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SUMMARY This paper proposes a novel approach for tunnel 
crack identification, employing local segmentation and global fusion 
detection. Initially, a local segmentation network is constructed using 
weights from an encoding layer pre-trained on numerous non-tunnel 
cracks, with only a limited number of tunnel crack samples. The input 
image is divided, and the local segmentation network performs pixel 
segmentation on these sub-images, with the sub-results stitched 
together to ensure accurate identification of all suspicious crack pixels. 
Subsequently, a global fusion detector is introduced, comprising two 
sub-models: Sub-model 1 extracts total crack targets within the stitched 
results, while Sub-model 2 detects possible false alarms from regular-
shaped areas. The results from both sub-models are combined to 
effectively reduce the false alarm rate and ensure accurate segmentation 
results of cracks. Experimental findings on actual tunnel images 
demonstrate that the "segmentation before localization" method 
proposed in this paper achieves superior recognition accuracy and IOU 
ratio compared to the Unet3+, DeeplabV3+, and "localization before 
segmentation" Mask-RCNN algorithms. Specifically, the proposed 
method yields an accuracy improvement of 3.81% over the Unet3+ 
network, 2.71% over the DeeplabV3++ network, and 1.93% over the 
Mask-RCNN network. Moreover, noise interference from bolt repair 
areas is effectively mitigated, enhancing the method's engineering 
applicability. 

key words: crack identification; local segmentation; global fusion 
detection; transfer learning. 

1. Introduction 

Tunnel surface cracks are characterized by weak, 
linear features with low signal-to-noise ratio, present 
within the complex tunnel environment[1]. Studies show 
that traditional image processing methods[2]-[6] face 
challenges in achieving accurate crack identification 
results. 

 With the rapid development of computational 
methods, deep learning networks[7]-[9] have been 
extensively employed in crack segmentation due to their 
robust feature extraction capabilities. For instance, Wang 
al. [10] proposed the integration of a dilated convolution 
module into the Unet++ network to significantly enhance 
crack segmentation performance. Wu al.[11] introduced a 
crack detection method based on enhanced Retinex and 

VGG19. Wang al.[12] utilized SE-ResNet50 to develop 
the SU-ResNet++ algorithm for tunnel disease detection. 
Sohaib al.[13] employed multiple quantized YOLOv8 
models for crack detection. Li al.[14] enhanced the 
capability of the YOLOv5 network to identify cracks 
using Crack Conv and Adapt-weight Down Sample. 
Zhao al.[15] modified the backbone network and 
incorporated a cascade structure for the R-CNN part to 
improve the accuracy of crack identification. The 
conducted experiments demonstrate that although these 
algorithms improve single-network crack recognition 
accuracy, background noises often appear in the final 
recognition result. 

 To reduce the false alarm rate and enhance the 
efficiency of crack identification, Yang al.[16] suggested 
utilizing the YOLO-SAMT network for localizing crack 
areas, followed by crack extraction using an enhanced k-
means clustering algorithm. Xie al.[17] proposed 
employing the Faster R-CNN network initially to 
identify potential crack regions, followed by utilizing the 
U-Net network to extract the crack pixels. Tong al.[18]  
introduced a PSP-YOLO crack detection and 
segmentation algorithm based on YOLO V5 and PSPnet. 
Fan al.[19] developed an activation function called MeLU 
and employed a distinctive calculation method to 
improve the Mask-RCNN network's ability to locate and 
identify cracks. Yu al.[20] integrated YOLOv5 and U-
Net3+ networks and significantly enhanced the crack 
identification speed. 

 Compared to a single network model, these five 
methods adopt a "first detect the crack regions and then 
segment the crack pixels" framework. This approach 
exhibits high computational efficiency as it only 
performs pixel segmentation within the crack candidate 
regions. However, due to cracks occupying only a few 
pixels and resulting in a low signal-to-noise ratio within 
the complex tunnel environment, this framework is prone 
to missed detections during the crack region detection 
stage. Moreover, the aforementioned methods solely 
concentrate on crack pixel segmentation, without 
effectively identifying the regions where cracks originate. 
Consequently, numerous cracks from certain regions, 
such as bolt-hole repairs, often appear in the 
segmentation results. Furthermore, crack identification 
results obtained in this method are not effectively 
utilized for evaluating tunnel performance. To mitigate 
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these issues, the present study proposes a novel 
framework, as depicted in Figure 1. Unlike conventional 
crack recognition models, the proposed model adopts a 
"local segmentation first, followed by global fusion 
detection" framework. 

 
Figure. 1 Schematic diagram of the presented tunnel crack 

detecting framework. (a) The local segmentation module (b) The global 
fusion detection module 

The main work of this paper involves the following: 
Firstly, a local segmentation module was employed to 
segment the original image. Subsequently, the 
recognition results were merged, ensuring the 
identification of all suspicious crack targets to the fullest 
extent and reducing the missed detection rate. Secondly, 
a two-detection framework was developed using the 
YOLO network. The first sub-model identifies regions 
corresponding to the same crack target in the 
segmentation results, while the second sub-model detects 
the bolt repair area. By merging these two recognition 
results, noise interference originating from bolt repairs is 
mitigated. 

2. Proposed method 

2.1 Local crack pixel segmentation model 

In the presence of disturbances such as tunnel joints 
and water stains, manually labeling tunnel crack samples, 
which often have widths of only a few pixels, is 
challenging and time-consuming. Inspired by the concept 
of transfer learning, this article suggests constructing a 
non-tunnel crack dataset for the development of a tunnel 
crack segmentation model[21]. The details of this 
approach are outlined as follows: 

Firstly, more than ten thousand non-tunnel crack 
images from pavement and bridge sources can be easily 
acquired by resizing and overlapping clipping[22]-[25]. 
These images are then set as dataset A. Subsequently, the 
collected tunnel original images (each with a size of 
4096×4096) are segmented without repetition, resulting 
in 100 tunnel crack images of size 512×512, which are 
set as dataset B. For more effective training of the tunnel 
crack segmentation model with ample labeled crack 
samples, this paper selected non-tunnel cracks from 
dataset A that bear a high similarity to the images in 

dataset B. During this selection process, the image 
features of crack samples are extracted using a feature 
encoding network pre-trained on the ImageNet dataset[26] 
and evaluated using the cosine similarity equation as 
follows: 

( )
a b

f a,b
a b

•=
•   

     

          (1) 

where 'a' and 'b' denote the feature vectors of a non-
tunnel crack image and a tunnel crack image, 
respectively. By employing Eq. (1), the similarities 
between a non-tunnel crack image and all images from 
dataset B can be calculated, and their average value is 
denoted as 'f1'. If 'f1' surpasses the specified threshold 
'T1' (where 'T1' is set to 0.7), this non-tunnel crack is 
selected as part of dataset C, which will be utilized for 
pre-training the tunnel crack segmentation model. 

Secondly, utilizing the abundance of non-tunnel 
cracks, the Unet++ network[27] is employed to train the 
crack recognition model, and the resulting encoding 
layer parameters G are preserved for the tunnel crack 
segmentation model. The final training equation is as 
follows: 

( ) ( )( ), , PW M B G M B T C= =     (2) 

Where, Tp denotes the pre-training with non-tunnel 
cracks to obtain the parameter G of the Unet++ coding 
layer. M represents the operation of efficiently acquiring 
the final parameters W of the tunnel crack identification 
network through synchronous fine-tuning, which utilizes 
the pre-trained parameters G and the tunnel crack dataset 
B. By utilizing parameter W to divide the original image, 
the resulting block images are processed by the local 
tunnel crack pixel segmentation model in parallel. 
Additionally, these identification results are merged and 
utilized as the preliminary recognition results. Through 
this approach, all potential pixels belonging to cracks are 
detected, thereby significantly reducing missed 
detections. 

2.2 Global fusion detection model 

1) Whole crack region extraction 
Throughout the crack pixel segmentation process, 

there is a chance that not all pixels associated with the 
same crack are accurately identified, resulting in 
sporadic appearances of recognition outcomes. 
Additionally, certain background pixels may be 
mistakenly categorized as cracks, consequently causing 
false alarms within the final crack recognition results. To 
ensure precise extraction of the entire crack, it is 
essential to conduct secondary identification of the 
combined crack recognition results. For clarity, this 
secondary identification process is labeled as sub-model 
1, and its details are as follows. 

Initially, by incorporating the local crack 
recognition outcomes, a portion of global crack 
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recognition results can be derived. Subsequently, through 
analysis of the visual attributes such as curvature and the 
extension direction of cracks in the global recognition 
findings, a set of crack-region labels can be readily 
obtained. Then, the YOLO-V5 network[28] is employed to 
construct sub-model 1. After inputting the newly merged 
crack recognition results, potential crack regions can be 
detected. Finally, to mitigate potential disturbances from 
backgrounds, the area of the detected crack region is 
computed. The paper removes detection results whose 
area falls below a defined threshold 'st'=25mm2, resulting 
in accurate recognition of the entire crack. 

2) Fusion of crack recognition results 
To enhance the corrosion resistance of bolts, it is 

common to fill bolt holes with concrete structures. 
However, cracks often emerge from these areas, although 
they do not directly impact the tunnel structure. This 
paper employed the YOLO-V5 network to construct sub-
model 2 to address these false alarms and identify bolt-
hole regions. The details of this sub-model are as follows: 

Initially, by studying the shape of bolt-hole repair 
regions, a set of region labels for the bolt-hole repair 
areas can be manually acquired. Subsequently, the 
YOLO-V5 network is employed for sub-model 2 as well. 
Upon inputting the original images, all potential regions 
(i.e., false-alarm regions) containing bolt-holes can be 
identified and labeled as O. Then, the coordinate range of 
O is set as the screening condition, and the crack 
identification results of sub-model 1 are further 
processed. Specifically, we calculated the ratioη of pixel 

number of the same crack inside region O to that outside 
region O, and analyzed it according to the following 
formula: 

0          0.4

1         0.4
P

η
η

>
=  ≤

            (3)

 

Where, if theη value is not greater than 0.4, the crack 

target will be retained; otherwise, the crack target is 
removed. According to the formula (3), the crack target 
near the bolt-hole region can be preserved to the 
maximum extent, thereby avoiding the missed detection 
of suspected crack targets. 

3) False alarm elimination 

While the fusion of results effectively eliminates 
noise interference from bolt repairs, strip noise persists 
in the fusion outcomes. To address this, sub-model 2 was 
employed to compute the average width of the 
recognition target in the fusion result and subsequently 
filter out recognition noise, outlined as follows: 

Considering the challenges posed by the multi-scale 
characteristics of fracture targets, accurately determining 
their length values is often difficult. Given that real crack 
width typically spans only a few pixels, this paper 
computes the average width, denoted as x, of the 
identified target in the fusion result using sub-model 2. 
An average width threshold 'xmax' =10 is then employed 

to filter out these noises, effectively reducing the false 
alarm rate of the recognition results. 

2
           

2 ( )
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x
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     (4) 

where x, y, l, and s represent the width, length, 
perimeter, and area (in pixel values) of the recognized 
target, respectively. It is worth noting that the average 
width value is computed by deriving the perimeter and 
area values of the identified target. Recognition results 
exceeding the threshold 'xmax' are filtered out. 

3. Experimental evaluation and analysis 

3.1 Experimental data and platform 

During image acquisition in the actual tunnel, 600 
tunnel crack images are obtained with a resolution of 4k
×4k. Subsequently, this study randomly selects 100 of 
these images and, through division and manual labeling, 
acquires 1000 local crack-labeled samples sized 512×
512, constituting the training dataset D. The remaining 
500 images, with a resolution of 4k×4k, are designated 
as the test dataset E. Calculations are conducted on a 
single NVIDIA TESLA V100 32G GPU using the 
PyTorch framework. The initial learning rate for model 
training is set to 0.005, with 2500 iterations. Additionally, 
a weight decay of 0.0001 and a momentum of 0.9 are 
employed. The optimizer used is Adam, and the network 
adopts the DiceBCELoss as its loss function. To evaluate 
the experimental outcomes accurately, we utilize four 
evaluation metrics: Precision (P), Recall (R), balanced 
F1 score (F1), and Intersection over Union (IoU). 

3.2 Threshold setting 

To identify the minimum cosine similarity value 
required between feature vectors of non-tunnel crack 
images and tunnel crack images, this study manually 
examined 100 images from dataset A that were similar to 
those in dataset B, forming dataset A1. 

The average cosine similarity for each image in 
dataset A1 is computed using all images in dataset B. It 
was determined that the minimum average value was 0.7, 
which was established as the threshold 'T1'. Figure 2 
illustrates the detection results for various tunnel and 
non-tunnel data. 

 
 Figure 2. Cosine similarity detection results for some images 
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To mitigate point background noise from the 
recognition outcomes, this study manually tabulated the 
area of 100 cracked outer rectangular boxes. The ultimate 
threshold 'st' = 25mm2 was established by multiplying the 
minimum area of the outer rectangular box by 0.8. Figure 3 
shows the detection results of the area of the external 
rectangular frame of cracks in real tunnels. 

 
Figure 3. Detection results of the outer rectangular frame 

To eliminate strip noise interference in the final 
recognition outcomes and enhance the model's detection 
precision. By referring to the relevant specifications[29], the 
average width of cracks in the tunnel is usually not more 
than 10mm. Therefore, the target average width parameter 
xmax is set as follows: 

xmax= 10/r               (5) 
Where, the value of parameter r is the target imaging scale 
factor, which is set by manual calibration before the tunnel 
image acquisition starts. Finally, the average width 
threshold 'xmax' is set to 10 pixels. Recognition results 
exceeding the threshold 'xmax' are filtered out. Figure 4 
displays the results of average width detection for cracks in 
different tunnels.  

 
Figure 4. Detection results of average crack width in a tunnel 

3.3Experiments results and discussion 

1）Ablation study 

Ablation experiments were conducted on the same 
tunnel crack image dataset using four models: the NT 
model, which directly trains the Unet++ network; the LT 
model, which utilizes transfer learning for local crack 
pixel segmentation; the Y-U model, which follows a 
"first localization and then segmentation" approach; and 
the U-Y model, which adopts a "first segmentation and 
then localization" strategy. These experiments were 
designed to evaluate the effectiveness of the U-Y model 
proposed in this paper. The experimental results are 
presented in Table 1. 

Table 1 Ablation experiment results 

Method P(%) R(%) F1(%) IoU(%) 

NT 80.54 40.96 54.36 31.69 

LT 81.13 41.23 54.96 40.87 

Y-U 82.64 43.06 56.71 45.35 

U-Y 84.06 45.63 59.26 49.13 

Table 1 indicates that the model proposed in this paper 
outperforms other models in terms of precision (P), recall 
(R), balanced F1 score (F1), and Intersection over Union 
(IoU). Compared to the NT model, the precision of the LT 
model, which utilizes transfer learning, shows an 
improvement of 0.59%. Upon introducing the two sub-
models proposed in this paper, the precision of the U-Y 
model demonstrates an enhancement of 2.93% compared to 
the LT model and a superiority of 1.42% over the Y-U 
model. The results of the ablation experiments validate the 
effectiveness of the proposed U-Y model, achieving an 
overall precision 3.52% higher than that of the NT model. 

2）Performance comparison 

Quantitative comparisons 

To thoroughly assess the effectiveness of the U-Y 
model proposed in this paper, comparative experiments 
were conducted with four classical network models under 
identical experimental conditions. The corresponding 
results of these experiments are summarized in Table 2. 

Table 2 Evaluation metrics of different models 

Method P(%) R(%) 
F1(%
) 

IoU(
%) 

Unet3+ 80.25 40.62 53.62 33.87

DeeplabV
3+ 

81.35 41.51 55.02 35.47

Mask-
RCNN 

82.13 42.03 55.68 41.59

Y-U 82.64 43.06 56.71 45.35

U-Y 84.06 45.63 59.26 49.13

The experimental results demonstrated that the 
performance of Y-U method is slightly better than that of 
Mask-RCNN. One possible reason is that YOLOv5 
detection model used in Y-U method is superior to Faster-
RCNN detection model used in Mask-RCNN method.  

By contrast, the proposed U-Y model firstly 
recognizes the crack pixels within the divided images, 
which can minimize the likelihood of crack missed 
detection; and then detects the whole crack object via 
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YOLOv5 technique, that ensures the integrality of 
recognition results for the same crack. Table 2 indicates 
that the proposed model outperforms the other four 
algorithms across all four metrics. Specifically, its 
precision surpasses that of the Unet3+ network[30] by 
3.81%, the DeeplabV3++ network [31]by 2.71%, the Mask-
RCNN network[19] by 1.93% and the Y-U detection model 
by 1.42%. Furthermore, the F1 score and IoU value 
achieved by the proposed model notably exceeds those of 
the other four models. This observation demonstrates the 
U-Y model's capability to accurately identify crack targets 
while effectively reducing false detection rates compared to 
both the single network model and the "location before 
segmentation" model 

Qualitative evaluation 

To provide a clearer demonstration of the detection 
efficacy of each algorithm, several representative crack 
recognition results were selected, and the results are 
illustrated in Figure 5. 

 
     Figure 5. Some representative crack damage detecting results 

As shown in the figure, the red and blue ellipses boxes 
indicate background noise and miss detection, respectively; 
The yellow rectangle boxes indicates false alarm.  

In the third and fourth lines of the figure, the U-Y 
model, which adopts a "first segmentation and then 
localization" framework, shows superior recognition 
completeness of crack targets (see the blue oval box in 
Figure 5) compared to the Mask-RCNN model.  

In rows 3-7 of the figure, compared with the Our 
Result, other models perform direct identification cracks, 
result in more background noise in the recognition results 
(see the red oval box in Figure 5). As demonstrated in row 
7 of the figure, our approach efficiently suppresses 
background noise, by utilizing the global fusion detection 
module. 

 In the third and fourth columns of the figure, 
compared to other models that only identify crack targets, 
our approach uses Sub-model 2 to distinguish the crack 
generation region. Through the fusion of the crack 
recognition module, false alarm from bolt repairs regain is 
efficiently eliminated, as shown in the yellow rectangular 
box. 

4. Discussion  

Compared with the existing crack visual detection and 
identification methods [10-20], the proposed method has 
four main advantages: 

(1) Improvement of training performance of crack 
identification model 

A mass of labeled samples is essential for training a 
crack recognition model. In literatures [10-12], numerous 
labeled crack samples were required through manual 
labeling, which ensured the training performance of crack 
identification model. However, labeling crack samples is a 
time-consuming and labor-intensive task, and thus, it is 
difficult to build a crack identification model to some 
extent. Currently, transfer learning offers a promising 
solution for model training with small samples[32] and also 
becomes an optimal scheme for building crack 
identification model. Compared with the existing transfer 
learning methods, this work proposes a fast and effective 
calculation method (i.e., formula (1)), which can be used to 
select data from a number of non-tunnel crack samples. 
The selected similar crack samples can contribute to the 
rapid construction of tunnel crack identification model. 

(2) Reducing the failure rate of crack identification 
In order to enhance the efficiency of crack 

identification model, literatures [16-20] have suggested 
first locating the crack regions and then recognizing the 
crack pixels within the detected crack regions. The width 
of cracks is only a few pixels, which results in the low 
signal-to-noise ratio of cracks in complex tunnel 
environments. With this condition above, compared with 
the block-shaped object recognition, it is very difficult to 
obtain the favorable performance for recognizing the crack 
regions. Therefore, the existing methods [16-20] are prone 
to missed detection in the crack region detection step. In 
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contrast, the proposed model utilizes a "first segmentation 
and then localization" framework in sub-model 1. This 
framework not only minimizes the likelihood of crack 
missed detection, but also ensures the integrality of 
recognition results for the same crack. 

(3) Identifying the location of cracks occurring 
Currently, the most crack recognition methods based 

on deep learning [10-12] only regard the crack recognition 
as a simple semantic segmentation problem. Via adjusting 
the network structures or model parameters, the ability of 
these methods can be improved. However, these strategies 
only represent a basic application of deep learning in crack 
identification scenarios. In this paper, according to the 
actual scene requirements for tunnel crack disease 
identification, the crack identification results can be 
categorized into two types: The first one refers to cracks 
generated by the bolt-hole repair regions, while the other 
one refers to cracks in other areas of tunnel lining. To better 
identify the location of tunnel lining cracks, we proposed a 
detection model via combining two different networks, 
which can achieve more effective identification of tunnel 
crack diseases. 

(4) Improving the accuracy of crack identification 
results 

Currently, in the complex environmental interference, 
there still exist some recognizing noises for most of crack 
identification methods [16-20]. To address this issue, based 
upon the segmentation of crack pixels, we present a new 
crack-width estimation method (see formula (4)) via the 
analysis of crack stripe attributes. With the suitable 
threshold parameters, we can effectively filter the crack 
identification results, thereby significantly improving the 
accuracy of final crack recognition results. 

To sum up, although that some conventional 
techniques (such as transfer learning, sub-model 
combination, etc.) are employed in our work, each 
technique has been organically combined into the 
developed crack identification model, thereby resulting in a 
new and practical detecting and recognizing framework for 
tunnel cracks. 

5. Conclusion 

This paper introduces a novel framework for crack 
recognition, which initiates with local crack pixel 
segmentation followed by global fusion detection. 
Leveraging a large set of labeled non-tunnel crack 
samples, a tunnel crack local-segmentation model is 
constructed using transfer learning, a distinguishing 
feature of the approach. Unlike existing models, the 
framework prioritizes crack segmentation on local image 
blocks, ensuring the retention of potential crack pixels. 
Subsequently, with the merged local crack recognition 
results, two sub-models are proposed to precisely 
localize whole crack targets while minimizing 
background false alarms. Experimental findings on 
actual tunnel crack data confirm the effectiveness of the 
framework in addressing challenges posed by complex 

tunnel environments. Comparative analyses on real 
tunnel crack data reveal superior performance of the 
framework over two single network models, with notable 
precision improvements of 3.81% and 2.71%, 
respectively, and a 1.93% accuracy increase compared to 
the "first location then segmentation" approach. 
Furthermore, the framework achieves higher F1 scores 
and IoU values compared to other algorithms, 
underscoring its efficacy in tunnel crack disease 
recognition. 
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