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PAPER

Task Offloading and Resource Allocation for Wireless

Powered Multi-AP Mobile Edge Computing

Guanqun SHEN†, Kaikai CHI†a), Osama ALFARRAJ††, and Amr TOLBA††, Nonmembers

SUMMARY IoT devices, which possess limited battery ca-
pacity and computing capabilities, are unable to meet many ap-
plications’ demands. The integration of wireless power trans-
fer and edge computing has emerged as a promising solution for
this problem. Nevertheless, efficiently making offloading deci-
sions and allocating resources pose significant challenges, par-
ticularly in the scenarios of multiple access points (APs). This
paper focuses on optimizing the sum computation rate (SCR) in a
wireless powered network having multiple APs. The devices work
in binary offloading, operating under frequency-division multiple
access (FDMA) and time-division multiple access (TDMA), re-
spectively. To efficiently address these two mixed-integer nonlin-
ear programming problems, a deep reinforcement learning based
algorithm is employed to determine the near-optimal offloading
decisions. Additionally, under the given offloading decision, we
present an algorithm using the golden section search for FDMA
to obtain the subsequent optimal time allocation, and apply con-
vex optimization algorithm to obtain the optimal time allocation
for TDMA. Our algorithms achieve over 95 percent of the max-
imum SCR with low complexity. In comparison to the baseline
algorithms, our proposed algorithms exhibit advantages in terms
of convergence speed and attained SCR.
key words: Edge computing, wireless power transfer, deep re-
inforcement learning, computation rate maximization

1. Introduction

The IoT devices is steadily growing, playing crucial
roles in industrial production and enhancing daily con-
venience. They encompass various domains such as in-
telligent plants, autonomous driving, and smart home
[1]. However, the pursuit of heightened intelligence
poses fresh challenges for conventional IoT nodes, which
grapple with limitations in battery capacity and com-
puting capability [2].

To address the challenges of energy and computa-
tion, an effective solution for IoT networks is using mo-
bile edge computing (MEC) and wireless power transfer
(WPT), called wireless powered mobile edge computing
(WP-MEC) [3]. This paradigm involves the utilization
of WPT, where hybrid access points (H-AP) facilitates
the charging of IoT nodes during the energy transmis-
sion phase [4]. Additionally, edge server provides MEC
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service for the nodes [5–10].
Deep reinforcement learning (DRL) shows great

promise for integration with MECs to enable effective
and intelligent control of IoT nodes. The combination
of WPT, MEC, and DRL has garnered significant at-
tention in recent years.

This work aims to maximize the sum computa-
tion rate (SCR) based on DRL. So far, some research
efforts have been devoted on this issue [11–20]. For
example, [11] studied the WP-MEC using the time-
division multiple access (TDMA) based binary offload-
ing and presented an algorithm using the traditional
optimization techniques to maximize the SCR. Follow-
ing [11], Huang et al. [12] proposed a DRL-based algo-
rithm called DROO for WP-MEC with TDMA-based
binary offloading. It utilizes a deep neural network
(DNN) to generate near-optimal offloading decisions
and employs an efficient algorithm to allocate time re-
sources, thereby maximizing the SCR. [13] investigated
the WP-MEC using the non-orthogonal multiple ac-
cess (NOMA) based binary offloading and proposed a
greedy algorithm based on wireless channel gain. [14]
proposed a resource allocation scheme for the WP-MEC
using the TDMA-based binary offloading to maximize
the minimal computation rate among the nodes.

It should be noted that the above work on the
SCR maximization all considered the WP-MEC with
one single HAP. So far, there is a scarcity of literature
specifically addressing the problems of WP-MEC with
multiple HAPs (i.e., multiple edge servers), which is
practical in the large-scale IoT networks. The scenario
involving multiple HAPs introduces greater complex-
ity in decision-making processes related to offloading
and resource allocation, making it a highly challeng-
ing problem to tackle. [15] focused on WP-MEC with
multiple HAPs and proposed one DRL-based algorithm
to maximize the SCR when using the binary offloading.
In [15], the offloading wireless devices (WDs) associated
to the same HAP use the same communication band
to offload date by using TDMA mode. The offloading
WDs associated to different HAPs use the orthogonal
channels.

In this paper, we focus on WP-MEC consisting
of several H-APs and WNs and aim to maximize the
SCR. We first study the frequency-division multiple ac-
cess (FDMA) based scenario where all offloading WNs
(even those associated to the same H-AP) use different
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orthogonal channels. Then we also study the TDMA-
based scenario where the offloading WNs associated to
the same H-AP use the same communication band to
offload date to H-AP by using TDMA mode. How-
ever, different from [15], each H-AP has its own WPT
duration which is more flexible for WPT but more chal-
lenging to address.

The primary contributions can be summarized as
follows:

• The SCR maximizations under FDMA and TDMA
are formulated as optimization problems. Due to
the large number of parameters to be optimized,
we decouple the parameters into two sets: the of-
floading decision (OD) parameters and the time al-
location parameters. Then, they are decomposed
into a master problem of determining the OD and
a subproblem of optimizing time allocation under
the predetermined OD.

• A policy-based DRL framework is utilized to effec-
tively generates good ODs, which takes the sub-
problem’s optimal solution to calculate the SCR
(i.e., the reward) of a given OD. The DNN within
the framework demonstrates fast convergence dur-
ing the online training process.

• In order to tackle the subproblem, we utilize a
golden section search based method to achieve the
optimal time allocation of FDMA and apply con-
vex optimization algorithm for finding the optimal
time allocation of TDMA.

• Our algorithms achieve the SCR exceeding 95 per-
cent of the maximum achievable rate while main-
taining low computational complexity.

This paper is structured as follows: Section II in-
troduces the related works in the field. Section III
presents the system model, providing a comprehensive
understanding of the underlying architecture. In Sec-
tion IV, we formulate the problems and introduce the
algorithms. Section V presents the simulation results.
In Section VI, we conclude the paper by summarizing
the main findings.

2. Related Works

In WP-MEC networks, the task offloading modes of
WNs can be categorized into two types: partial offload-
ing and binary offloading. This classification is based
on whether the tasks of WNs can be separated into
offloading and local computation parts.

2.1 Partial Offloading

Partial offloading enables distributed processing by of-
floading a portion of tasks to edge servers. This ap-
proach enhances computational efficiency and resource
utilization in the system.

For TDMA, Zhang et al. applied a DRL-based al-
gorithm to maximize the SCR [16]. Meanwhile, Zhou
et al. [17] utilized unmanned aerial vehicles (UAVs) for
WPT and maximized the weighted SCR. Additionally,
a Soft Actor-Critic-based algorithm was proposed by
Zhou et al. [18] for UAV based WP-MEC, maximizing
the SCR of WNs. Intelligent Reflecting Surfaces (IRS)
were leveraged by Mao et al. [19] to enhance WET and
task offloading, thereby maximizing the SCR. More-
over, Chen et al. [20] employed multiple IRSs, energy
beamforming, and multiple-user detection to maximize
the SCR.

In the context of NOMA, [21] focused on maxi-
mizing the energy efficiency of the network. Consid-
ering TDMA, Wang et al. [22] utilized beamforming
technology for uninterrupted charging of WNs by AP,
minimizing the total energy consumption of AP while
ensuring timely task completion. Additionally, in [23],
dynamically arriving tasks within a fixed period were
processed with the objective of minimizing the over-
all energy consumption of the system. For a scenario
where WNs are with battery and collect RF energy
for energy supplementation, [24] addressed tasks with
latency constraints, aiming to minimize transmission
energy consumption. [25] proposed an AoI-aware algo-
rithm to optimize communication and computing re-
source allocation, achieving maximum system utility
while considering the Age of Information constraint in
IoT data analysis scenarios. [26] proposed an approach
that combines MEC and WPT to maximize residual
energy through multi-user dynamic offloading. By em-
ploying FDMA and convex optimization techniques,
the approach achieves superior performance.

2.2 Binary Offloading

Binary offloading facilitates centralized task process-
ing by fully offloading tasks to edge servers [11,27–29].
This approach leverages the high-performance comput-
ing capabilities of edge servers.

In the context of TDMA, both [11] and [12] focused
on maximizing the SCR. For a multiple H-AP scenario,
Zhang et al. proposed a DRL algorithm in [15], aiming
to maximize the SCR.

Liu et al. studied a wireless powered layered fog-
cloud computing network in [30,31], where multiple en-
ergy constrained users first capture energy from H-AP,
and then use the captured energy to offload comput-
ing tasks to fog/cloud servers through H-AP or perform
tasks locally. An optimization problem was proposed to
maximize the minimum remaining energy among mul-
tiple users. On the basis of [30], [31] further optimized
the max-min fairness considering energy balance, aim-
ing to achieve fairness in the remaining energy of mul-
tiple nodes after energy collection and calculation op-
erations.

In addition, [13, 28] studied the design of binary
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Fig. 1 WP-MEC with multiple H-AP.

offloading schemes based on NOMA. In [13], a NOMA
based WP-MEC network is considered, where H-AP
first provides wireless energy to nodes in each time slot,
and then some nodes use NOMA to offload tasks, while
other nodes choose to perform calculations locally. The
goal is to maximize the SCR.

[32] presents a joint resource allocation and task
offloading scheme in WP-MEC networks, achieving
improved residual energy through a mixed-offloading
paradigm and an efficient dual-layer optimization algo-
rithm.

3. System Model

3.1 Network Model

Fig. 1 illustrates the network configuration considered
in this study, which comprises N WNs and M H-APs.
Let WNi be the i-th WN and let APj be the j-th H-
AP . let N = {1, 2, ..., N} and M = {1, 2, ...,M}. Each
H-AP is equipped with a server. This setup enables
H-APs to broadcast RF energy to WNs. The WNs, in
turn, possess the capability to harvest the transmitted
RF energy from the H-APs. This stored energy can be
utilized to power subsequent operations.

For data processing, WNs have two options: they
can either perform the calculation locally or select a
specific H-AP to offload the data.

In our scenario, the time slot is T seconds, and
within each time slot, the channel gain remains con-
stant but may vary across different time slots. The
channel gain of wireless node WNi and APj is

hij = |gij |2αij , (1)

where αij represents large-scale fading component and
gij is the independent random channel fading factor.
Several strategies exist to furnish the transmitter with
highly accurate Channel State Information (CSI). For
example, efficient analog CSI feedback strategies were
introduced in [33] and [34]. Furthermore, in [35] and
[36], CSI quantization feedback strategies were pro-
posed to achieve precise CSI through limited feedback.

This work intends to maximize the SCR under

both FDMA and TDMA modes. The processing time
for data at the H-AP is neglected due to the powerful
computing capabilities available on H-AP. Additionally,
the time spent on the feedback of small-size results is
also ignored. As a result, at each H-AP, a time slot is
primarily divided into two parts: WPT and local/edge
computing time.

In each time slot, each WN is associated to some
H-AP according to the current network state. If one
WN is arranged to conduct local computation in the
current time slot, it harvests the RF energy from its
H-AP and then conduct local computation. If one WN
is arranged to offload data, it harvests the RF energy
from its H-AP and then offloads data to its H-AP.

3.1.1 FDMA protocol

In FDMA communication, each offloading WN has its
own communication band, and there is no interference
between them. The communication bandwidth for each
offloading WN is: B/N , where B denotes the total
available bandwidth, and N(N ≤ N) represents the
total number of offloading WNs.

3.1.2 TDMA protocol

In TDMA communication, the offloading WNs associ-
ated with the same H-AP use the same communica-
tion band and communicate with the H-AP using the
TDMA protocol. On the other hand, the offloading
WNs associated with different H-APs utilize orthogo-
nal channels to ensure interference-free communication.
The communication bandwidth for each offloading WN
is B/M , where M denotes the number of H-APs that
have at least one associated WN.

Let xi,0 = 1 means that WNi processes its data
locally, while xi,j = 1 (j ̸= 0) indicates that WNi of-
floads its data to APj . Additionally, if xi,0 = 1, we let
WNi harvest the RF energy form its nearest H-AP. Let
i′ denote the index of WNi’s nearest H-AP.

3.2 Energy Harvesting Model

During the WPT phase of APj(j = 1, 2, ...,M), its asso-
ciated offloading WNs and local-computing WNs whose
nearest H-AP is APj collect RF energy from APj . The
collected energy of WNi can be calculated as follows:

Ei = µPT (xi0hii′ai′ +

M∑
k=1

xikhikak), (2)

In the equation, µ is the energy capture efficiency, P
denotes H-AP’s energy transmit power, and aj is the
WPT time ratio of APj inside one time slot.

3.3 Local Computing Model

If a WN opts to local computation, it can concurrently
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engage in computation while harvesting RF energy. ϕ is
the number of clock cycles for processing one bit. The
CPU calculation speed of WNi is denoted as fi and is
measured in cycles per second, with its value adjustable
accordingly. Therefore, the amount of processed data
is fiti/ϕ. ti represents the computation time of WNi.
The energy consumption of the CPU is cf3

i ti. It is
crucial to ensure that the consumed energy is less than
the harvested energy, i.e., cf3

i ti ≤ Ei. By maximizing
the computation rate, we can determine optimal ti and
fi. t∗i = T and f∗

i = (Ei

cT )
1/3. Then, WNi’s local

computing rate is given by:

rl,i =
fiti
ϕT

=
[µP (xi0hii′ai′ +

∑M
k=1 xikhikak)/c]

1/3

ϕ

= η1

[
xi0hii′ai′ +

M∑
k=1

xikhikak

]1/3
, i ∈ N , (3)

where η1 , (µP/c)
1
3

ϕ .

3.4 Edge Computing Model

For TDMA mode, let τijT be WNi’s transmission time
associated to APj . The following condition must be
satisfied:

N∑
i=1

τij + aj ≤ 1, ∀j ∈ M. (4)

Let bij be the amount of data for WNi offloaded
to APj . Then

bij =
BiτijT

vu
log2

(
1 +

Pijhij

N0

)
, (5)

where the term vu≥ 1 represents a factor accounting for
the communication overhead in data offloading, which
includes costs such as encryption and data headers.
The variable Pij represents the transmit power of WNi

during data offloading to APj . Additionally, N0 rep-
resents the power of the additive white Gaussian noise
(AWGN) present in the communication channel.

To maximize the data offloading capability of
WNi, it is desirable to utilize all the harvested energy
from the WPT phase. This implies that Pij should be
set to

Pij =
Ei

τijT
=

µP (xi0hii′ai′ +
∑M

k=1 xikhikak)

τij
, (6)

ensuring that all the harvested energy is utilized for
data offloading. Consequently, the computation rate of
WNi, can be expressed as:

ro,ij

=
bij
T

=
Biτij
vu

log2

(
1 +

µPhij(xi0hii′ai′ +
∑M

k=1 xikhikak)

τijN0

)

=ϵ1τij ln

(
1 +

η2hij(xi0hii′ai′ +
∑M

k=1 xikhikak)

τij

)
,(7)

where ϵ1 , B
M̄vu ln 2

and η2 , µP
N0

.

Similarly, for FDMA mode, we have

τij + aj ≤ 1, ∀i ∈ N , j ∈ M, (8)

and

ro,ij = ϵ2τij ln

(
1 +

η2hij(xi0hii′ai′ +
∑M

k=1 xikhikak)

τij

)
(9)

where ϵ2 , B
N̄vu ln 2

.

4. Problem Formulation and Efficient Algo-
rithm

The SCR for a single time slot can be expressed as:

Q(h,x, τ ,a) ,
N∑
i=1

xi · [rl,i, ro,i1, ro,i2, . . . , ro,iM ]
T
,

(10)
where h is the vector of channel gains, x is the vector
of offloading decisions, τ is the vector of transmission
time allocation, and a = [a1, a2, ..., aM ].

Without loss of generality, assume T = 1 below.

4.1 Problem Formulation of TDMA

The formulation of SCR maximization problem under
TDMA is:

(P1) : Q∗(h) = max
x,τ ,a

Q(h,x, τ ,a) (11a)

s.t. 0 ≤ τij ≤ 1,∀i ∈ N , ∀j ∈ M, (11b)

0 ≤ aj ≤ 1, ∀j ∈ M, (11c)

N∑
i=1

τij + aj ≤ 1, ∀j ∈ M, (11d)

M∑
j=0

xi,j = 1, ∀i ∈ N , (11e)

xi,j ∈ {0, 1} , ∀i ∈ N ,∀j ∈ M∪ {0}.
(11f)

(11b), (11c), and (11d) impose limitations on the of-
floading duration allocated to each WN, WPT dura-
tion, and the available time of each H-AP, respectively.
Constraint (11e) ensures that every WN can only be
linked to one H-AP or conducts computation locally.
Note that, different from [15], each H-AP has its own
WPT duration which is more flexible for WPT but
more challenging to address.
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The above problem is mixed-integer nonlinear pro-
gramming (MINLP). Fortunately, given x, it is trans-
formed into the following M independent subproblem
(P2) with respective to APj(j = 1, 2, ...,M). Let Nj be
the set of offloading WNs’ indices which are associated
to APj . Let N ′

j be the set of local-computing WNs’
indices whose nearest H-AP is APj .

(P2) : Q∗
j (h,x) = max

τi,j :i∈N ′
j∪Nj ,aj

∑
i∈N ′

j

rl,i +
∑
i∈Nj

ro,ij

(12a)

s.t. 0 ≤ τij ≤ 1, ∀i ∈ Nj , (12b)∑
i∈Nj

τij + aj ≤ 1, (12c)

0 ≤ aj ≤ 1. (12d)

For any i ∈ N ′
j ,

rl,i = η1 [hijaj ]
1/3

. (13)

For any i ∈ Nj ,

ro,ij = ϵ1τij ln

(
1 +

η2h
2
ij

τij
aj

)
. (14)

4.2 Problem Formulation of FDMA

The SCR maximization problem under FDMA can be
formulated as (P3):

(P3) : Q∗(h) = max
x,τ ,a

Q(h,x, τ ,a) (15a)

s.t. τij + aj ≤ 1, ∀j ∈ M, (15b)

(11b), (11c), (11e), (11f)

Problem (P3) is also a MINLP problem. Given x,
(P3) becomes M independent subproblem (P4) with
respective to APj .

(P4) : Q∗
j (h,x) = maximize

τi,j :i∈N ′
j∪Nj ,aj

∑
i∈N ′

j

rl,i +
∑
i∈Nj

ro,ij

(16a)

s.t. 0 ≤ τij ≤ 1, ∀i ∈ Nj , (16b)

τij + aj ≤ 1,∀i ∈ Nj , (16c)

0 ≤ aj ≤ 1. (16d)

Here, rl,i is given in (13) and for any i ∈ Nj ,

ro,ij = ϵ2τij ln

(
1 +

η2h
2
ij

τij
aj

)
. (17)

4.3 The DRL Algorithm for Offloading Decision

For both two problems, Figure 2 shows the DRL frame-
work which was proposed in our work [15]. Taking

h as the input, the DNN outputs vector o , where
o = [o10, ..., o1M , ..., oN0, ...oNM ]. In the DRL algo-
rithm, the state is h = [h11, ..., h1M , ..., hN1, ...hNM ]
and all possible states constitute the state space H
where h ∈ H. The action is o, and all possible actions
constitute the action space O where o ∈ O. As our
algorithm uses the DNN-based DRL approach just for
obtaining the offloading decision, and the subproblem’s
optimal solution of τ and a under a given offloading de-
cision is obtained by our designed efficient approaches,
the action dimension has been greatly reduced.

.

.

.

.

.

.

.
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.

.

.
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i
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Fig. 2 The framework of the proposed algorithm.

Subsequently, taking every M + 1 continuous ele-
ments of o as a subset, we normalize each element in a
subset. Then we have

p =


p10 p20 ... pN0

p11 p21 ... pN1

... ... ... ...
p1M p2M ... pNM

 , (18)

where pij =
oij∑M

k=0 oik
.

pi denotes the offloading policy for WNi, i.e., the
probabilities of offloading data to different H-APs. The
element pi0 denotes the probability that WNi performs
local computing, and pij(j ̸= 0) denotes the probability
that WNi offloads data to APj . Subsequently, we ran-
domly sample the OD based on probability distribution
pi, and obtain the sampling result xi of WNi.

pi represents the offloading policy specifically tai-
lored for WNi. pi0 signifies the likelihood of WNi opt-
ing for local computing. Conversely, pij(j ̸= 0) indi-
cates the probability of WNi offloading its data to APj .
Following this, we conduct a random sampling of the
OD guided by the probability distribution outlined in
pi. This process yields xi, which serves as the sampling
outcome for WNi.

Let p∗i = pij which satisfy xi,j = 1 in the sampling
result. The value of p∗i will be utilized to compute the
loss for training the DNN based on the obtained OD.

The loss function is

Loss = − log

(
N∏
i=1

p∗i

)
× (Q∗ (h,x)− baseline) , (19)
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where the baseline is recent average SCR.

4.4 Algorithms for Subproblems (P2) and (P4)

4.4.1 Algorithms for Subproblems (P2) in TDMA

Lemma 1. subproblem (P2) is convex.

Proof. According to (13), it is clear that rl,i is a con-
cave function of aj . Additionally, ϵ1 ln

(
1 + η2h

2
ijaj

)
is

concave with respective to aj . Since ro,ij in (14) is per-
spective of ϵ1 ln

(
1 + η2h

2
ijaj

)
, it is also concave with re-

spect to τij and aj [37]. Note that the sum of concave
functions is still concave. Additionally, all constraint
functions are linear. This completes the proof.

Since subproblem (P2) is convex, the available al-
gorithms (like interior-point method) can be used to
efficiently solve it. However, we present a more effi-
cient algorithm for solving it. Below we introduce the
approach for obtaining the optimal τij for a given aj .
Having this approach, the optimal aj can be obtained
by the golden section search because (P2) is convex and
its objective function is concave with respect to aj [37].

For a given aj , as rl,i becomes a constant, (P2) is
simplified to

(P2.2) : Q∗
j (h,x, aj) = max

τi,j :Nj

∑
i∈Nj

ro,ij (20a)

s.t. 0 ≤ τij ≤ 1,∀i ∈ Nj , (20b)∑
i∈Nj

τij + aj ≤ 1. (20c)

Lemma 2. The optimal time allocation of (P2.2) is

τ∗
i,j

=
η2h

2
ij∑

i∈Nj

η2h2
ij

(1− aj). (21)

Proof. The Lagrangian of (P2.2) is

L(τ , v) =
∑
i∈Nj

ro,ij − v

∑
i∈Nj

τi,j + aj − 1

 . (22)

Here, v ≥ 0 is the Lagrange multiplier.
Then the dual function of (P2.2) is

G(v) = min
τ

L(τ , v). (23)

Since (P2.2) is convex, the optimal solution satis-
fies the KKT conditions which are given by∑

i∈Nj

τ∗
i,j

+ aj ≤ 1, (24)

v∗

∑
i∈Nj

τ∗
i,j

+ aj − 1

 = 0, (25)

∂L(τ , v)

∂τi,j
=

∂
∑

i∈Nj

ro,ij

∂τi,j
− v∗|τi,j=τ∗

i,j
= 0, i ∈ Nj . (26)

From (26) we have

t

(
η2h

2
ij

τ∗
i,j

aj

)
=

v∗

ε1
, i ∈ Nj . (27)

where
t(x) = ln(1 + x)− x

1 + x
. (28)

As t(x) is monotonically increasing,
η2h

2
ij

τ∗
i,j

aj are

equal for any i ∈ Nj . Let
η2h

2
ij

τ∗
i,j

aj = c and then

τ∗
i,j

=
η2h

2
ij

c aj .

As
∑

i∈Nj

τ∗
i,j

+ aj = 1 holds for the optimal solution,

we have
∑

i∈Nj

η2h
2
ij

c aj + aj = 1 and c =
aj

1−aj

∑
i∈Nj

η2h
2
ij .

So we get the conclusion.

4.4.2 Algorithms for Subproblems (P4) in FDMA

To efficiently solve subproblem (P4) in FDMA, we pro-
pose an algorithm based on the golden section search.

Let us analyze the property of (P4) firstly. Accord-
ing to (17), it is clear that for a given WPT duration
aj of APj , the offloading rate ro,ij increases with τij .
Therefore, the optimal τ∗ij = 1− aj .

So we have

ro,ij = ϵ2(1− aj) ln

(
1 +

η2h
2
ij

(1− aj)
aj

)
. (29)

Lemma 3.
∑

i∈N ′
j
rl,i +

∑
i∈Nj

ro,ij is a convex func-

tion of aj.

Proof. According to (13), it is clear that rl,i is a concave
function of aj .

Taking the second derivative of ro,ij in (29) with
respect to aj , we obtain:

∂2ro,ij
∂a2j

=
−ϵη2h

2
ij(η2h

2
ij − 1)[

1 + (η2h2
ij − 1)aj

]2 −

ϵη2h
2
ij

(1− aj)2 + η2h2
ijaj(1− aj)

= −ϵη2h
2
ij

η2h
2
ij

(1− aj)[1 + (η2h2
ij − 1)aj ]2

< 0. (30)

So ro,ij is a concave function of aj . This completes the
proof.

To solve subproblem (P4), we propose Algorithm
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Algorithm 1 The golden section search based opti-
mization algorithm for (P4)
Require: h, x;
1: Initialize amin = 0, amax = 1, error tolerance γ = 10−8.
2: while amax − amin ≥ γ do
3: Initialize λ = amin + 0.382(amax − amin), µ = amin +

0.618(amax − amin)
4: For aj = λ, substituting it into (13) and (29) and calcu-

lating the SCR Q; let T1 = Q;
5: For aj = µ, substituting it into (13) and (29) and calcu-

lating the SCR Q; let T2 = Q;
6: if T1 > T2 then
7: amax = µ
8: else
9: amin = λ
10: end if
11: end while
12: a∗j = (λ+ µ)/2.

1, which applies the golden section search method to
find the value of a∗j under a given x and h.

4.5 Computational Complexity

In the proposed algorithm, the offloading decision is de-
termined by a DNN and subsequently undergoes nor-
malization and sampling processes. The DNN has NM
input nodes, a fixed number of nodes in each hidden
layer, and NM output nodes. So the overall complexity
of the operations in DNN is O(NM). Also, the normal-
ization and sampling processes require time O(NM).

4.5.1 TDMA mode

We use the expression (21) of optimal time alloca-
tion for sub-problem (P2). The complexity is O(N).
As there are M sub-problems, the total complexity is
O(NM). Finally, the overall complexity is O(NM).

4.5.2 FDMA mode

In Algorithm 1, the number of iterations of golden
section search used for each sub-problem (P4) is
O(log2(

1
γ )), which is a constant value. In each iter-

ation, the calculation time of (13) and (29) for each
node is constant. There are N nodes. So the complex-
ity of each iteration from step 3 to step 10 is O(N).
As there are M sub-problems, the total complexity is
O(NM). Finally, the overall complexity is O(NM).

5. Numerical Results

In the simulations, P = 3 Watts, µ = 0.8, B = 2 MHz,
N0 = 10−10 Watts, vu = 1.1, k = 10−26, and ϕ =
100. WNs and H-APs are randomly distributed in an

area of 12m*12m. αij = Ad

(
3·108

4πfcdij

)de

, where Ad =

4.11, fc = 915 MHz, and de = 2.3 [12]. |gij |2 has an

exponential distribution with unit mean. DNN utilized
in our algorithm has 5 fully connected layers with 350,
450, 600, 700, and 800 neurons, respectively.

The exhaustive search (ES) is utilized for finding
the optimal binary OD. ES algorithm traverses all pos-
sible ODs and uses our algorithm for solving the sub-
problem, outputting the maximum SCR. Then we com-
pare our DRL-based algorithm with ES by using the
normalized computation rate Q(h) given below:

Q(h) =
Q∗(h)

Q∗
exhaustive(h)

. (31)

Q∗(h) represents our algorithm’s SCR, andQ∗
exhaustive(h)

represents ES’S SCR. Due to ES’s large running time,
only the cases of 3 H-APs and 5 WNs are investigated.

5.1 FDMA protocol

We first investigate the convergence speed of the pro-
posed algorithm when using FDMA. Fig. 3 illustrates
that during the training’s beginning stage, the loss is
relatively high. However, as the neural network con-
tinues to be trained, the loss value gradually decreases,
indicating that the network is converging. Upon reach-
ing the later stages of training, specifically after 5000
time slots, we observe that the loss value approaches 0.
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20000000
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ni
ng
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s

Time slot

Fig. 3 The training loss for algorithm under learning rate
0.00095 when using FDMA.

Fig. 4 evaluates our algorithm under five different
learning rates. The results demonstrate that when the
learning rate is excessively high, such as 9.5∗10−4, Q(h)
is approximately 0.90. Conversely, when the learning
rate is too low, such as 9.5 ∗ 10−8, Q(h) is small and
may need long time for learning. Therefore, we select
9.5 ∗ 10−5 as the learning rate for our algorithm, so as
to achieve a good balance between convergence speed
and SCR, reaching approximately 96% of the maximum
computation rate.

In our simulations, the baseline is the average of
most recent K Q∗(h). Fig. 5 investigates our algo-
rithm’s performance under different K. When K = 0,
Q(h) is approximately 0.8, which is much lower than
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Fig. 4 Q(h) versus learning rate when using FDMA.
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Fig. 5 Q(h) versus baseline when using FDMA.
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Fig. 6 Our algorithm versus AC algorithm when using FDMA.

the other curves. Based on Fig. 5, let K = 120.
Fig. 6 compares our algorithm with the classic

Actor-Critic (AC) algorithm. We can see that, what-
ever the learning rate is, AC’s SCR is consistently
smaller than our algorithm. Moreover, our proposed
algorithm can converge faster than AC.

Fig. 7 evaluates various offloading algorithms. If
all WNs perform the task locally, the SCR is smallest,
as the H-APs have much greater computation ability
than the WNs. On the contrary, if all WNs offload data
to their nearest H-APs, the achieved average SCR is
still lower than that of our proposed algorithm. This is
because, offloading tasks solely based on distance does

6 7 8 9
0

5000000

10000000

15000000

A
ve

ra
ge

 S
C

R

Number of WDs

 Proposed algorithm
 AC
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 Local computing

Fig. 7 Comparison of different algorithms when using FDMA.

not consider the workload at the nearest H-AP. Fur-
thermore, there is still a performance gap between our
algorithm and AC. This confirms that our proposed al-
gorithm has an advantage over classic DRL algorithms.

5.2 TDMA protocol

We conducted an analysis of the convergence speed of
proposed algorithm when using TDMA. As depicted in
Fig. 8, as the training progresses, the loss value grad-
ually diminishes, indicating DNN’s convergence. After
enough training, particularly after surpassing 5000 time
slots, we observe the loss value approaching zero.
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Fig. 8 The training loss for algorithm under different learning
rate 0.00095 when using TDMA.

Fig. 9 presents a comparison of the proposed algo-
rithm’s performance using four different learning rates.
The results indicate that an excessively high learning
rate, such as 9.5∗10−4, leads to the algorithm converg-
ing to a normalized computation rate of approximately
0.90. On the other hand, a very low learning rate, such
as 9.5 ∗ 10−7, may not significantly improve the algo-
rithm’s performance even with a large number of time
slots. While a learning rate of 9.5 ∗ 10−6 can achieve
near-optimal convergence, the slow convergence speed
limits the algorithm’s performance. Based on these ob-
servations, we select a learning rate of 9.5 ∗ 10−5 for
our algorithm. This choice allows for faster convergence
while maintaining a high level of performance, reaching
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Fig. 9 Q(h) versus learning rate when using TDMA.
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Fig. 10 Q(h) versus baseline when using TDMA.

approximately 96% of the maximum computation rate.
Fig. 10 examines the algorithm’s performance un-

der different K. When K = 0, indicating the absence
of a baseline, Q(h) is approximately 0.90. Following
this figure, let K = 120.

0 5000 10000
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
om

pu
ta

tio
n 

R
at

e

Time slot

 AC with learning rate = 9E-2
 AC with learning rate = 9E-3
 AC with learning rate = 9E-4
 AC with learning rate = 9E-5
 Proposed algorithm

Fig. 11 Our algorithm versus AC algorithm when using
TDMA.

Fig. 11 compares our algorithm with AC. As de-
picted in Fig. 11, despite setting different learning rates
for the critic network in AC, its performance consis-
tently lags behind that of the proposed algorithm. Fur-
thermore, our proposed algorithm exhibits faster con-
vergence compared to AC.
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Fig. 12 Comparison of different algorithms when using
TDMA.

Fig. 12 evaluates various offloading algorithms. If
all WNs perform the task locally, the SCR is small-
est. On the contrary, if all WNs offload data to their
nearest H-APs, the achieved average SCR is also sig-
nificantly lower than that of our proposed algorithm.
Furthermore, there is still a performance gap between
our algorithm and AC.

Table 1 Running time of different algorithms.

WNs num-
ber

ES algorithm Our algorithmAC algorithm

5 0.1813s 0.0055s 0.0076
6 0.8179s 0.0062s 0.0089s
7 3.2327s 0.0071s 0.0099s
8 12.5052s 0.0094s 0.0109s
9 50.8865s 0.0108s 0.0122s

Table I shows the average running time of our al-
gorithm and ES. ES’s execution time shows significant
growth as N increases, as the execution time exponen-
tially increases as N grows. In contrast, our proposed
algorithm exhibits a roughly linear computational com-
plexity in relation to N . Additionally, AC’s average
CPU running time is approximately 1.4 times longer
than our proposed algorithm. This disparity arises from
the fact that the AC algorithm requires the mainte-
nance of two networks, and computing state-value by
critic network takes more time compared to our algo-
rithm, which only maintains a single policy network.

6. Conclusions

This paper tackles the SCR maximization in a WP-
MEC system having multiple H-APs. The study fo-
cuses on binary offloading and proposes DRL-based al-
gorithms for TDMA and FDMA, respectively. Our al-
gorithms demonstrate rapid convergence and achieve
approximately the maximum SCR while maintaining
low complexity. Furthermore, comparing to the com-
monly used AC algorithm, our algorithms surpass the
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AC algorithm in terms of computation rate, conver-
gence speed, and running time.

Some possible future works are as follows. Firstly,
it presupposes the availability of perfect CSI, whereas
the scenario with imperfect CSI is more practical. Sec-
ondly, we have focused on the single-slot determinant
optimization, whereas optimizing the long-term SCR,
which poses greater challenges, merits further attention
and endeavors.
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