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SUMMARY
Radio Frequency Identification (RFID) is crucial for the Internet of

Things, with a key challenge being the efficient prevention of tag collisions
for quick identification. This paper presents a novel approach for rapid
tag recognition in small to medium-sized warehouses, combining a tag
optimization feature set with a tail code recognition mechanism. To minimize
the frequency of scanning for duplicate tags and reduce the occurrence of
collisions, we construct an optimization feature set based on the reader’s
position. This set helps in assessing the likelihood of tag repetition through its
linear variation. It also incorporates a tail code mechanism that recognizes
only the last 22 digits of the tag’s EPC code, significantly speeding up
identification. The tail code length is dynamically adjusted based on the
number of tags to maintain uniqueness. Simulation results indicate that
our approach significantly reduces the identification of duplicate tags and
minimizes the instances of collisions.
key words: Tag optimization feature set, Tail code recognition mechanism,
Anti-collision, Quick identification, RFID.

1. Introduction

Radio frequency identification (RFID) has cemented its place
as a transformational technology within the Internet of Things
(IoT) landscape. RFID has risen in popularity as wireless com-
munication technology has evolved, providing remarkable
value across a wide range of industries. RFID enables remote
and automatic object identification and tracking. When com-
pared to traditional barcode systems, it has better readability,
more data capacity, and more resilience to interference. As
the Internet of Things evolves, RFID is projected to stay
prominent, fostering innovation across a variety of industries.
However, the widespread use of RFID presents technical and
managerial obstacles [1]. Handheld readers have grown in
popularity in a variety of RFID applications due to their ease
of use and low cost of data collection. Passive RFID systems
need efficient tag recognition technologies to enhance system
efficiency and prolong reader battery life [2].

The grouping based bit-slot ALOHA protocol [3] effec-
tively deals with collisions and idle slots but has an efficiency
problem, leading us to introduce the optimization feature set
concept. This set is intended to assess the tag environment
before implementing the grouping-based protocol in order to
minimize collisions and enhance system efficiency [4], [5], [6].
To determine this optimization feature set, we analyze the en-
vironment’s characteristics, including tag density, movement
patterns, and previous collision rates. Extreme tag quantities,
whether minimal or excessive, lead to a notable reduction in

the average number of recognitions, greatly affecting system
efficiency [7], [8], [9]. In instances where tags are in a con-
tinuous response state and collisions occur, if the reader does
not process these tags quickly, they may be missed [10], [11].
An increased number of simultaneous responses raises the
chances of collisions, reducing recognition efficiency even
more [12]. This approach allows us to tailor the protocol’s
operation to the specific conditions of the tag environment,
ensuring more efficient and accurate tag recognition.

To address the challenge of tag collisions and inefficiency
in tag recognition, particularly in environments with a dense
tag population. The optimization feature set enables us to
compare the similarity between the tags at the reader’s current
location and the previously recognized feature sets. The
novelty of this idea is reflected in the fact that we can evaluate
the duplication rate of the tags in the set in advance, so we
further reduce the occurrence of tag collisions in advance
before the grouping based bit-slot ALOHA protocol proceeds
[13], which is consistent with the idea of the grouping based
bit-slot ALOHA protocol. Therefore, the introduction of
this novel approach allows us to accelerate the efficiency of
tag recognition while further reducing collisions and energy
consumption.

This paper aims to refine existing tag anti-collision
algorithms [3], [8], [14]. We have introduced a tail code
optimization feature set. The function of the optimization
feature set is to further prevent collision occurrences and
reduce duplicate responses and identification of the same
tag. To measure the redundancy between tail code feature
sets, we employ the Jaccard similarity metric. In addition,
the tail code recognition mechanism is used to improve the
efficiency of tag recognition. To avoid the problem caused
by the short number of tail code bits, we use the birthday
probability model to evaluate the possibility of tag tail code
duplication. The primary objective of this paper is to reduce
the response and recognition of duplicate tags based on the
predefined tail code feature set, thereby further preventing
conflicts. Experimental results confirm the effectiveness of
our method in tag identification within medium and small-
sized warehouse environments.

2. Bit-Slot ALOHA algorithm based on dynamic group-
ing

In the bit-slot ALOHA algorithm, let 𝐿 denote the number
of bit-slots. Considering a bit sequence length of 128 bits,
𝐿 = 128. Let the probability of a tag selecting any given
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slot be 𝑃 = 1/𝐿 [3], and let the total number of tags be
represented by 𝑛 [6].

The probability that m tags choose the same slot simul-
taneously is denoted by 𝑃𝑚, and this probability follows a
binomial distribution:

𝑃m = 𝐶m
n 𝑃m (1 − 𝑃)n−m (1)

𝑇 refers to a certain time slot, which is a randomly
specified one. No tags select time slot 𝑇 , and the probability
of free time slot is:

𝑃free = 𝐶0
n𝑃

0 (1 − 𝑃)n (2)

The probability that only one tag successfully selects
time slot 𝑇 is:

𝑃succeed = 𝐶1
n𝑃

1 (1 − 𝑃)n−1 (3)

The probability of multiple tags selecting time slot 𝑇 is:

𝑃collided = 1 − (𝑃free + 𝑃succeed) (4)

If a certain time slot is selected by multiple tags, it
means that the time slot has collided, and the mathematical
expectation of the number of bit-slots that have collided is:

𝐸collided = 𝐿 × (𝑃succeed + 𝑃collided)
= 𝐿 × (1 − 𝑃free)

(5)

The number of tags in the entire reader recognition area
is:

n = ln
(
1 − 𝐸collided

𝐿

)
/ln

(
1 − 1

𝐿

)
(6)

The mathematical expectation for a bit slot without
collision is:

𝐸succeed = 𝐿 × 𝑃succeed (7)

The recognition efficiency is:

𝜂 (n) = 𝐸𝑠𝑢𝑐𝑐𝑒𝑒𝑑/1 + 𝐸𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑

= 𝑛 ×
(
1 − 1

𝐿

)𝑛−1
/

1 + 𝐿 ×
[
1 −

(
1 − 1

𝐿

)𝑛] (8)

As depicted in Fig. 1, the system’s identification ef-
ficiency decreases when the number of tags is either very
low or exceedingly high, resulting in numerous slots being
underutilized or prone to collisions. When there are 15
tags, the system identification efficiency is at its highest, at
0.8838. Utilizing dynamic grouping to categorize tags into
designated groups can enhance performance. We provide a
bit-slot ALOHA protocol that utilizes dynamic grouping to
control the number of responsive tags [3] and introduces a
grouping parameter represented by 𝐺.

Upon the receipt of a query command, tags generate
random values ranging from 0 to 2𝐺 − 1, effectively catego-
rizing them into distinct groups [13]. Only tags generating

Fig. 1 Grouping performance analysis.

Table 1 Adjusting G Value.
Number of collision slots Adjusting G value

> 𝐸𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑 𝑝𝑜int (20) 𝐺 = 𝐺 + 1

𝐸𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑 reduce (11) ∼
𝐸𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑 𝑝𝑜int (20) 𝐺 = 𝐺

< 𝐸𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑 reduce (11) 𝑖 𝑓 𝐺 = 0, 𝐺 = 0
𝑖 𝑓 𝐺 > 0, 𝐺 = 𝐺 − 1

a random value of 0 will respond immediately. If there are
fewer collisions in bit slots, the protocol reduces the number
of groups by reducing 𝐺. In contrast, if collisions occur
frequently, 𝐺 will increase.

Upon juxtaposing the curve for a grouping of 0 with that
of 1, an intersection point emerges, symbolized as 𝑁point. At
𝑁point, recognition efficiency is consistent for grouping param-
eters of 0 and 1. We find that 𝑁point is approximately 21.51,
which rounds up to 22. At 𝑁point = 22, the efficiency 𝜂(22) is
about 0.87824. Using 𝑁point, we calculate that 𝐸collided point
is approximately 20.29. Consequently, the expected number
of collision bit slots is 20. When the reader detects more than
20 collision bit slots, it stops the current query and increases
the value of 𝐺 by 1 to enhance the system’s efficiency. By
utilizing Eq.(9), we can calculate the collision bit slots as
grouping decreases.

𝜂
(
𝑁point

)
= 𝜂 (𝑁reduce) (9)

We suppose that 𝑁reduce should be inferior to 22, prompt-
ing us to evaluate potential values between 1 and 21. Utilizing
Eq.(7), our objective is to ascertain a value satisfying Eq.(9)
or one that closely aligns with it. Post-calculation, we find
that 𝑁reduce is approximately 12.21, which implies that when
the number of tags is 12, the system efficiencies are similar.
Therefore, when the grouping is reduced, the number of
collision bit slots 𝐸collided reduce is approximately 11. From
this, we can derive Adjustment Grouping Table 1.
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3. Tail code recognition mechanism

In the grouping based bit-slot ALOHA protocol, a reserved
sequence spans 128 bits. Given that the tag’s EPC code is
also 128 bits, we allocate the last 22 bits as the tail code and
the initial 106 bits as the residual code. This paper presents
a strategy in which a tag transmits only its tail code to the
reader rather than the entire EPC code. If there is a repetition
in the tail codes, the reader will identify the residual code.
In systems without this tail code recognition mechanism,
identifying the entire 128-bit sequence occupies one time
slot. However, our proposed method only identifies the 22-bit
tail code, which takes approximately 0.1719 of a time slot.
In other words, we identified almost six tags in one time
slot [2], [15]. The tail-code-centric technique significantly
reduces the time required [16]. The time cost comparison is
shown in Fig. 2.

The parameter 𝐺 in Fig. 2 represents the grouping
parameter. The upper graph illustrates the efficiency of tag
recognition at grouping levels of 0, 1, or 2. As the number
of tags grows, the efficiency of recognition reduces due to
collisions, so we need to change the number of groupings.
The time cost in the following figure is the number of time
slots required to recognize a tag with and without a tail
code when the grouping is 0, 1, or 2. The following figure
mainly expresses the comparison of the time cost with and
without the tail code recognition mechanism when the time
slot required to recognize the tag is fixed. All time units in
this paper have been converted to the number of time slots.
In addition, the focus at 𝑋 = 160 is the number of time slots
required to recognize 160 tags with the grouping parameter
of 0, with and without tail code. This is an illustrative point
for comparing the time cost visually.

However, the brief nature of tail codes significantly
raises the likelihood of repetition. Addressing this issue is
crucial. The repetitive tail codes can significantly hinder the
authentication of tag information, leading to verification con-
flicts and undermining the system’s identification efficiency.
Consequently, it is vital to strike a balance between optimiz-
ing identification efficiency and reducing conflict risks. A
key challenge lies in developing robust strategies to prevent
the recurrence of identical tail codes.

Assume there are 𝑁 tags in the area to be recognized,
with each tag’s tail code length being 𝑙. If each tag’s tail
codes are dispersed randomly, the birthday paradox can be
used to calculate the chance of tail code duplication.

Specifically, the problem is this: Suppose we have 𝑁

tags, and each tag’s tail code is randomly distributed in the
range of 1 to 2𝑙 with equal probability. The purpose is to
determine the number of these tags with the same tail codes.
A.Set simulation parameters:
- Tail code range:1-2𝑙
- The number of tags:1000
- Simulation iterations: 10,000 (This volume ensures a reli-
able estimate.)

Fig. 2 Time cost analysis.

Table 2 The Average Number of Repeated Tail Codes.

2𝑙 A

N
200 500 1000 1500 2000

𝑙 = 16 0.6280 3.8079 15.1495 33.9720 60.1657
𝑙 = 18 0.1534 0.9865 3.7561 8.6261 15.3122
𝑙 = 20 0.0354 0.2338 0.9225 2.1800 3.7861
𝑙 = 22 0.0084 0.0480 0.2252 0.5920 0.9564

Table 3 The Probability of Tags Having a Repeating Tail
Code.

2𝑙 p

N
200 500 1000 1500 2000

𝑙 = 16 0.0031 0.0076 0.0151 0.0226 0.0301
𝑙 = 18 0.0008 0.0020 0.0038 0.0058 0.0077
𝑙 = 20 0.0002 0.0005 0.0009 0.0015 0.0019
𝑙 = 22 0.0000 0.0001 0.0002 0.0004 0.0005

B.Monte Carlo simulation:
- For each iteration:
a. Assign tail codes to 1000 tags randomly according to the
range of tail codes.
b. By counting the frequency of each tail code, it is possible
to determine which tail codes are shared and how many tags
share the same tail code.
c. For each simulation, calculate the total number of tags
with duplicate tail codes.

C.Analysis and results:
- From the accumulated simulation results, determine the
average number of tags with duplicate tail codes as well as
the probability of tail code duplication.

If we determine the number of tags (𝑁) and the tail code
length (𝑙), we can theoretically calculate the probability of the
same tail code. However, this actually involves the problem
of the birthday paradox. Therefore, we utilize the birthday
probability to determine the likelihood of a tag having a
repeating tail code of (𝑝). We use Monte Carlo simulation
to deal with some birthday problems, such as determining
how many tags in a large group have a repeated tail code
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with other tags. This is because a straight mathematical study
of certain situations might be difficult or confusing. The
Monte Carlo method provides a practical solution, especially
in cases where direct analysis is not feasible.

Tables 2 and 3 show the number of tags (𝑁), the length
of the tail code (𝑙), the probability of a tag having a duplicate
tail code (𝑝), and the average number of repetitions of tail
code (𝐴). After conducting 10,000 Monte Carlo simulations,
it was noted that the frequency of tail code duplicates rises
as the number of tags grows. Increasing the number of tail
code bits can effectively reduce these repetitions. In small to
medium-sized warehouses, the length of the tail code should
be adjusted based on the number of tags to minimize or
eliminate the occurrence of duplicate tail codes. Even if a
tag has a duplicate tail code, the time required to recognize
the remaining code is negligible [17].

In designing the scheme for implementation in small and
medium-sized warehousing environments, we adjusted the
tag parameters in the simulation to 200–2000. This quantity
of tags already meets the requirements of small and medium-
sized warehouses. In practice, dynamically altering the tail
code’s bit length based on tag count ensures a negligible
chance of tail code duplication.

For this study, the tail code’s length was set at 22 bits,
with a total of 1,000 tags. Referring to Table 3, following
10,000 Monte Carlo simulation iterations, the average number
of repeated tag tail codes stands at a mere 0.2252, with a
probability of 0.0002. This indicates that the likelihood
of tail code repetitions among tags is extremely low. If a
duplicate tail code occurs in this paper, the time needed to
recognize its residual code has a negligible effect on the
system’s efficiency [12], [17].

4. Tag optimization feature set

The bit-slot ALOHA algorithm, enhanced by dynamic group-
ing, is effective in reducing collision issues in tag-based
systems. However, this approach is not without its drawbacks,
particularly regarding time efficiency. Changes in the num-
ber of tags or environmental conditions need adjustments
in grouping and slot allocation, resulting in longer response
times. A significant issue occurs when the reader’s detec-
tion zone has a significant overlap. When multiple active
tags respond simultaneously, the likelihood of a collision
occurring rises. If tags that consistently respond are not
processed quickly, their data transmission protocols must be
reorganized, negatively impacting system performance [3].
As a result, it is critical to avoid repeated tag recognition
and optimize the movement strategy, allowing the reader to
transition more quickly to new areas.

In response, we introduce a tag tail code optimization
feature set. Assuming the tag’s EPC code is 128 bits, we
designate the last 22 bits as the tail code and the remaining
106 bits as the residual code. The collective tail codes within
the reader’s detection range are combined into a feature set.
Every time the reader moves to a new position, a new tail
code feature set is generated. A series of such tail code

sets form the comprehensive optimization set. For every
new location, the reader evaluates the similarity between the
current feature set and previously identified ones. If this
similarity exceeds a predetermined threshold, it suggests a
high level of duplication in tag identification, leading the
reader to skip recognizing that particular set.

The feature set for each reader position is saved in a tail
code table while tag scanning is being done simultaneously.
RFID systems inherently lack memory. Thus, if the reader
powers off or completes a loop along its movement trajectory
and unidentified tags remain, we cannot tell whether the
tags that re-enter the recognition range have previously been
identified. To make this determination, we can go to the tail
code table. If a tag’s tail code is already present in the tail
code table, it will be handled silently [14].

We use the Jaccard similarity coefficient to assess fea-
ture set similarities. This metric, defined as the ratio of
the intersection to the union of two sets, helps determine
thresholds to reduce duplicate tag identification [18].

Assuming the reader’s recognition range is a circle with
a radius of 𝑟, there could be recognition blind spots. So we
must compute on the assumption that the reader can cover
the entire recognition range and determine the position of
the next reader based on the different overlap rates. We
employed binary search to optimize overlap rates, ensuring
maximal recognition and minimal redundancy. Initial tests
at 50% overlap revealed reader blind spots. Subsequent
testing showed overlap rates ranging from 60% to 90%.
𝑆𝑎𝑟𝑒𝑎 is the area of overlap between two sets. 𝐷 represents
the distance traveled by the reader along the recognition
path. 𝑆𝑛𝑒𝑤 represents the additional area (un-overlapped
section) following each reader movement. We determined
the optimal overlap rate using a defined similarity computing
methodology.

Step 1. Determine the reader’s movement distance for
varying overlap rates. The calculation of the overlap rate is
as follows:

𝑅overlapping =
𝑆area

𝜋 × r2 (10)

Depending on the overlap rate, the distance moved by
the reader is calculated as follows:

𝐷reader = r ×
(
1 − 𝑅overlapping

)
(11)

Step 2. Calculate the additional area (un-overlapped
section) following each reader movement, ensuring complete
coverage of the recognition area.

𝑆new =

(
𝜋 × r2 − 𝑆area

)
× 𝐿

r ×
(
1 − 𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔

) (12)

Step 3. Identify the overlap rate that minimizes the total
newly added area, and derive the Jaccard similarity based on
this rate.

𝐽 (𝐴, 𝐵) = |𝐴∩𝐵 |
|𝐴∪𝐵 | =

𝑆area
𝑆𝑛𝑒𝑤+𝜋×r2 (13)
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Fig. 3 Reader moving model diagram.

Figure 3 depicts the reader mobility model in an RFID
system. Assume that the tags are randomly scattered around
the region to be recognized. In Fig. 3, 𝐷 indicates the distance
traveled by the reader to complete one revolution along the
recognition route, while 𝑅step represents the reader’s speed.
A and B are the sets where the reader is positioned, and
𝐷reader represents the distance from the reader traveling from
point A to point B. 𝑆𝑎𝑟𝑒𝑎 refers to the area of the shaded part.
𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 denotes the overlapping rate of sets A and B,
which is the ratio of shaded to total area. 𝑆𝑛𝑒𝑤 represents the
additional area (un-overlapped section) following each reader
movement.

Iterative computations identify an optimal overlap rate
of 81% for minimizing tag duplicate identification. The
simulation results, shown in Fig.4, affirm the overlap degree
and Jaccard similarity exhibit a clear linear relationship and
positive correlation. Utilizing an overlap rate of 81%, the
corresponding Jaccard similarity is approximately 0.6807,
with a threshold of around 0.681. When the duplication rate of
tags between two sets reaches 0.681, it indicates a high degree
of environmental similarity. Consequently, we will abandon
the recognition of the new set, and the reader will continue
to advance. This optimization effectively shortens the total
time spent on dispatching queries, awaiting responses, and
managing collisions by avoiding responses to duplicate tags
and reducing the number of queries.

A Jaccard similarity of 0.681 (equivalent to an 81%
overlap rate) represents a balanced choice derived from
the movement and coverage properties of circles, aimed at
ensuring complete coverage of the area to be recognized while
minimizing the recognition of duplicate tags. However, this
conclusion assumes specific conditions, such as the radius
of the circle 𝑟 and the area of coverage 𝑆𝑎𝑟𝑒𝑎. In fact, for
different 𝑟, it is necessary to make adjustments to find the
optimal overlap rate. By optimizing the relationship between
the reader’s travel distance 𝐷reader and the overlap rate, the
best strategy can be found for different system configurations
under different conditions.

Figure 5 shows that at low tag counts, the optimization
feature set technique greatly reduces time expenditure. As
the number of tags increases, so does the overall system time
required to process conflicts and identify tags, rendering the
time savings from employing the optimization feature set

Fig. 4 Relationship between Overlap Rate and Jaccard
Similarity.

Fig. 5 Time cost with and without Optimization Feature
Set.

approach less obvious but still considerable. Specifically,
the ’Time Cost’ on the vertical axis is defined as the time
taken by the reader to identify all the tags in the entire region
to be identified. Our calculations convert the units to slots.
As shown in the figure, when the tag count reaches 300, the
time cost of the two strategies is 5387 and 4602, respectively.
This means that the strategy for the optimization feature set
delivers a 24.6% time reduction, and for 700 tags, the drop is
around 8.7%.

5. Improved algorithm based on the tail code optimiza-
tion feature set

Due to the presence of optimization feature sets, the reader
may only need to send fewer queries to cover the entire
area, avoiding repetitive responses and recognition. This
reduces the total time needed for sending queries, waiting
for responses, and completing recognition, while also further
preventing the occurrence of collisions [12]. At the same
time, the approach using the tail code recognition mechanism
only takes 17.2% of the time compared to the approach that
does not use it. As a result, we offer an improved approach
that focuses on the tail code optimization feature set.
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Fig. 6 Time cost comparison.

This revamped Bit-Slot algorithm is a fusion of the
bit-slot ALOHA algorithm based on dynamic grouping, the
tag optimization feature set, and the tail code identification
mechanism. The implementation steps of the algorithm are
as follows:

Step 1. The reader sends a query command to start
a new identification cycle. This command will contain a
parameter G, based on which the tags will be grouped.

Step 2. Tag sends its tail code.
Step 3. The reader computes the Jaccard similarity

between the present and preceding tail code feature sets. The
initial position of the Jaccard similarity is set to 0.

Step 4. Should similarity surpass the 0.681 threshold,
the current feature set’s identification is sidelined, prompting
the reader’s continued movement.

Step 5. If the similarity is below the threshold, tags
randomly select a value within the range of 0 ∼ 2𝐺 − 1.
Only those landing on 0 instantly respond, transmitting a
reservation sequence.

Step 6. The reader detects the reservation sequences. If
collision bit-slot counts oscillate between the predicted count
and the lower boundary:

6.1 If no tag’s tail code is duplicated, the reader logs the
colliding slots. If only one tag responds, the tail code of that
tag is captured and subsequently deactivated. If multiple tags
respond, these tags will have to wait for the next query cycle.

6.2 When the tail code of a tag is detected to be dupli-
cated, it is necessary to further identify the residual code. If
only one tag responds based on the recorded collision slots,
all EPC code is captured and deactivated. Otherwise, wait
for the next query cycle.

Step 7. When the number of collision bit slots stray from
expected counts and the lower boundary, G is recalibrated
via Table 1, altering the group count.

Step 8. The above steps cyclically persist until all tags
are discerned.

The time cost comparison is shown in Fig. 6. The GBSA
algorithm represents the bit-slot ALOHA algorithm based on
dynamic grouping. Predefined tag optimization feature sets
are instrumental in tailoring the reader protocol, reducing
both collisions and the frequency of scanning duplicate tags.
When compared to conventional algorithms, the approach that
integrates optimization feature sets, as well as the tail code

Fig. 7 Efficiency improvement.

identification mechanism, takes significantly less time. With
a batch of 1000 tags, the time cost of the GBSA algorithm is
9458 time slots, while the improved technique is 8139 time
slots. The new method decreases the time cost by 1409 slots,
resulting in an efficiency improvement of around 14.8%. For
500 tags, the efficiency improvement is around 26.2%. As a
result, it is obvious that the fewer the tags, the more time our
algorithm saves and the higher its efficiency.

Figure 7 illustrates the trajectory of the algorithm’s
efficiency improvement as the number of tags rises. Further
analysis reveals that, as the number of tags increases, the
extent of efficiency benefits decreases but eventually stabilizes.
This discovery is especially relevant to medium and small
warehouses, where the number of tags is quite modest. This
enhanced technique not only improves the system’s overall
performance, but also prevents responding to duplicate tags
while being compatible with previous collision resolution
methods. In summary, our approach effectively prevents the
occurrence of collisions by performing predefined operations
before reading the tags, proving its effectiveness in enhancing
recognition efficiency.

6. Conclusion

This study presents an algorithm enhanced with the tail code
optimized feature set, skillfully designed to reduce idle and
collision slots through reservation sequences and grouping
tactics. By refining the reading strategy with optimization fea-
ture sets, we can reduce collisions further. This optimization
effectively shortens the total time spent on dispatching queries,
awaiting responses, and managing collisions by avoiding re-
sponses to duplicate tags and reducing the number of queries.
Additionally, the algorithm improves the reader’s navigational
strategy, resulting in less time spent on unnecessary inquiries
and movements. We give actual experimental data to illus-
trate the efficacy of our solution, which shows a considerable
reduction in overall system load when compared to previous
methods. Specifically, by combining tail code optimization
feature sets with grouping techniques, our program reduces
the likelihood of collisions, increasing system throughput.
Empirical results from comparative tests demonstrate the
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huge efficiency gains realized with our strategy.
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