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Data Deduction in IoT-Empowered Distribution Station
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SUMMARY The distribution station serves as a foundational compo-
nent for managing the power system. However, there are missing data in
the areas without collection devices due to the limitation of device deploy-
ment, leading to an adverse impact on the real-time and precise monitoring
of distribution stations. The problem of missing data can be solved by
the pseudo measurement data deduction method. Traditional pseudo mea-
surement data deduction methods overlook the temporal and contextual
correlations of distribution station data, resulting in a lower restoration ac-
curacy. Motivated by the above challenges, this paper proposes a novel
pseudo measurement data deduction model for minimal data collection re-
quirements in distribution stations. Compared to the traditional GAN, the
proposed enhanced GAN improves the architecture by decomposing the
input tensor of the generator, allowing it to handle high-dimensional and
intricate data. Furthermore, we enhance the loss function to accelerate
the model’s convergence speed. Our proposed approach allows GAN to be
trained within a supervised environment, effectively enhancing the accuracy
of model training. The simulation result shows that the proposed algorithm
achieves better performances compared with existing methods.
key words: IoT, generative adversarial network, pseudo measurement data
deduction, distribution station, multidimensional tensor awareness

1. Introduction

The distribution station is a crucial component of the power
system that maintains close contact with the users[1], [2].
It is widely distributed, equipped with numerous devices,
and possesses a complex structure. Simultaneously, the dis-
tribution station plays a pivotal role in power transmission,
distribution, and control, ensuring the utmost reliability, sta-
bility, and safety of power supply [3], [4]. The integration of
internet of things (IoT) and distribution station canmaximize
the distribution network’s overall efficiency by real-time data
collection and data processing. Consequently, it is imper-
ative to collect various data through IoT devices such as
sensors, directing the operation and management of the net-
work [5]. Due to minimal data collection requirements in the
low-voltage distribution station area, collection devices are
deployed only in some areas of the station, and the data in the
areas without collection devices are missing. Pseudo mea-
surement data are artificially generated through processes
such as simulation, synthesis, or other methods. These gen-
erated data typically exhibit features akin to authentic mea-
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surement data but are not derived from actual observations.
Pseudo measurement data deduction can effectively solve
the problem of missing data in the areas without collection
devices [6]–[8].

The current methods for deducting pseudo measure-
ment data can mainly be classified into two categories:
statistical-based approaches [9] and machine learning-based
approaches [10], [11]. Among them, the machine learning-
based methods have gained widespread application in the
field of pseudo measurement data deduction by consider-
ing the interrelationships among data[12]. One such ma-
chine learning method is the generative adversarial network
(GAN), which was introduced in 2014 [13]. This network
model operates without reliance on any prior assumptions
and possesses the capability to learn high-dimensional and
intricate data distributions in an unsupervised manner[14].
By mapping noise to the sample space through neural net-
works, GAN generates data that conforms to the distribution
patterns of real samples. This remarkable data generation
capability has made GAN a hot topic of research in recent
years. Therefore, in this paper, we adopt a GAN-based ap-
proach to infer and deduce pseudo measurement data in IoT-
empowered distribution station. However, despite GAN’s
ability to learn the temporal characteristics and interdepen-
dencies of the collected data in the station, there are still
several challenges in the research of pseudo measurement
data deduction in IoT-empowered distribution station.

Firstly, traditional GANs have limited capabilities in
processing high-dimensional and complex data. On one
hand, the inclusion of high-dimensional data increases the
complexity and computational burden of the model, thereby
impacting the discriminative power of the network and
making the training process more challenging and time-
consuming [15]. On the other hand, high-dimensional data
also diminishes the generative capacity of themodel, making
it difficult to generate samples of high quality and diversity.
Secondly, traditionalGANs are susceptible tomode collapse,
wherein the discriminator fails to cover all the categories
present in the data distribution during training. Therefore,
the generated samples from the generator tend to be overly
similar or lack diversity [16]. Finally, the loss function
employed by traditional GANs can lead to issues such as
gradient vanishing or exploding, resulting in unstable train-
ing [17]. Moreover, the conventional loss functions for the
generator and discriminator lack explicit metrics to quantify
the differences between the generated completion data and
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the real data. Thus, GANs struggle to generate accurate
completion data for the distribution station by incorporating
contextual information from multidimensional data.

Several studies have investigated issues of data deduc-
tion in distribution station. In [18], Zhang et al. proposed
a generative adversarial imputation nets-based method to
achieve data deduction for the power systems. In [19], Yan
et al. designed an implicit generativemodelwithWasserstein
GAN objectives, namely Unbalanced Graph Generative Ad-
versarial Network (UG-GAN), to mimic almost all features
of real-world networks. However, the aforementioned arti-
cle overlooks the potential issue of prolonged model training
time and even convergence failure when the inputs of the
GAN are high-dimensional and intricate data. In [20], Liu
et al. proposed a completion method based on a tensor-
assisted GAN to generate high-accuracy location data, the
objective of which is to improve the location accuracy and
storage consumption. In [21], Zhang et al. proposes mixed
generative adversarial networks (mixed-GANs) as a practi-
cal way to provide additional data, ensuring data reliability.
However, the aforementioned article fails to address the is-
sue of mode collapse in GAN discriminators, which leads
to the generation of only a singular type of data. In [22],
Zhang et al. combined reinforcement learning with GAN
and designed a novel deduction model, which aims to im-
prove the integrity of surface deduction. In [23], Kang et
al. proposed a novel cross-modal generative adversarial net-
work (CM-GAN) to combine the cross-modal data fusion
technique with the deep adversarial generation technique in
order to construct a cross-modal data generator. However,
the aforementioned article overlooks the potential issues of
gradient vanishing caused by the inadequate design of the
loss function.

To address the above challenges, this paper pro-
poses a multidimensional tensor-aware GAN-based pseudo-
measurement data deduction in IoT-empowered distribution
station. Firstly, the measurement data tensor model in IoT-
empowered distribution station and traditional GAN model
are constructed. Secondly, pseudo measurement data pro-
cessing is realized by abnormal data elimination. Then, the
improved GAN based on tensor decomposition is formulated
to create a supervised learning environment for the GAN and
improve the convergence speed of theGAN,which ultimately
solves deduction of pseudo measurement data in distribution
station. The main contributions of this work are summarized
as follows.

• Multidimensional tensor decomposition-based input
of GAN generator: This paper takes the expansion ma-
trices of multidimensional tensor, expansion matrix of
mask tensor, and a set of noise vectors as inputs to
the generator. The dimensionality of the input data
can be efficiently reduced through tensor expansion,
allowing the generator to more effectively capture the
data’s diversity. Additionally, leveraging the expansion
matrix of the mask tensor aids the generator to focus
on generating the portion of the samples that are rele-

vant to useful information. This approach mitigates the
instability often encountered by GAN when handling
high-dimensional and complex data.

• Improved GAN discriminator: In the improved GAN
model, the task of the discriminator is to further distin-
guish whether the input discriminator data come from
measurement data collected by deployed collection de-
vices or data derived from generators. The generated
adversarial network can be trained in a supervised en-
vironment and improve model training accuracy.

• Optimization of loss function: We improve the gener-
ator loss function based on the multidimensional data
repair loss and the multidimensional context loss to en-
sure that the overall maximization of the inferred data
follows the true data distribution. In addition, the im-
proved discriminator loss consists of the original loss,
the gradient penalty term, and the multidimensional
context loss. The multidimensional context loss is in-
troduced to help the discriminator better understand the
input samples, thus improving the discriminator’s abil-
ity to discriminate the samples generated by the gener-
ator. The gradient penalty term can effectively prevent
the gradient explosion problem andmake GAN training
more stable.

The remainder of this article is organized as follows.
Section II introduces the system model. Section III presents
the improved GAN based on tensor decomposition for data
deduction. Simulation results are given in Section IV. Sec-
tion V provides the conclusion.

2. Pseudo Measurement Data deduction Model

2.1 Measurement Data Tensor Model in Low-Voltage Dis-
tribution Station

Fig. 1 Theminimal data collectionmodel for IoT-empowered distribution
station area.
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In IoT-empowered distribution station area, the elec-
tricity consumption data of each user are collected through
collection devices and then transmitted to the gateway for
management [24]. Minimal data collection means reducing
collection costs and resource consumption through effective
methods and strategies, while ensuring the accuracy and ob-
servability of collected data. In order to meet the minimum
requirements for accurate data collection within the distribu-
tion area, IoT collection device is selectively deployed only
in certain zones of the distribution station area. Therefore,
it is necessary to use the measured data collected by the de-
ployed collection devices to perform pseudo measurement
data deduction for the data in the area without the deployed
collection devices. The minimal data collection model for
IoT-empowered distribution station area is shown in fig. 1.
In order to fulfill the demand for minimal precise data col-
lection within the distribution station area, IoT collection
device is selectively deployed only in certain zones of the
distribution station area. Simultaneously, the measured data
collected by the deployed devices are utilized to extrapo-
late and supplement the data in regions where collection
device is not deployed, thus facilitating a variety of com-
putational applications within the power distribution station.
This methodology facilitates the execution of diverse com-
putational applications within the power distribution station
area. The collected measurement data includes voltage, cur-
rent, electrical energy, etc [25].

A tensor is a high-dimensional array, whose spatial di-
mension is usually referred to as the order of the tensor.
Defined Z𝑁 ∈ R𝑞1×𝑞2×···𝑞𝑛×···×𝑞𝑁 as a tensor of 𝑁 orders,
where 𝑞𝑛 is the 𝑛-th dimension[26]. In order to deduce
missing data of the areas without collection devices, tak-
ing current data as an example, a three-dimensional tensor
L3 ∈ R𝑞1×𝑞2×𝑞3 is first constructed, including current data
in the areas with collection devices and missing data in the
areas without collection devices. In the three-dimensional
tensor, 𝑞1 is the user information dimension, which rep-
resents the number of users in the station. 𝑞2 is the date
dimension, which represents the number of days included in
each collection cycle. 𝑞3 is the collection frequency dimen-
sion, which represents the number of times of data collected
per day in the collection cycle [27]. Each element in this
tensor L3 represents the current value of the user at each
measurement time.

2.2 Traditional GAN Model

GAN possesses the capacity to acquire knowledge about the
temporal patterns and correlations within the data gathered
from the low-voltage distribution station area. Based on
GAN, it can achieve the deduction of missing data in the
areas without collection devices, supporting various com-
puting applications in the low-voltage distribution station
area. GAN consists of two neural networks. One is called
the discriminator 𝐷 and the other one is called the generator
𝐺[28]. The goal of the discriminator is to accurately deter-
mine whether the input samples are derived from deployed

collection devices or the generator as much as possible. The
generator expects its generated data to deceive the discrim-
inator as much as possible. These two networks with op-
posite objectives continuously undergo alternating training,
and when they finally converge, the network reaches Nash
equilibrium [29], [30]. The traditional generator model takes
a stochastic sample of noise as its input, while the discrimi-
nator generates a probability value indicating the likelihood
that the input data originate from the measured data acquired
by deployed collection devices [31]. GAN makes the gener-
ator generate deduction data tensors G3 through adversarial
training. The distribution of data 𝑝𝑔 in the G3 follows the
distribution of data collected by deployed devices, i.e., 𝑝𝑟 .
On the one hand, the discriminator 𝐷 uses a label 𝑦 = 1 to
indicate that the input data came from the deployed collec-
tion device, and 𝑦 = 0 to indicate that the input data came
from the generator. The output of the discriminator 𝐷 is the
probability that the input data come from the measurement
data obtained by the deployed collection devices. By opti-
mizing the discriminator parameters \𝐷 , it ensures that the
discriminator 𝐷 can identify as much as possible the mea-
surement data obtained by the deployed collection devices
and the measurement data deduced by the generator. The
optimization objective of the discriminator is expressed as

max
𝐷
E

𝑙∼𝑝𝑟
[ln𝐷 (𝑙)] − E

𝑗∼𝑝 𝑗

[ln𝐷 (𝐺 ( 𝑗))], (1)

where E[·] represents the expectation, 𝑙 is the measurement
data obtained from the deployed collection devices in L3,
𝑗 is the input data of the generator, 𝐺 ( 𝑗) is the measure-
ment data deduced by the generator, 𝑝𝑟 is the distribution
of measurement data obtained from the deployed collection
devices, 𝑝 𝑗 is the distribution of data input to the generator,
𝐷 (𝑙) is the probability that the discriminator recognizes the
measurement data obtained from the deployed collection de-
vices as the measurement data obtained from the deployed
collection devices, and 𝐷 (𝐺 ( 𝑗)) is the probability that the
discriminator recognizes the measurement data deduced by
the generator as the measurement data obtained by the de-
ployed collection devices. On the other hand, the generator
𝐷 continuously optimizes its parameters \𝐺 during the train-
ing process, hoping that the deduced data can confuse the
discriminator 𝐷 as much as possible, i.e. minimizing the
discrimination probability of the deduced data 𝐺 ( 𝑗). The
optimization objective of the generator is represented as

min
𝐺

− E
𝑗∼𝑝 𝑗

[ln𝐷 (𝐺 ( 𝑗))] . (2)

The training process of 𝐷 and 𝐺 is essentially a zero-sum
game, with the goal of obtaining the discriminator parameter
\𝐷 that maximizes the classification accuracy of the discrim-
inator and the generator parameter \𝐺 that deceives discrim-
inator to the greatest extent possible. Define 𝑉 (𝐺, 𝐷)as a
value function, which contains generator and discriminator
parameters. The game objective of this process can be ex-
pressed as
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min
𝐺
max
𝐷

𝑉 (𝐺, 𝐷) = E
𝑙∼𝑝𝑟

[ln𝐷 (𝑙)] − E
𝑗∼𝑝 𝑗

[ln𝐷 (𝐺 ( 𝑗))] .

(3)
3. Improved GAN Based on Tensor Decomposition

The traditional GAN framework is known to exhibit in-
stability when confronted with high-dimensional complex
datasets. Furthermore, the presence of multidimensional at-
tributes in pseudo-measurement data collected from impor-
tant nodes within the low-voltage distribution station area
results in diminished network training speed and accuracy
for GANs. In response to the above issues, we propose an
improved GAN based on tensor decomposition. The im-
proved GAN network model architecture is shown in Fig.
2. Firstly, the expansion matrices of tensor L3, the expan-
sion matrices of mask tensor X3, and a set of noise vector
k are used as inputs to the generator to alleviate the insta-
bility of GAN when processing high-dimensional complex
data and improve GAN’s discriminative ability. Secondly,
within the framework of the improved GAN model, the goal
of the discriminator is to differentiate between data orig-
inating from deployed collection devices or generated by
the GAN’s generator. This adaptation creates a supervised
learning environment for the GAN, which ultimately results
in the enhancement of model training accuracy. Finally, by
optimizing the loss functions for both the generator and dis-
criminator components, the convergence speed of the GAN
model is further improved.

3.1 Model comparison

GAN is an unsupervised generative model with "two-person
zero-sum game" as the core idea, and the two players in the
game are composed of generators and discriminators. The
input of traditional GANmodel is only a set of random noise,
so the samples generated by GAN model are random, and
cannot meet the needs of high-dimensional data deduction.
In addition, the traditional GAN model is trained without
supervision, and the model loss function is relatively sim-
ple. Aiming at the requirement of high-dimensional data
inference, the improved GAN model preprocesses the data
input into the model based on data dimension reduction, so
as to avoid the instability of traditional GAN frameworks in
the face of high-dimensional complex data sets. In addition,
the mask matrix is added to the training of the adversarial
network, so that the GAN model can be trained under super-
vision. At the same time, the improved GAN improves the
convergence speed and accuracy of the model by designing
a more complex loss function. The detailed comparison be-
tween traditional GAN and improved GAN is shown in Table
1.

3.2 Pseudo measurement data processing

In the context of minimal collection, only some collection
devices are deployed in the low-voltage distribution station
area. In order to conveniently represent the deployment of

collection devices in the low-voltage distribution station area,
a mask tensor X3 that is consistent with the collection data
dimension is established. When its element value is 0, it
indicates that the collection device has not been deployed,
and state pseudo measurement data deduction is required.
Otherwise, its element value is 1. Simultaneously, a tensor
expansion technique is applied to reduce the dimensionality
of the input data.During the matrix expansion process of the
tensor, it samples all tensor orders in a staggered manner. In-
stead of simply taking eigenvalues from one order and then
another, it conducts modal expansion of eigenvalues from
different orders in a staggered sampling fashion. This en-
ables the transfer and fusion of eigenvalues between different
orders in the process of sampling. In the process of tensor
unfolding, a three-dimensional tensor is unfolded into three
two-dimensional arrays, thus realizing the dimensionality
reduction of the data.

In order to reduce the impact of anomalous data in the
tensor on data deduction, we combine the seasonal com-
ponent of the time series decomposition and the absolute
median deviation for anomalous data detection. Since the
tensor contains the pseudo measurement data of each mea-
surement site over a period of time, the time series of the
detected site is defined as𝑌 . Firstly, we perform a time series
decomposition to obtain the periodic component 𝑆𝑌 of the
time series and compute the residual component 𝑌1, which
is givn by

𝑌1 = 𝑌 − 𝑆𝑌 − 𝑦′, (4)

where 𝑦′ is the median of the time series 𝑌 .
The absolute median deviation has a strong robustness

to outliers. When there are extreme values or deviated data
points, theabsolute median deviation has a lower sensitiv-
ity to these anomalies and can more accurately reflect the
variability of the time series. Define 𝑑MAD as the absolute
median deviation, which is given by

𝑑MAD = median( |Y − y′ |), (5)

where median(·) denotes taking the median of the variable.
Then, define 𝑅 𝑗 as the maximum residual between

the residual component and the absolute median deviation,
which is given by

𝑅 𝑗 =
max |Y1 − dMAD |

𝑑MAD
, 1 ≤ 𝑗 ≤ 𝑄, (6)

where 𝑗 is sample label, 𝑄 = 𝑞2 × 𝑞3 is the total num-
ber of samples. After completing the residual computation,
anomalous data detection can be performed by comparing the
critical value of the t-distribution and the maximum resid-
ual. Define _ 𝑗 as the critical value of the corresponding
t-distribution, which is given by

_ 𝑗 =
(𝑄 − 𝑗)𝑡𝑝,𝑄− 𝑗−1√︃

(𝑄 − 𝑗 − 1 + 𝑡2
𝑝,𝑄− 𝑗−1) (𝑄 − 𝐽 − 1))

, (7)

𝑝 = 1 − 𝜎

2(𝑄 − 𝑗 − 1) , (8)
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Table 1 Model Comparison

Traditional GAN Improved GAN
The imput of model Random noise The expansion matrices of tensor, the expansion matrices of mask tensor, and noise vector
The type of model Unsupervised model Supervised model

The loss function of the generator Discrimination probability Multidimensional data repair loss and multidimensional contextual loss
The loss function of the discriminator Original loss Original loss, gradient penalty term, and multidimensional contextual loss

Fig. 2 Improved GAN network model architecture based on tensor de-
composition.

where 𝑡𝑝,𝑄− 𝑗−1 is the critical value of the t-distribution with
significance equal to 𝑝 and degrees of freedom equal to
𝑄 − 𝑗 − 1. When 𝑅 𝑗 ≥ _ 𝑗 , the data point is defined as an
anomalous data point, and it is removed from the tensor, and
the removed position is set to zero.

3.3 Improved Generator Network

In the context of minimal collection, only some collection
devices are deployed in IoT-empowered distribution station
area. In order to conveniently represent the deployment of
collection devices in the low-voltage distribution station area,
a mask tensor X3 that is consistent with the collection data
dimension is established. When its element value is 0, it
indicates that the collection device has not been deployed,
and state pseudo measurement data deduction is required.
Otherwise, its element value is 1. Simultaneously, a tensor
expansion technique is applied to reduce the dimensionality
of the input data. Defined X3(𝑖) as the 𝑖-order expansion
matrix of the mask tensor X3. In order to further utilize

the known information in the measurement data obtained by
deployed collection devices and reduce the dimensionality
of the input data, the expansion matrices of tensor L3, the
expansion matrices of mask tensor X3, and a set of noise
vectork are used as inputs to the generator. Themeasurement
data in the expansion matrices of tensor L3 follow the data
distribution 𝑝 𝑗 , and noise vector k is a random vector with
sampling interval (0, 0.01). From this, defined L̄3 as the
output of the generator, which is represented as

L̄3 = 𝐺

(
L3(𝑖) ,X

3
(𝑖) ,

(
1 − X3(𝑖)

)
� k | 𝑖 = 1, 2, 3

)
, (9)

where � represents the Hadamard product between two ma-
trices. L3(𝑖) is the 𝑖-order expansion matrix of the tensor
L3.

Since the generator network generates and replaces the
measurement data obtained from the deployed collection de-
vices while deducting the missing data from the regions
where no collection devices have been deployed, L3(𝑖) is not
the final extrapolated data. Define L̂3 as the deduced data
tensor and the three expansion matrices of the deduced data
tensor L̂3 as L̂3(1) , L̂

3
(2) , and L̂3(3) , which are represented as

L̂3(1) = X(1) � L3(1) +
(
1 − X(1)

)
� L3(1) ,

L̂3(2) = X(2) � L3(2) +
(
1 − X(2)

)
� L3(2) ,

L̂3(3) = X(3) � L3(3) +
(
1 − X(3)

)
� L3(3) ,

(10)

where ®L3(1) ,
®L3(2) , and

®L3(3) are the three expansion matrices
ofL3(𝑖) . It can be seen that L̂

3
(1) , L̂

3
(2) , and L̂3(3) retain themea-

surement data obtained by the deployed collection devices
in the original data, and the missing data in the undeployed
collection device area are filled in with the corresponding
values of the deduced data expansion matrices ®L3(1) ,

®L3(2) ,

and ®L3(3) , respectively. L̂3(1) , L̂
3
(2) , and L̂3(3) are the final and

complete expansion matrix of the deduced data.

3.4 Improved Discriminator Network

In the improved GAN model, the task of the discriminator is
no longer to identify the source of input data, but to further
distinguish whether the input data of the discriminator are
measurement data obtained by deployed collection devices
or deduced by the generator. Therefore, the output of the
discriminator in the improved GAN is a three-dimensional
tensor H3, where each value ℎ represents the probability
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that the data in the corresponding input data are the mea-
surement data obtained by the deployed collection devices.
When ℎ = 1, it means that the discriminator determines that
the data is measurement data obtained by the deployed col-
lection devices. When ℎ = 0, it means that the discriminator
determines that the data are deduced data. At this point, the
discriminator is equivalent to predict the mask tensorX3, be-
cause in the mask tensor X3, the value corresponding to the
deployed collection device is 1, and the value corresponding
to the undeployed collection device is 0. SinceX3 is a tensor
that can be determined in advance, the discriminator is in
a supervised state, which can further improve its level. To
help the discriminator 𝐷 better distinguish between the orig-
inal collection data and the deduced data, a hint mechanism
is designed to provide an additional hint tensor V3 for the
discriminator 𝐷. Firstly, define a random binary tensor X′3

with dimensions consistent with the mask tensor X3 and a
sampling space of {0, 1}. The three expansion matrices of
the tensorV3 can be represented as

V3(1) = X′3
(1) � X3(1) + 𝛿

(
1 − X′3

(1)

)
,

V3(2) = X′3
(2) � X3(2) + 𝛿

(
1 − X′3

(2)

)
,

V3(3) = X′3
(3) � X3(3) + 𝛿

(
1 − X′3

(3)

)
,

(11)

where 𝛿 ∈ (0, 1) is a random number and X′3
(𝑖) is the expan-

sion matrix of the tensor X′3. The hint tensor retains partial
information of the mask tensor. When all the elements of
X′3 are 1, the hint tensorV3 is consistent with the mask ten-
sor X3. When all the elements of X′3 are 0, all the elements
in the hint tensor V3 are 𝛿. Therefore, the sampling space
for the elements in the hint tensorV3 is {0, 𝛿, 1}. When the
element 𝑣 in the hint tensorV3 is set to 0 or 1, the hint tensor
V3 prompts the discriminator that the corresponding value
in the input data is from the measurement data obtained by
the deployed collection devices or the deduced data from
the undeployed collection device area. When 𝑣 = 𝛿, the
hint tensor does not provide additional information for the
discriminator, and the discriminator needs to make its own
judgment.

3.5 Data Deduction Model for Area without Collection
Devices

The flowchart of the proposed improved GAN based on ten-
sor decomposition is shown in Fig. 3. Firstly, fix the gener-
ator parameter \𝐺 and optimize the discriminator parameter
\𝐷 . Due to the presence of the hint mechanism, the dis-
criminator is in a supervised state at this time, and the data
that need to be judged by the discriminator itself are the data
domain with the corresponding hint tensor V3’s informa-
tion amount of 0, i.e. 𝑣 = 1. This article further improves
the GAN model by improving the loss function of the dis-
criminator and generator. The improved discriminator loss
consists of original loss, gradient penalty term, and multi-
dimensional contextual loss. The original loss refers to the

Fig. 3 Flowchart of the proposed improved GAN based on tensor decom-
position.
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difference between the deduced data and the real data. The
gradient penalty term is used to measure the change in the
output of the discriminator in the gradient direction, thereby
avoiding the disappearance or explosion of the gradient, and
the multidimensional contextual loss refers to the difference
between the hint tensor and the discriminator output. The
loss function of the discriminator can be expressed as

𝐿𝐷 = E
𝑙∼𝑝𝑟

[ln𝐷 (𝑙)] − E
𝑙∼𝑝 𝑗

[ln𝐷 (𝑙)]

+ E
𝑙∼𝑝𝑝𝑒𝑛

[(∇𝐷 (
𝑙

)
2
− 1

)2]
+ 𝛼𝑖

𝑁∑︁
𝑖=1,𝑣=1

V3(𝑖) − H3(𝑖)
 , (12)

where the distribution 𝑝𝑝𝑒𝑛 is obtained by uniformly sam-
pling the corresponding data points during the training pro-
cess. The generated data distribution approximates the real
data distribution. 𝑙 is the sampling point on this distribu-
tion. Then further update the generator parameter \𝐺 . To
ensure that the overall deduced data follow the true data
distribution to the maximum extent, the generator network
loss function is composed of multidimensional data repair
loss and multidimensional contextual loss. The multidimen-
sional data repair loss refers to the difference between the
missing data in the areas without collection devices and the
deduction data. The multidimensional contextual loss refers
to the difference between the measurement data obtained by
the deployed collection devices and the deduced data. The
loss function of the generator can be expressed as

𝐿𝐺 = −𝐷
(
𝐺

(
L3(𝑖) +

(
1 − X3(𝑖)

)
� ®L3(1) | 𝑖 = 1, 2, 3

))
− 𝛼𝑖

𝑁∑︁
𝑖=1

X(𝑖) � L3(𝑖) ,X(𝑖) � L3(1)
 . (13)

The update of network parameters can be realized by
using the improved Adam algorithm based on the above loss
function. Improved Adam dynamically adjusts the learning
rate of each parameterwith the first-ordermoment estimation
and second-order moment estimation of the gradient, and in-
troduces momentum and adaptive learning rate to make the
algorithm speed up the model learning, improve the network
recognition accuracy, and reduce oscillations at convergence.
The network update process as follow. First, first-order mo-
ment estimation is performed based on the gradient of the
generator loss function as well as the discriminator loss func-
tion, which are given by

𝑚𝐷
𝑜 = 𝜌1𝑚

𝐷
𝑜−1 + (1 − 𝜌1)O𝜗𝐷

𝐿𝐷 , (14)
𝑚𝐺

𝑜 = 𝜌1𝑚
𝐺
𝑜−1 + (1 − 𝜌1)O𝜗𝐺

𝐿𝐺 , (15)

where 𝜌1 is the exponential decay rate of the first-order mo-
ment estimation, 𝑚𝐺

𝑜 is the first-order moment estimation of
generator networks in the 𝑜-th iteration, 𝑚𝐷

𝑜 is the first-order

moment estimation of discriminator networks in the 𝑜-th it-
eration,O𝜗𝐷

𝐿𝐷 is the gradient of the generator loss function,
and O𝜗𝐺

𝐿𝐺 is the gradient of the discriminator loss func-
tion. Second, second-order moment estimation is performed
based on the gradient of the generator loss function as well
as the discriminator loss function, which are given by

𝑣𝐷𝑜 = 𝜌2𝑣
𝐷
𝑜−1 + (1 − 𝜌2) (O𝜗𝐷

𝐿𝐷)2, (16)
𝑣𝐺𝑜 = 𝜌2𝑣

𝐺
𝑜−1 + (1 − 𝜌2) (O𝜗𝐺

𝐿𝐺)2, (17)

where 𝜌2 is the exponential decay rate of the second-order
moment estimate, 𝑣𝐺𝑜 is the second-order moment estimation
of generator networks in the 𝑜-th iteration, 𝑣𝐷𝑜 is the second-
order moment estimation of discriminator networks in the
𝑜-th iteration,

Then, we introduce a learning rate decay strategy based
on Adam algorithm, which can speed up the updating of
parameters, make Adam algorithm converge faster in the
early stage, and can improve the accuracy of the model. The
network updates are given by

𝜗𝐷,𝑜 = 𝜗𝐷,𝑜−1 −
𝜓𝑜

𝑚𝐷
𝑜

1−𝜌1√︂
𝑣𝐷0
1−𝜌2 + Z

, (18)

𝜗𝐺,𝑜 = 𝜗𝐺,𝑜−1 −
𝜓𝑜

𝑚𝐺
𝑜

1−𝜌1√︃
𝑣𝐺𝑜
1−𝜌2 + Z

, (19)

where Z is a positive number close to 0, which prevents the
denominator from being 0 in the formula calculation. 𝜓𝑜

represents the learning rate, which decreases as the number
of iterations increases. The formula for 𝜓𝑜 is given by

𝜓𝑜 =
𝜓𝑜−1
1 + b𝑜

, (20)

where b is the decay factor.

4. Simulation Result

In practice, the data in the areas without collection devices
are not available, which means that data deduction is an un-
supervised learning problem. To facilitate validation, we
uses a complete dataset as the basis for generating a dataset
that contains missing data in the areas without collection
devices. The experimental dataset comes from 3 days of
current data from 200 users in a distribution station in a city
in China, where the data collection frequency is once every
15 minutes. Gaussian perturbations with a standard devi-
ation of 0.02 are added to the data set to further simulate
the volatility present in the actual collected data [32]. At
the same time, in order to ensure the comprehensiveness of
the features of the training data and the strong correlation
between the features, the order of the sample data is dis-
rupted. Fig. 4 shows the heat map of the original current
data set, with the high current values in red and the low
current values in blue. In this figure, the labels denote the
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user numbers, and we have considered the current data of
200 users during a day. There are differences in the charac-
teristics of electricity consumption of different users under
the same station, and their peaks and valleys of electricity
consumption are different. In addition, the user data are
temporal in nature and are collected, transmitted and stored
sequentially at equal time intervals. The data analyzed in
this paper were collected at 15-minute sampling intervals,
with 96 data points collected in one day. Therefore, the total
size of the experimental dataset is 57,600 data points. The
dataset exhibits a time series nature, reflecting the electric-
ity usage patterns of users at different time intervals within a
day. Preprocessing steps include adding Gaussian noise with
a standard deviation of 0.02 to simulate inherent variability
in real-world data. To ensure comprehensive features and
enhance feature relationships, sample data order was ran-
domized to eliminate temporal effects, enabling the model
to better learn inter-feature correlations.

Due to the presence of missing data in the areas without
collection devices and the lack of complete data for training
network parameters, a multi-layer perceptron is chosen to
construct the generator and discriminator network. The in-
put data dimensions of the network are the original data
dimensions (𝑑𝑖𝑚) × 2. The generator network consists of
a three-layer fully connected networks, with the activation
functions of the first and second layers selected as 𝑟𝑒𝑙𝑢 func-
tion, and the activation function of the third layer selected as
𝑡𝑎𝑛ℎ function. The discriminator network structure is simi-
lar to the generator network structure, and is also composed
of a three-layer fully connected network[33]. The difference
is that the activation function of the third layer is selected as
a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function, and the output is mapped to the inter-
val of [0, 1], representing the discriminator’s discrimination
probability[34]. The detailed network parameters are shown
in Table 2 and Table 3.

The performance of the proposed algorithm is com-
pared with two existing algorithms, which are introduced
below.

• GAN-based data deduction algorithm[35]: Traditional
GAN requires a large amount of data and computing re-
sources to support the functions of generators and dis-
criminators. Compared with the algorithm proposed
in this paper, traditional GAN is trained in an unsuper-
vised environment with low model convergence speed
aswell as convergence accuracy. In addition, traditional
GAN does not consider the utilization of known infor-
mation and takes only a set of noise vectors as input to
the generator.

• WGAN (Wasserstein generative adversarial network)-
based data deduction algorithm [36]: WGAN intro-
duces theWasserstein distance tomeasure the difference
between the generated samples and the real samples, so
as to improve the stability of training. In addition, in
order to ensure that the discriminative network satis-
fies the Lipschitz continuity condition, WGAN adopts
the weight clipping technique to limit the weights of

the discriminative network to be fixed within a reason-
able range, which ensures the effective calculation of
the Wasserstein distance. However, WGAN ignores the
utilization of known information and only adopts a set
of noise vectors as input, which is more random.

• Sequential tensor completion algorithm (STCA) [37]:
STCA models the data as a three-dimensional tensor,
thus formulating the data deduction problem as a low-
rank tensor complementation problem. Themethod can
effectively capture the change of data correlation over
time, thus improving the efficiency of data deduction.

• MissForest algorithm [38]: MissForest is a missing
data deduction method based on random forest. The
method utilizes non-missing data as a training set and
missing data as a test set, fits a random forest through
the training set and predicts the missing data. In each
iteration, MissForest updates the predicted values of
the missing values to further improve the repair perfor-
mance until the convergence condition is satisfied or the
maximum number of iterations is reached.

Table 2 Generator Network Structure
Layer name parameters value
0 Input layer - 𝑑𝑖𝑚 × 2

1 Fully connected layer Number of neurons 𝑑𝑖𝑚 × 4
Activation function 𝑟𝑒𝑙𝑢

2 Fully connected layer Number of neurons 𝑑𝑖𝑚 × 3
Activation function 𝑟𝑒𝑙𝑢

3 Fully connected layer Number of neurons 𝑑𝑖𝑚

Activation function 𝑡𝑎𝑛ℎ

Table 3 Discriminator Network Structure
Layer name parameters value
0 Input layer - 𝑑𝑖𝑚 × 2

1 Fully connected layer Number of neurons 𝑑𝑖𝑚 × 4
Activation function 𝑟𝑒𝑙𝑢

2 Fully connected layer Number of neurons 𝑑𝑖𝑚 × 3
Activation function 𝑟𝑒𝑙𝑢

3 Fully connected layer Number of neurons 𝑑𝑖𝑚

Activation function 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

Fig. 4 and Fig. 5 show the deat map of the original
current data set and the current data heat map after data de-
duction, respectively. The data heat map deduced by the
proposed algorithm is almost consistent with the original
data heat map, which demonstrates that the proposed algo-
rithm is capable of accurately inferring all the original data
from the existing partial data, achieving a relatively good
data deduction effect under supervision. The reason for this
is that the proposed algorithm utilizes tensor expansion to
effectively reduce the dimensionality of the input data, al-
lowing the generator to capture the diversity of the data more
effectively. Additionally, the algorithm enhances the genera-
tor loss function by integrating multidimensional data repair
loss and multidimensional context loss to ensure that the
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Fig. 4 The heat map of the original current data set.

Fig. 5 The current data heat map after data deduction.

inferred data closely matches the true data distribution.
The measurement data of distribution station in reality

has strong randomness and uncertainty, and their missing
positions and quantities are uncontrollable. We do not arti-
ficially specify fixed missing points. Instead, we randomly
generate a mask matrix to ensure a certain range of missing
amounts for each data, without limiting the missing position.
If a mask is randomly generated with a 20% missing rate as
the threshold condition, the missing quantity of 100 sam-
pling points per sample will fluctuate within a small range
of 20 sampling points, while the average missing quantity of
2000 data points will remain stable at 20%. It can quantify
the deduction effect of the model in areas without deployed
collection devices.

Take a load data with a random missing threshold set to
20% in the test data as an example to reflect the performance
and process of the model in deducing missing data. Fig.
6 shows data deduction curve with 20% missing rate. Fig.
6(a)-6(e) show the data deduction curve of 1, 25, 50, 100,
and 200 iterations respectively. The red curve represents
the distribution of the original data, and yellow curve repre-

sents the deducing data. The gap between the corresponding
points represents the error between the deducing data and
the original data. If the two coincide, it means that the er-
ror is little, and the data deduced by the model approximate
the real data in the area without collection devices. As can
be seen from Fig. 6, the gap between the distribution of
deduced data and the distribution of real data is gradually
narrowing as the number of iterations increases. When the
number of iterations is 100, most of the data points of the
two curves have overlapped. When the number of iterations
is 200, the deduced data have been completely coincident
with the original data. The simulation results show that the
proposed algorithm performs significantly when the missing
rate of data is 20%. It can precisely deduce the missing data
in the area without collection devices and performs equally
well when endpoint values are missing.

Fig. 7 and Fig. 8 show the variation of root mean
square error (RMSE) and mean absolute percentage error
with data missing rate. RMSE represents the mean square
difference between the deduced value and the original value.
It can avoid the problem of errors canceling out each other,
thus accurately reflecting the absolute value of the corrected
error. Mean absolute percentage error is a comparison be-
tween the deduced value and the original value, which better
reflects the deduction performance of missing data. The data
deduction accuracy of each algorithm is reduced gradually
as the data missing rate keeps increasing. When the missing
rate is 80%, the RMSE of the proposed algorithm decreases
by 25.0%, 47.5%, 65.0%,and 69.6% and the average abso-
lute percentage error of the proposed algorithm is reduced
by 9.3%, 12.5%, 24.6%, and 40.2% compared to WGAN,
GAN, STCA, and MissForest. The reason for this is that,
for time series data or data with temporal relationships, the
MissForest algorithm and STCAmay not effectively capture
data features, leading to inaccurate inference results. Tradi-
tional GAN andWGAN operate in an unsupervised environ-
ment, resulting in poor discriminator training performance.
Additionally, traditional GAN and WGAN do not take into
account the utilization of known information, leading to low
data inference accuracy of the generator. The discrimina-
tor output of the proposed algorithm is a tensor with the
same dimension as the input, which puts the discriminator
in a supervised environment and effectively improves the
training effect of the discriminator. At the same time, the
proposed algorithm sets up a hinting mechanism for the dis-
criminator, and it further forces the generator to optimize its
own network parameters and improves the generator’s data
deduction accuracy.

Fig. 9 shows the generator training loss versus itera-
tions. Iteration refers to the process of gradually optimizing
the networkmodel by constantly adjusting themodel parame-
ters. In each iteration, themodel engages in the process of pa-
rameter optimization. As the number of iterations increases,
the performance of the model will gradually improve. The
generator training loss is used to measure the convergence
speed and data inference accuracy of GAN and WGAN. The
smaller the loss, the higher the inference accuracy. Com-
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Fig. 6 Data deduction curve with 20% missing rate.

pared with GAN, the proposed algorithm converges faster
and has less loss. When the iteration is 200, the generator
training loss of the proposed algorithm is reduced by 61.9%
and 75.5% compared to WGAN and GAN. The reason is
that the proposed algorithm considers the multidimensional
context loss in the design of generator loss functions, and
adds a gradient penalty term in the design of generator loss
function, which effectively improves the convergence speed
of the generator network.

5. Conclusion

In this paper, we proposed a novel multidimensional tensor-
aware GAN algorithm for deducing missing data in IoT-
empowered distribution station. The proposed algorithm
enhances the generator’s input, discriminator’s structure, and
loss function of the GAN, enabling it to handle complex and
high-dimensional data. In addition, by employing histori-
cal data as a reference and operating in a supervised envi-
ronment, the proposed algorithm significantly enhances the
accuracy of data deduction and convergence performance
compared to existing algorithms. Simulation results demon-
strate that compared with MissForest and GAN, the data
deduction accuracy of the proposed algorithm is improved
by 47.5% and 69.6%. The generator training loss of the pro-
posed algorithm is reduced by 33.5% compared with GAN.
In the future, we will explore the integration of unsupervised
or semi-supervised learning methods with existing models
to address the challenge of data inference in situations with
insufficient historical data.
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