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PAPER
Ternary quantum codes constructed from a class of quasi-twisted
codes

Zhihao LI†a), Ruihu LI†b), Chaofeng GUAN††c), Liangdong LU†d), Hao SONG†e), Nonmembers,
and Qiang FU†f), Member

1SUMMARY In this paper, we propose a class of 1-generator
quasi-twisted codes with special structures and investigate their application
to construct ternary quantum codes. We discuss the algebraic structure
of these 1-generator quasi-twisted codes and their dual codes. Moreover,
sufficient conditions for these quasi-twisted codes to satisfy Hermitian self-
orthogonality are given. Then, some ternary quantum codes exceeding the
Gilbert-Varshamov bound are derived from such Hermitian self-orthogonal
1-generator quasi-twisted codes. In particular, sixteen quantum codes are
new or have better parameters than those in the literatures, eight of which
are obtained by the progapation rules.
key words: Quantum codes, quasi-twisted codes, Hermitian construction.

1. Introduction

Quantum error-correcting codes (or quantum codes) are one
of the necessary guarantees for the implementation of quan-
tum communication and quantum computing. In 1995,
Shor [1] constructed the first binary [[9, 1, 3]] quantum code,
which can correct 1 bit quantum error. This marks the
emergence of quantum code theory. Subsequently, Calder-
bank, Shor [2], and Steane [3] designed methods for con-
structing quantum codes using classical binary codes, re-
spectively, which largely contributed to the development of
quantum code theory. Gottesman [4] articulates the the-
ory of stabilizer quantum codes through mathematical tools
such as group theory. In 1998, Calderbank et al. [5] pro-
posed a systematic method for constructing binary quantum
codes from classical self-orthogonal codes over F4. The re-
search on non-binary quantum codes originated from Rains’
work [6] in 1999. A q-ary quantum code Q of length n is
a K-dimensional subspace of qn-dimensional Hilbert space
(Cq)⊗n, where C represents the complex field and (Cq)⊗n is
the n-fold tensor power of Cq. If K = qk and Q can detect
any d − 1 quantum errors, then Q is denoted as [[n, k, d]]q.
In 2000, Bierbrauer and Edel [7] gave a method for con-
structing q-ary quantum codes from q2-ary Hermitian self-
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orthogonal codes. Then Ashikhmin et al. [8] and Ketkar
et al. [9] extend the conclusions of [5] to q-ary quantum
codes. According to the work of [5, 7–9], the famous Her-
mitian construction method was proposed, which gives the
relationship between quantum codes and Hermitian self-
orthogonal classical codes.

Theorem 1: [5,8, Hermitian construction] If exists a Her-
mitian self-orthogonal [n, k]q2 linear code C such that there
are no vectors of weight less than d in C⊥H\C yields a quan-
tum code with parameter [[n, n − 2k, d]]q. In particular, if
there are no codewords of weight < d in C⊥H , then the quan-
tum code is pure.

By using Hermitian construction method, the work on con-
structing quantum codes from classical codes over finite
fields have been greatly enriched [9–16].

Quasi-twisted (QT) codes are an important class of lin-
ear codes with rich algebraic structures, which are extension
of cyclic codes, constacyclic codes, and quasi-cyclic (QC)
codes. QT and QC codes have been used to construct clas-
sical and quantum codes with good parameters. For works
on constructing classical codes see [17–20]. The construc-
tion of quantum codes from QT and QC codes began with
the work of Galindo. Galindo et al. [13] proposed a method
for constructing quantum codes by QC codes in 2018, and
following this work, many scholars have been attracted to
work on constructing quantum codes by QC and QT codes.
In 2019, Lv et al. [14] extended their theory to QT codes
and constructed some quantum codes over small fields by
QT codes. Subsequently, based on the work of [14], Yao
et al. [15, 21] investigated special algebraic structure of 1-
generator and 2-generator QT codes and constructed a num-
ber of quantum codes with good parameters. Recently,
Guan et al. [16] utilize Hermitian dual-containing QC codes
to produce quantum codes. Inspired by [13–16, 21], we
propose a class of 1-generator QT codes and discuss self-
orthogonal condition with respect to Hermitian inner prod-
uct of such QT codes. Then we use such Hermitian self-
orthogonal 1-generator QT codes to construct ternary quan-
tum codes with good parameters.

The paper is organized as follows. In Section 2,
some notations and preliminaries are introduced. Sec-
tion 3 presents a class of 1-generator QT codes and gives
sufficient conditions for such QT codes to be Hermitian
self-orthogonal. In section 4, some good Hermitian self-
orthogonal 1-generator QT codes and good ternary quantum
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codes derived from these QT codes are listed in two tables.
Conclusions are given in Section 5.

2. Preliminaries

Let Fl be the Galois field with l elements and Fn
l be the

n-dimensional vector space over Fl. For any two vectors
u = (u0, . . . , un−1) and u = (v0, . . . , vn−1) ∈ Fn

l , the Hamming
weight wt(u) is the number of nonzero components of u and
minimum Hamming distance of a linear code C is d(C) =

min {wt(u − u) | u, u ∈ C,u , u}. A [n, k, d]l linear code C is
a k-dimensional subspace of Fn

l and the minimum Hamming
distance of C is denoted as d. For l = q2, the Hermitian in-
ner product of u and u is defined as 〈u, u〉h =

∑n−1
i=0 uivi

q. The
Hermitian dual code C⊥H of a linear code C is defined as:
C⊥H = {u ∈ Fn

q2 | 〈u, u〉h = 0, for all u ∈ C}. If C ⊂ C⊥H ,
then C (resp. C⊥H ) is called a Hermitian self-orthogonal
code (resp. Hermitian dual-containing code). Let Ai be
the number of codewords in C with weight equal to i for
0 ≤ i ≤ n, and the weight enumerator of the code C is de-
noted as w(z) =

∑n
i=0 Aizi = A0 + A1z + · · · + Anzn.

In the following, we will give a brief introduction of
constacyclic and QT codes, for detail please see [11], [14]
and [15].

Let F∗q2 = Fq2\{0} and λ ∈ F∗q2 . For any c =

(c0, c1, . . . , cn−1) ∈ C, if c′ = (λcn−1, c0, . . . , cn−2) ∈ C,
then the code C is called a λ-constacyclic code. Assumed
that Rn = Fq2 [x]/ 〈xn − λ〉 is the quotient ring and de-
fine a Fq2 -module isomorphism τ1 from Fn

q2 to Rn, i.e.
τ1(c0, c1, . . . , cn−1) = c0 + c1x + · · · + cn−1xn−1. Suppose
that C is a constacyclic code of length n over Fq2 . As Rn is
a principle ideal ring, each λ-constacyclic code is generated
by a polynomial g(x), i.e. C = 〈g(x)〉.

If λr = 1, where λ ∈ F∗q2 and r is the smallest positive
integer that makes the equation true, then we call r the order
of λ and denoted it as ord(λ) = r. If gcd(n, q) = 1 and λ is
an r-th unit root over F∗q2 , there exists a primitive rn-th unit
root ζ over a extension field Fq2v that satisfies ζn = λ. Let
ξ = ζr, this yields ξ as the n-th unit root over the extended
field Fq2v . In this way, roots of xn−λ over Fq2v can be written
as ζξr = ζ1+ jr, where 0 ≤ j ≤ n − 1. According to [11], we
set Ω = {i = 1 + jr | 0 ≤ j ≤ n − 1}. For i ∈ Ω, the q2-
cyclotomic cosets Ci of module rn containing element i can
be defined as Ci = {i, iq2, . . . , i(q2)s−1} mod rn, where s is
the smallest positive integer satisfying (q2)si ≡ i mod rn. If
C = 〈g(x)〉 is a constacyclic code, T = {i ∈ Ω | g(ζ i) = 0} is
the defining set of C.

To study QT codes, we define a new mapping τ2 from
Fln

q2 toRl
n, i.e. τ2(c0, c1, . . . , cn−1, . . . , c(l−1)n, c(l−1)n+1, . . . , cln−1)

= (c0 + c1x + · · · + cn−1xn−1, . . . , c(l−1)n + c(l−1)n+1x + · · · +

cln−1xn−1). For any c = (c0, c1, . . . , cn−1, . . . , c(l−1)n, c(l−1)n+1,
. . . , cln−1) ∈ C, if c′ = (λcn−1, c0, . . . , cn−2, . . . , λcln−1, c(l−1)n,
. . . , cln−2) ∈ C, then C is called a λ-QT code with index l.
Therefore, it is easy to see that C is a λ-QT code with in-
dex l if and only if τ2(c) is an Rn-submodule of Rl

n. Let C
be a QT code over Fq2 . If C is generated by G(x), where

G(x) = (g0(x), g1(x), . . . , gl−1(x)) ∈ Rl
n, then C is called a

1-generator QT code with index l. A generator matrix G
of C is shown below, where Gi is the λ-constacyclic matrix
generated by gi(x), for 0 ≤ i ≤ l − 1, respectively.

G = (G0,G1, . . . ,Gl−1).

Regarding the dimension of QT code C, we can get it from
[22]. In [22], it is shown that the generator polynomial of C
is given as g(x) = gcd(g0(x), g1(x), . . . , gr(x), xn−λ), and the
dimension of C is n−deg(g(x)). Similarly, a 2-generator QT
code can be regarded as a QT code generated by juxtaposing
the top and bottom of two 1-generator QT codes.

3. A class of Hermitian self-orthogonal 1-generator QT
codes

According to [11], we are able to obtain that if a λ-
constacyclic code is Hermitian self-orthogonal, then ord(λ) |
(q + 1). From this section, we concentrate on Hermitian
self-orthogonal QT codes, thus assume ord(λ) | (q + 1) and
g(x) | xn − λ. In the following, we define a class of special
structured 1-generator QT codes with index 2.

Definition 1: Assumed that v j(x) are monic polynomials in
Rn for 1 ≤ j ≤ 2. If gcd(v j(x), (xn − λ)/g(x)) = 1 and
gcd(v1(x), v2(x)) = 1, we denote the QT code over Fq2 of
length 2n with index 2 generated by (g(x)v1(x), g(x)v2(x)) as
Cq2(g,v1,v2).

Remark 1: [21, definition 1] Let Cq2 (g, f ) be a QT
code over Fq2 of length 2n and index 2 generated by
(g(x), f (x)g(x)), where f (x) and g(x) are monic polynomials
in Rn such that g(x) | xn−1 and gcd( f (x), (xn−λ)/g(x)) = 1.

The definition of 1-generated QT codes in [21] is a spe-
cial case in our Definition 1.

Let f (x) = f0 + f1x + · · · + fn−1xn−1 ∈ Rn and [ f (x)] =

[ f0, f1, . . . , fn−1] denote vectors in Fn
q2 determined by the co-

efficient of f (x) in an ascending order. To simplify writing,
we define the following polynomials.

f̄ (x) = λxn f (x−1) = λ2 f0 + λ fn−1x + · · · + λ f1xn−1,
f q(x) = f q

0 + f q
1 x + · · · + f q

n−1xn−1.

Let h(x) = (xn − λ)/g(x), then g⊥(x) = xdeg(h(x))h(
1
x

).
According to [11], the Hermitian dual code of a constacyclic
code 〈g(x)〉 is

〈
g⊥q(x)

〉
. The following exchange law for

Hermitian inner product between polynomials will play an
important role in later theorem proving.

Lemma 1: [23] Let f (x), v(x) and c(x) be monic polyno-
mials in Rn. Then the following equality of Hermitian inner
product of vectors in Fn

q2 holds

〈[v(x) f (x)], [c(x)]〉H = 〈[ f (x)], [v̄q(x)c(x)]〉H .

From the work in [11] and Lemma 1, the following proposi-
tion can be obtained.

Proposition 1: The Hermitian dual code C⊥H

q2 (g, v1, v2) of
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Cq2 (g, v1, v2) over Fq2 is generated by pairs (g⊥q (x)v̄q
1(x), g⊥q (x))

and (−v̄q
2(x), v̄q

1(x)).

Proof Let c1 = ([a(x)g(x)v1(x)], [a(x)g(x)v2(x)]) be any
codeword in Cq2 (g, v1, v2) and c2 = ([b(x)g⊥q(x)v̄q

1(x) −
c(x)v̄q

2(x)], [b(x)g⊥q (x) + c(x)v̄q
1(x)]) be any codeword in the

code generated by (g⊥q (x)v̄q
1(x), g⊥q (x)) and (−v̄q

2(x), v̄q
1(x)),

where a(x), b(x) and c(x) ∈ Rn. Then 〈c1, c2〉H is equal to〈
([a(x)g(x)v1(x)], [a(x)g(x)v2(x)]), ([b(x)g⊥q(x)v̄q

1(x) − c(x)v̄q
2(x)],

[b(x)g⊥q (x) + c(x)v̄q
1(x)])

〉
H

=
〈
[a(x)g(x)v1(x)], [b(x)g⊥q(x)v̄q

1(x)]
〉

H
−〈

[a(x)g(x)v1(x)], [c(x)v̄q
2(x)]

〉
H

+
〈
[a(x)g(x)v2(x)], [b(x)g⊥q (x)]

〉
H +

〈
[a(x)g(x)v2(x)], [c(x)v̄q

1(x)]
〉

H
.

According to lemma 1 we can get〈
[a(x)g(x)v2(x)], [c(x)v̄q

1(x)]
〉

H
=

〈
[a(x)g(x)v1(x)], [c(x)v̄q

2(x)]
〉

H
.

Further, the Hermitian inner product of the codes generated by
g(x) and g⊥q(x) is 0, so that

〈
[a(x)g(x)v1(x)], [b(x)g⊥q(x)v̄q

1(x)]
〉

H
=

0 and
〈
[a(x)g(x)v2(x)], [b(x)g⊥q (x)]

〉
H = 0, i.e. 〈c1, c2〉H =

0. Therefore, the Hermitian dual code C⊥H
q2 (g, v1, v2) contains

the code generated by (g⊥q (x)v̄q
1(x), g⊥q (x)) and (−v̄q

2(x), v̄q
1(x)).

According to [22], one can check that the dimension of
the code Cq2 (g, v1, v2) is n − deg(gcd((g(x)v1(x), g(x)v2(x)))) =

n − deg(g(x)). Hence, the dimension of C⊥H
q2 (g, v1, v2) is

2n − (n − deg(g(x))) = n + deg(g(x)). The dimension
of code generated by (g⊥q (x)v̄q

1(x), g⊥q (x)) and (−v̄q
2(x), v̄q

1(x))
is deg(gcd(g⊥q (x)v̄q

1(x), g⊥q (x))) + deg(gcd(−v̄q
2(x), v̄q

1(x))) =

deg(g(x)) + n, which is equal to the dimension of C⊥H
q2 (g, v1, v2).

Therefore, our conclusion holds. �

According to proposition 1, we find that the dual code of
Cq2 (g, v1, v2) is a 2-generator QT code. The following are
sufficient conditions that in sure Cq2 (g, v1, v2) are Hermitian
self-orthogonal.

Proposition 2: If g⊥q(x) | g(x), ((v̄q
1(x))2 + v̄

q
2(x)) |

(v1(x)v̄q
1(x) + v2(x)v̄q

2(x)) and ((v̄q
1(x))2 + v̄

q
2(x)) | (v2(x)v̄q

1(x)−
v1(x)), then the 1-QT code Cq2 (g, v1, v2) is Hermitian self-
orthogonal.

Proof Assumed that λ1(x) =
g(x)(v1(x)v̄q

1(x)+v2(x)v̄q
2(x))

g⊥q(x)((v̄q
1(x))2+v̄

q
2(x)) and

λ2(x) =
g(x)(v2(x)v̄q

1(x)−v1(x))
(v̄q

1(x))2+v̄
q
2(x) , when g⊥q(x) | g(x), ((v̄q

1(x))2 +

v̄
q
2(x)) | (v1(x)v̄q

1(x) + v2(x)v̄q
2(x)) and ((v̄q

1(x))2 + v̄
q
2(x)) |

(v2(x)v̄q
1(x) − v1(x)), we are able to obtain λ1(x), λ2(x) ∈ Rn.

Furthermore, the equation

(g(x)v1(x), g(x)v2(x)) = λ1(x)(g⊥q(x)v̄q
1(x), g⊥q (x))

+λ2(x)(−v̄q
2(x), v̄q

1(x))

can be hold. Therefore, Cq2 (g, v1, v2) ⊆ C⊥H

q2 (g, v1, v2).
�

Theorem 2 can be derived directly from Theorem 1, propo-
sition 1 and proposition 2.

Theorem 2: If Cq2 (g, v1, v2) satisfied the conditions of
proposition 1 and proposition 2, then there exist a quantum
code [[2n, 2deg(g(x)), d]]q, where d denotes the distance of
Hermitian dual code C⊥H

q2 (g, v1, v2).

In addition, new quantum codes can be derived from exist-
ing ones by the following propagation rules, which will be
used later.

Theorem 3: [5, 9] Assumed that an [[n, k, d]]q quantum
code exists.

(1) If k > 0, then an [[n + 1, k, d]]q code exists.
(2) If the code is pure and n ≥ 2, then an [[n−1, k+1, d−1]]q

code exists.
(3) If k > 1 or if k = 1 and the code is pure, then an [[n, k −
1, d]]q code exists.

(4) If n ≥ 2, then an [[n − 1, k, d − 1]] code exists.

In order to determine whether a quantum code exists un-
der given conditions, Feng et al. [24] proposed the quantum
GV bound. A quantum code that exceeds the quantum GV
bound is usually considered to be excellent.

Theorem 4: [24, quantum GV bound] Let n > k ≥ 2 with
n ≡ k ( mod 2 ), d ≥ 2. If the inequality

qn−k+2 − 1
q2 − 1

>

d−1∑
i=1

(q2 − 1)i−1
(
n
i

)
is met, there exists an [[n, k, d]]q pure quantum code.

4. Good ternary quantum codes derived from QT
codes

In this section, some ternary quantum codes are con-
structed which improve the minimum distance lower bound
in [12] and exceed the quantum GV bound. Moreover, ac-
cording to Theorem 3, we derive some new ternary quantum
codes from existing ones.

Since the construction of binary quantum codes is more
studied, we focus on the construction of ternary quantum
codes. Let F3 = {0, 1, 2}, F9 = F3[x]/(x2 − x − 1) =

{0, 1, w, w2, w3, w4, w5, w6, w7} and w be the root of x2− x−1.
It is easy to get w2 = w + 1, w3 = 2w + 1, w4 = 2, w5 =

2w, w6 = 2w + 2, w7 = w + 2. For the shift-constant λ of QT
codes, we take λ = w2 or w4.

In the following, several examples are given to show
that our construction method works, in which the algebraic
software Magma [25] is used to compute the specific param-
eters of the QT codes.

Example 1: Let n = 14, λ = w2 and r = 4, we can get
Ω = {1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53}. Con-
sider the 9-cyclotomic cosets module 56 and choose T =

C17 ∪C29 as defining set of 〈g(x)〉, where C17 = {17, 33, 41}
and C29 = {29, 37, 53}. Then g(x) = x6 +wx5 +w3x3 +w5x +

w6. We choose v1(x) = 2x13 + w6x12 + w3x11 + wx10 + wx9 +

x8 +w3x7 +w3x6 +wx5 +w2x4 +2x3 +w3x2 +w3x+w6, v2(x) =

w3x13+w7x12+x11+2x9+x8+2x7+x5+w5x4+wx3+2x2+w7x+
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w5 and g(x), v1(x), v2(x) satisfy the conditions in Theorem
2. This can generate a [28, 8]9 Hermitian self-orthogonal
code and its dual code is [28, 20, 6]9, whose weight enumer-
ator is w(z) = 1 + 2240z6 + 57680z7 + 1219568z8 + · · · +

449344634493065760z28. Then, we can obtain a ternary
quantum code with parameters [[28, 12, 6]]3.

Example 2: Assume that n = 20, λ = w4 and r = 2, we get
Ω = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33,
35, 37, 39} and consider the 9-cyclotomic cosets module 40
and choose the defining set T = C1 ∪ C11 ∪ C17 ∪ C31,
where C1 = {1, 9}, C11 = {11, 19}, C17 = {17, 23} and
C31 = {31, 39}. Hence g(x) = x8 + w5x7 + w5x6 + w2x5 +

w2x4 +2x3 +wx2 +w3x+1. Let v1(x) = 2x19 +wx18 +w6x16 +

w5x15 +w5x14 +w6x13 +wx12 + x11 +w3x10 +w2x9 +w7x8 +

w7x7 + w2x6 + w3x4 + 2x3 + w2x2 + w2x + w7 and v2(x) =

2x19+w6x18+x16+w7x15+wx14+x13+w6x12+x11+w2x10+x9+

w3x8 +w5x7 + x6 +w2x4 +2x3 +w5x2 +w6 satisfy Theorem 2,
then a Hermitian self-orthogonal code [40, 12]9 can be ob-
tained. [40, 28, 8]9 is the Hermitian dual code of [40, 12]9,
whose weight enumerator is w(z) = 1+5520z8 +121120z9 +

3189056z10 + · · · + 4706405754676928917342976z40. Via
Theorem 2, a [[40, 16, 8]]3 quantum code is obtained which
is superior to [[40, 14, 8]]3 in [12].

Example 3: Let n = 37, λ = w4 and r = 2, we get Ω =

{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 3
7, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69,
71, 73}. Consider the 9-cyclotomic cosets module 74
and select T = C1 ∪ C3 ∪ C15, where C1 =

{1, 7, 9, 33, 47, 49, 53, 63, 71}, C3 = {3, 11, 21, 25, 27, 41, 65,
67, 73} and C15 = {15, 29, 31, 39, 51, 55, 57, 61, 69}. Hence
g(x) = x27 +wx26 +w5x25 +2x24 +w2x23 +w2x22 +wx21 +x20 +

w2x19+wx18+w5x17+2x16+2x15+w6x14+w2x13+2x12+2x11+

w7x10 +w3x9 +w6x8 + x7 +w3x6 +w6x5 +w6x4 +2x3 +w7x2 +

w3x + 1. Let v1(x) = w7x36 + wx33 + w3x4 + w5x + 1, v2(x) =

w7x36 +wx35 +wx34 +w5x33 +2x32 +w2x31 +w6x30 +w6x29 +

wx28 +2x27 +w5x26 +w2x24 +w6x23 +w5x22 +w6x21 +w3x20 +

wx17 +w2x16 +w7x15 +w2x14 +w6x13 +w7x11 +2x10 +w3x9 +

w2x8+w2x7+w6x6+2x5+w7x4+w3x3+w3x2+w5x+1. These
will generate a Hermitian self-orthogonal code [74, 10]9 and
its dual code is [74, 64, 6]9, whose weight enumerator is
w(z) = 1 + 27232z6 + 1157952z7 + 72281424z8 + · · · +

193300929786615158964248038453780717955253708764
8096527048z74. Then, the [[74, 54, 6]]3 quantum code
can be obtained by Theorem 2. the [[74, 54, 6]]3
quantum code has a higher information rate than
[[73, 37, 6]]3 in [12]. According to Theorem 3, we
can obtain quantum codes with parameters [[74, 53, 6]]3,
[[75, 54, 6]]3, [[73, 54, 5]]3, [[73, 55, 5]]3, which are better
than [[73, 37, 6]]3, [[73, 49, 5]]3 in [12].

In order to save space and intuitive view of results,
we use coefficient simplification to represent the poly-
nomials in Table 1, noting 0, 1, w4, w, w2, w3, w5, w6, w7 as
0, 1, 2, 3, 4, 5, 6, 7, 8. For example, 1+ x+2x2 +wx4 +w3x7 +

w7x8 over F9 is denoted as 122030258. In Table 1, we give
good Hermitian self-orthogonal 1-generator QT codes over

F9. Table 2 gives some ternary quantum codes derived from
these QT codes in Table 1. In Table 2, above the dashed line
are the best known quantum codes in [23, 26–28] that we
can construct with the same parameters as them using our
method; the quantum codes labeled with ∗ are new and have
better parameters than the ones in [12, 23].

5. Conclusion

In this work, we present a class of 1-generator QT
codes with index 2 which can construct quantum codes with
good parameters. Moreover, the structure of C⊥H

q2 (g, v1, v2)
and the sufficient conditions for Cq2 (g, v1, v2) to be Her-
mitian self-orthogonal are provided. Furthermore, some
ternary quantum codes are constructed with parameters su-
perior to previous work.

In fact, quantum codes over other finite fields can also
be obtained by our construction method. In the future, we
will investigate multi-generator QT codes with multi-index
and construct quantum codes over other finite fields from
self-orthogonal QT codes with respect to Hermitian inner
product.
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[22] G.E. Séguin, A class of 1-generator quasi-cyclic codes, IEEE Trans.
Inf. Theory, vol. 50, no. 8, pp. 1745-1753, 2004.

[23] J. Lv, R. Li, J. Wang, Quantum codes derived from one-generator
quasi-cyclic codes with Hermitian inner product, Int J. Theor. Phys.,
vol. 59, no. 1, pp. 300-312, 2020.

[24] K. Feng, Z. Ma, A finite Gilbert-Varshamov bound for pure stabi-
lizer quantum codes, IEEE Trans. Inf. Theory, vol. 50, no. 12, pp.
3323-3325, 2004.

[25] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I:
The user language, J. Symb. Comput., vol. 24, no. 3-4, pp. 235-265,
1997.

[26] M.F. Ezerman, S. Ling, B. Ozkaya, P. Solé, Good stabilizer codes
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