that the Lyapunov
exponent for this SSPO is always 𝜆 = −∞.

Fig. 9 shows the distribution of the periods of the
SSPO with 𝛼 = 1

𝛾 in the parameter space obtained from a
numerical simulation. The color indicates the number of
periods. Note that more than 15 periods are indicated by
the color for 15 periods. In the figure, the black lines are
the theoretically calculated bifurcation set lines (see below
for details). In some regions, the variation of the number
of periods is very complex, whereas in other regions, the
numbers of periods are very similar. We can see that the
regions with 2, 3, 4, . . . periods are discretely distributed as 𝛽
decreases. This bifurcation scenario is called a PIB because
the number of periods increases by one∗. A PIB is a typical
bifurcation scenario in a nonlinear map with discontinuity
points. A PIB also appears in Fig. 8. As the number of
periods increases, the interval of the region becomes narrow.

Hereafter, we perform a theoretical analysis of some
regions of the SSPOs and clarify the bifurcation mechanism
related to the SSPOs.

4.1 Theoretical analysis of SSPOs related to 𝑓 (𝑚−1)
1 ( 𝑓3 (𝑦𝑛))

First, we consider SSPOs that consist of only the mappings
𝑓1 and 𝑓3. A 2-SSPO that consists of a cycle of 𝑓1 ( 𝑓3 (𝑦𝑛)),
shown in Fig. 10, is taken as an example. With a decrease in
𝛽 from that in Fig. 7 (b), the periodic point on the flat segment
moves to the right edge of its segment at 𝛽 ≈ 0.379, as shown
in Fig. 10 (a). With a further decrease in 𝛽, the periodic point
of the 2-SSPO on the flat segment disappears and the 2-SSPO
disappears after the bifurcation. This bifurcation is called
a BCB, which is a typical bifurcation generated by non-
smooth return maps. The bifurcation parameter at which
this BCB occurs satisfies 𝑓1 ◦ 𝑓3 (𝑦𝑛) = 𝑓1 (−𝛽) = 𝛽

𝛾−1 − 1,

∗In some papers, this bifurcation scenario, in which the number
of periods increases by an integer, is referred to as a period-adding
bifurcation. This paper follows Avrutin and Sushko [24] and calls
this scenario a PIB. It should be noted that another bifurcation
scenario is referred to as a period-adding bifurcation in [24]. See
[24] for details.

Fig. 11 Lines in BCB set in parameter space for 𝛼 = 1
𝛾 . Red,

purple, light blue, and yellow-green lines show 𝛽𝑎𝑚, 𝛽𝑏𝑚, 𝛽𝑐𝑚,
and 𝛽𝑑𝑚, respectively. Each line is shown up to 5.

where 𝑓1 ◦ 𝑓3 (𝑦𝑛) ≡ 𝑓1 ( 𝑓3 (𝑦𝑛)). After the above equation is
solved for 𝛽, the border (bifurcation parameter) 𝛽𝑎2 can be
calculated as

𝛽 = 𝛽𝑎2 =
𝛾 − 1

1 + 𝑏2 (𝛾 − 1)
. (10)

The line 𝛽𝑎2 is shown in Fig. 11. Next, as 𝛽 increases
for the 2-SSPO shown in Fig. 7 (b), the periodic point on
the flat segment moves to the left edge of its segment near
𝛽 ≈ 0.728, as shown in Fig. 10 (b). With a further increase
in 𝛽, the periodic point of the 2-SSPO on the flat segment
disappears. This is a BCB. The 2-SSPO disappears after the
bifurcation. Since the bifurcation parameter at which this
BCB occurs satisfies 𝑓1 ◦ 𝑓3 (𝑦𝑛) = −𝛽 − 1, after solving this
equation for 𝛽, we obtain the border 𝛽𝑏2.

𝛽 = 𝛽𝑏2 =
1

𝑏2 − 1
. (11)

The line 𝛽𝑏2 is shown in Fig. 11. At this bifurcation
parameter, the superstable and unstable fixed points on the
two-fold composition map 𝐹2 (the periodic point with period
2) collide and disappear. This bifurcation is considered to
be a superstable version of a fold BCB [20]. After the
bifurcation, the orbit shows complex behavior and the period
of the orbit shows a very complex change as the shape of the
map determines the global behavior of the orbit. The orbits
touch the segment 𝑓4 and a complex distribution of the period
is obtained for various parameter values.

Next, we consider a 3-SSPO that consists of a cycle of
𝑓 2
1 ( 𝑓3 (𝑦𝑛)), as shown in Fig. 12 (a). With a decrease in
𝛽, the periodic point on the flat segment moves to the right
edge of its segment and the BCB for the 3-SSPO occurs near
𝛽 ≈ 0.25, as shown in Fig. 12 (b). Since the bifurcation
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Fig. 12 1D return map related to BCB of SSPO with 𝑚 = 3. (a)
SSPO with 𝑚 = 3 for 𝛽 = 0.31. Orbits near borders (b) 𝛽𝑎3 for
𝛽 = 0.25, (c) 𝛽𝑏3 for 𝛽 = 0.351, and (d) 𝛽𝑐3 for 𝛽 = 0.568. 𝛾 = 6.0
and 𝛼 = 1

𝛾 for (a)–(c). 𝛾 = 9.0 and 𝛼 = 1
𝛾 for (d).

parameter at which this BCB occurs satisfies 𝑓 2
1 ◦ 𝑓3 (𝑦𝑛) =

𝑓 2
1 (−𝛽) =

𝛽
𝛾−1−1, after solving this equation for 𝛽, we obtain

the border 𝛽𝑎3.

𝛽 = 𝛽𝑎3 =
𝛾 − 1

1 + 𝑏4 (𝛾 − 1)
. (12)

With an increase in 𝛽 from that in Fig. 12 (a), the periodic
point on the flat segment moves to the left edge of its segment
and a fold BCB occurs near 𝛽 ≈ 0.351, as shown in Fig. 12
(c). Since the bifurcation parameter at which this BCB
occurs satisfies 𝑓 2

1 (−𝛽) = −𝛽− 1, after solving this equation
for 𝛽, we obtain the border 𝛽𝑏3.

𝛽 = 𝛽𝑏3 =
1

𝑏4 − 1
. (13)

This BCB is a fold BCB; therefore, the 3-SSPO disappears
and the period has a complex distribution after the bifurcation
(see Figs. 9 and 11).

However, different values of 𝛾 lead to different bifur-
cation phenomena. Fig. 12 (d) shows the 1D return map
with 𝛾 = 9.0 when 𝛽 increases for the 3-SSPO. In this case,
before the periodic point on the flat segment moves to the
left edge of its segment, one periodic point moves to the left
edge of the segment 𝑓1 near 𝛽 ≈ 0.568. With a further in-
crease in 𝛽, a BCB occurs and the 3-SSPO disappears. Since
the bifurcation parameter at which this BCB occurs satisfies
𝑓1 ◦ 𝑓3 (𝑦𝑛) = 1

𝛾 − 1, after solving this equation for 𝛽, we
obtain the border 𝛽𝑐3.

𝛽 = 𝛽𝑐3 =
𝛾 − 1
𝛾𝑏2 . (14)

The period of the SSPO generated after this bifurcation is

discussed in Subsection 4.3.
It should be noted that other bifurcations, such as flip

and degenerate-flip bifurcations, do not occur because the
Lyapunov exponent of the SSPO is always−∞. Furthermore,
the slope of the non-flat segment is greater than 1, so there
are no stable periodic orbits other than the SSPO. Since the
SSPO is the only orbit that starts from segment 𝑓3 and returns,
coexisting phenomena almost do not occur. We thus focus
on the BCBs of SSPOs. For the 3-SSPO in Fig. 12, BCBs
occur either because the periodic point on the flat segment
moves to either end or the leftmost periodic point on the
segment 𝑓1 moves to the left end of its segment, as described
above. Therefore, parameter region 𝑠3, which generates a
3-SSPO that consists of a cycle of 𝑓 2

1 ( 𝑓3 (𝑦𝑛)), is divided by
the borders of the above BCBs (𝛽𝑎3, 𝛽𝑏3, and 𝛽𝑐3). 𝑠3 is
described as follows.

𝑠3 = {𝛾, 𝛽 |𝛽𝑎3 < 𝛽 < min{𝛽𝑏3, 𝛽𝑐3}}. (15)

Fig. 11 shows the region 𝑠3 and the borders 𝛽𝑎3, 𝛽𝑏3, and
𝛽𝑐3. We can see that the region divided by the three BCBs
(and line 𝛽𝑑𝑖𝑣) generates a 3-SSPO, as shown in Figs. 9 and
11.

Based on these considerations, the region for an 𝑚-
SSPO that consists of a cycle of 𝑓 𝑚−1

1 ( 𝑓3 (𝑦𝑛)) can be simi-
larly calculated.

Thereom1: Let 𝑠𝑚 in the parameter space be the re-
gion that generates an 𝑚-SSPO that consists of a cycle of
𝑓 𝑚−1
1 ( 𝑓3 (𝑦𝑛)). 𝑠𝑚 is described as follows.

𝑠𝑚 = {𝛾, 𝛽 |𝛽𝑎𝑚 < 𝛽 < min{𝛽𝑏𝑚, 𝛽𝑐𝑚}},
𝛽𝑎𝑚 = 𝛾−1

1+𝑏2(𝑚−1) (𝛾−1) , 𝛽𝑏𝑚 = 1
𝑏2(𝑚−1)−1 , 𝛽𝑐𝑚 = 𝛾−1

𝛾𝑏2(𝑚−2) .

(16)

Proof: In addition to the 3-SSPO, three BCBs are
considered. The first BCB is the border 𝛽𝑎𝑚. 𝑓 𝑚−1

1 ◦ 𝑓3 (𝑦𝑛) =
𝑓 𝑚−1
1 (−𝛽) = 𝛽

𝛾−1 − 1 is satisfied for 𝛽𝑎𝑚. −𝑏2(𝑚−1) 𝛽 =
𝛽

𝛾−1 − 1 is true and 𝛽 = 𝛽𝑎𝑚 = 𝛾−1
𝑏2(𝑚−1) (𝛾−1)+1 is given. The

second BCB is the border 𝛽𝑏𝑚. 𝑓 𝑚−1
1 ◦ 𝑓3 (𝑦𝑛) = 𝑓 𝑚−1

1 (−𝛽) =
−𝛽 − 1 is satisfied for 𝛽𝑏𝑚. −𝑏2(𝑚−1) 𝛽 = −𝛽 − 1 is true and
𝛽 = 𝛽𝑏𝑚 = 1

𝑏2(𝑚−1)−1 is given. The third BCB is the border
𝛽𝑐𝑚. 𝑓 𝑚−2

1 ◦ 𝑓3 (𝑦𝑛) = 𝑓 𝑚−2
1 (−𝛽) = 1

𝛾 −1 is satisfied for 𝛽𝑐𝑚.
−𝑏2(𝑚−2) 𝛽 = 1

𝛾 − 1 is true and 𝛽 = 𝛽𝑐𝑚 = 𝛾−1
𝛾𝑏2(𝑚−2) is given.

However, in this case, for a 2-SSPO, 𝛽𝑐2 = 𝛾−1
𝛾𝑏0 = 𝛾−1

𝛾 = 1−𝛼
is satisfied. This is the same parameter condition as the
premise condition given in equation (3) □ .

Fig. 11 shows each border up to 5 and region 𝑠𝑚 of the
SSPO. In the figure, 𝛽𝑎𝑚, 𝛽𝑏𝑚, and 𝛽𝑐𝑚 are shown as red,
purple, and light blue lines, respectively. We can see that
each region with 𝑚 is divided by the corresponding borders.
The BCB on 𝛽𝑏𝑚 is a fold BCB with superstability. Complex
bifurcation and distribution of the periods are generated.

𝛽𝑎𝑚, 𝛽𝑏𝑚, and 𝛽𝑐𝑚 for each 𝑚 all accumulate to the
point (0, 1) in the parameter space. This accumulation (or
birth) of the curved line of the bifurcation set at a certain point
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Fig. 13 1D return map related to BCB of SSPO with 𝑀 = 5.
Orbits near borders (a) 𝛽𝑎3 for 𝛽 = 0.39, (b) 𝛽𝑎3 for 𝛽 = 0.389, (c)
𝛽𝑐4 for 𝛽 = 0.365, and (d) 𝛽𝑑3 for 𝛽 = 0.233. 𝛾 = 9.0 and 𝛼 = 1

𝛾

for (a)–(c). 𝛾 = 6.0 and 𝛼 = 1
𝛾 for (d).

Fig. 14 Mechanism of generation of period 𝑀 = 𝑚 + 𝑚 − 1. (a)
Behavior of orbits 𝑓1 ◦ 𝑓3 (𝑦𝑛) and 𝑓2 ( 𝛽

𝛾−1 − 1) and (b) example of
1D return map after bifurcation from period 𝑚 to period 𝑀 .

in the parameter space is often observed in maps where BCBs
occur. In the map given in equation (9), we consider that
infinite lines of the BCB set are created at the point (0, 1).
This bifurcation mechanism is called Big Bang bifurcation
by Gardini et al. [10].

4.2 Consideration of SSPO related to BCB of 𝛽𝑎𝑚

When 𝛽 decreases and exceeds the border 𝛽𝑎𝑚, a bifurcation
occurs, resulting in the disappearance of an 𝑚-SSPO. Refer-
ring to Fig. 9 and Fig. 11, it can be observed that following
the bifurcation, the system transitions into a narrow region
with a constant period. For example, from the region 𝑚 = 2,
crossing the border 𝛽𝑎2, this system enters the region of pe-

riod 3, and from the region 𝑚 = 3, crossing the boundary
𝛽𝑎3, it enters the region of period 5. Consequently, when
the system crosses the border 𝛽𝑎𝑚 from the region of period
𝑚, it can be deduced that a period of 𝑀 = 𝑚 + 𝑚 − 1 has
occurred. This subsection analyzes the bifurcations related
to 𝛽𝑎𝑚 and the mechanism by which M-SSPOs occur.

We consider a decrease in 𝛽 in the region 𝑠𝑚. The case
with𝑚 = 3 is taken as an example. With a decrease in 𝛽 from
that in Fig. 13 (a), the BCB occurs at 𝛽 = 𝛽𝑎3 ≈ 0.38965.
After the bifurcation, the orbit becomes a 5-SSPO (see Fig.
13 (b)). In this case, a pair of periodic points appear close
to each other, except for periodic point 𝑦𝑛 = −𝛽. The reason
for this is given below.

As shown in Fig. 14 (a), the 1D return map given by
equation (9) always satisfies 𝑓1◦ 𝑓3 (𝑦𝑛) = 𝑓1 (−𝛽) = 𝑓2 ( 𝛽

𝛾−1−
1). When the BCB is generated at 𝛽 = 𝛽𝑎3, there is a periodic
point on the left edge of the segment 𝑓2. As 𝛽 decreases, the
periodic point moves to the right on the segment 𝑓2 and a new
periodic point is created and leaves from the periodic point at
𝑓1 (−𝛽). This is a bifurcation mechanism. Therefore, there
are five periodic points after the bifurcation when𝑚 = 3. The
generated periodic point 𝑦𝑝 that split from 𝑦𝑛 = 𝑓1 (−𝛽) in
Fig. 14 (b) satisfies 𝑦𝑝 < 𝑓1 (−𝛽) due to the shape of the 1D
return map. Because of this, 𝑓1 (𝑦𝑝) is within the flat segment
𝑓3 and an SSPO with a different period is generated. For
𝑓1 (𝑦𝑝) to be within the flat segment 𝑓3, a sufficient condition
is that 𝑓1 ◦ 𝑓2 ( 𝛽

𝛾−1 − 1) = 𝑓 2
1 (−𝛽) = −𝑏4𝛽 < 𝛽

𝛾−1 − 1
is satisfied for the orbit starting from the left edge of the
segment 𝑓2. However, this is the same condition as that for
a BCB with border 𝛽 = 𝛽𝑎3 and is automatically satisfied
after bifurcation. 5-SSPOs are generated from the SSPO
with 𝑚 = 3 by the bifurcation via the above mechanism.

The above discussion applies to regions with period 𝑚.
That is, an SSPO with 𝑚 generates bifurcation phenomena
by BCBs with 𝛽 = 𝛽𝑎𝑚 and new periodic points are created
from the periodic points (except for 𝑦𝑛 = −𝛽). As a result,
an SSPO with period 𝑀 = 𝑚 + 𝑚 − 1 is generated after the
bifurcation. A sufficient condition is that 𝑓 𝑚−2

1 ◦ 𝑓2 ( 𝛽
𝛾−1 −

1) = −𝑏2(𝑚−1) 𝛽 < 𝛽
𝛾−1 − 1 is satisfied; however, this is the

same condition as that for a BCB with border 𝛽 = 𝛽𝑎𝑚 and
is automatically satisfied after bifurcation. Therefore, if 𝛽
decreases in region 𝑠𝑚, BCBs are generated at 𝛽 = 𝛽𝑎𝑚 and
an SSPO with period 𝑀 = 𝑚 +𝑚−1 is generated. As shown
in Fig. 9, SSPOs with periods 𝑀 = 3, 5, 7 are generated
from the SSPOs with periods 𝑚 = 2, 3, 4 when 𝛽 exceeds
the border 𝛽𝑎𝑚. The regions of SSPOs with period 𝑀 are
narrow compared with those of the SSPOs with period 𝑚.

4.3 Theoretical analysis of SSPO with period 𝑀

With a further decrease in 𝛽 in the region of the SSPO with
period 𝑀 , two types of BCB can be generated, depending on
the parameters. The case with 𝑀 = 5 is taken as an example.

As shown in Fig. 13 (c), the first BCB is generated
when the periodic point moves to the right and reaches the
right edge of the segment 𝑓2. This bifurcation parameter
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satisfies 𝑓 2
1 ◦ 𝑓3 (𝑦𝑛) = 1

𝛾 − 1. After this equation is solved
for 𝛽, 𝛽 = 𝛾−1

𝛾𝑏4 can be calculated; however, this is the same
𝛽𝑐4 that is a right boundary in the region of an SSPO with
𝑚 = 4. After this bifurcation, the 5-SSPO disappears.

As shown in Fig. 13 (d), another type of BCB is gener-
ated for other parameter values. A second BCB is generated
when the periodic point on flat segment 𝑓3 reaches the left
edge of its segment. This bifurcation parameter satisfies
𝑓1 ◦ 𝑓2 ◦ 𝑓 2

1 ◦ 𝑓3 (𝑦𝑛) = −𝛽 − 1. After this equation is solved
for 𝛽, the following can be calculated.

𝛽 = 𝛽𝑑3 =
2𝑏3 + 1

2𝑏7 − 𝑏3 − 1
. (17)

After the bifurcation, the periodic points with five periods
and the 5-SSPO disappear. The type of bifurcation that is
generated depends on the value of the parameter 𝛾.

Let 𝑆5 be the parameter region of an SSPO with period
𝑀 = 5. 𝑆5 is divided by the borders of the above BCBs and
the line 𝛽𝑎3. It can be described as follows.

𝑆5 = {𝛾, 𝛽 |max{𝛽𝑑3, 𝛽𝑐4} < 𝛽 < 𝛽𝑎3}. (18)

Region 𝑆5 and its borders are shown in Fig. 11. Whether
the left border is the line 𝛽𝑑3 (shown in yellow-green) or the
line 𝛽𝑐4 (shown in light blue) depends on the value of 𝛾.

Based on the above description, the borders of the SSPO
with period 𝑀 that correspond to basic period 𝑚 can be
obtained.

Thereom2: Let 𝑆𝑀 be the parameter region that gener-
ates an SSPO with period 𝑀 . 𝑆𝑀 is described as follows.

𝑆𝑀 = {𝛾, 𝛽 |max{𝛽𝑑𝑚, 𝛽𝑐 (𝑚+1) } < 𝛽 < 𝛽𝑎𝑚},
𝛽𝑑𝑚 = 2𝑏2𝑚−3+1

2𝑏4𝑚−5−𝑏2𝑚−3−1 .
(19)

Proof: We consider that two BCBs can be generated as 𝛽
decreases for 𝑀 = 5. The first BCB is generated when
the periodic point reaches the right edge of the segment
𝑓2. This bifurcation parameter satisfies 𝑓 𝑚−1

1 ◦ 𝑓3 (𝑦𝑛) =
𝑓 𝑚−1
1 (−𝛽) = 1

𝛾 − 1. Since 𝑏2(𝑚−1) (−𝛽) = 1
𝛾 − 1 is satisfied,

𝛽 = 𝛾−1
𝛾𝑏2(𝑚−1) can be calculated. However, this result is the

same as that for 𝛽𝑐 (𝑚+1) . The second BCB is generated
when the periodic point on flat segment 𝑓3 reaches the left
edge of its segment. This bifurcation parameter satisfies
𝑓 𝑚−2
1 ◦ 𝑓2 ◦ 𝑓 𝑚−1

1 ◦ 𝑓3 (𝑦𝑛) = −𝛽 − 1. By this equation,
2𝑏4𝑚−5 (−𝛽) + 𝑏2𝑚−3 (2 + 𝛽) = −𝛽 − 1 is satisfied. After this
equation is solved for 𝛽, 𝛽 = 2𝑏2𝑚−3+1

2𝑏4𝑚−5−𝑏2𝑚−3−1 is obtained. The
right border of the region is 𝛽𝑎𝑚, as discussed in Subsection
4.2 □.

The region 𝑆𝑀 and its borders are shown in Fig. 11.
In this figure, the colors of the SSPOs with periods 𝑚 = 3
and 𝑀 = 3 are the same and the regions unite. However, the
composition of mapping 𝑓𝑛 is different, and the regions are
actually divided by the borders of the BCBs.

4.4 Parameter regions where mapping 𝑓4 is ignored

As described in Subsections 4.1 and 4.2, a complex change

Fig. 15 Bifurcation diagram for 𝛾 = 14.0 and 𝛼 = 1
𝛾 . Numbers

at top of figure indicate the numbers of SSPO periods.

in the period is generated if the orbits touch the segment 𝑓4
through the BCB. The distribution of the period is compar-
atively simple if the orbits do not touch the segment 𝑓4. We
here consider the case where an invariant interval 𝐼2 does
not include the segment 𝑓4. The following inequality is de-
rived when specific invariant interval 𝐼2 does not include the
segment 𝑓4, because −𝛽 − 1 < 𝑏2 ( 1

𝛾 − 1) is satisfied from
𝐼2 = [ 𝑓1 ( 1

𝛾 − 1),−𝛽].

𝛽 > −(𝑏2 ( 1
𝛾
− 1) + 1). (20)

The border line 𝛽 = −(𝑏2 ( 1
𝛾 − 1) + 1) (shown in yellow)

is shown in Fig. 11. The condition given in equation (20)
is satisfied for the region above this border. This region
has bifurcations of only BCBs related to 𝛽𝑎𝑚 and 𝛽𝑐𝑚 and
only SSPOs with basic period 𝑚 and period 𝑀 derived from
them. With a decrease in 𝛽, each PIB scenario for 𝑚 =
2, 3, 4 . . . and 𝑀 = 𝑚 + 𝑚 − 1 = 3, 5, 7 . . . occurs. It can
be seen that they are alternately generated by the BCBs in
Fig. 11. If 𝛽 decreases from 𝛽 = 1 − 𝛼, SSPOs with
2, 3, 3, 5, 4, 7, . . . periods are generated in order. Fig. 15
shows a parameter bifurcation diagram for 𝛾 = 14.0. A PIB
occurs as 𝛽 decreases. In the region of 𝛽 < −(𝑏2 ( 1

𝛾 −1) +1),
the SSPO periods show a complex change. Although the
interval of the PIB scenario for 𝑚 becomes narrower, the
PIB remains.

5. Conclusions

This paper studied a PWCCSO with state-dependent switch-
ing. The PWCCSO generated various periodic orbits, chaos,
and SSPOs. A 1D return map and an explicit equation
were derived to examine phenomena related to SSPOs. The
bifurcation phenomena were theoretically analyzed. We cal-
culated the parameter conditions at which various BCBs are
generated and clarified the region of SSPOs in the param-
eter space. We showed that there are two PIB scenarios in
the parameter space and that they are alternately generated
in a certain region. Future studies will consider the bifur-
cation analysis of a wider parameter space for chaotic and
periodic phenomena, the theoretical analysis of the region
that generates a complex distribution of SSPO periods, and
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the analysis of an oscillator model with a reset curve and its
relevance to the neuron model.
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