
DOI:10.1587/transfun.2024MAP0004

Publicized:2024/08/20

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Generating Event Structure from Set of Acyclic Relations in
Choreography Realization

Toshiyuki MIYAMOTO†, Senior Member and Hiroki AKAMATSU††, Nonmember

SUMMARY Service-Oriented Architecture (SOA) is an information
system architecture. In SOA, the problem of synthesizing the concrete
model from an abstract specification is known as the Choreography Re-
alization Problem (CRP). So far, we proposed to use event structures as
a modeling formalism; we studied conflict reduction of event structures to
check the realizability of a choreography. In this paper, we study the method
to generate event structure from choreography.
key words: SOA, choreography realization, event structure

1. Introduction

Service-Oriented Architecture (SOA) is an information sys-
tem architecture [1]. In SOA, an information system is
constructed by combining independent software units called
services. Orchestration and choreography are known as a
method of implementing SOA-based systems, and Stutz et
al. [2] compare them in the automation context.

In SOA, the problem of synthesizing the concrete model
from an abstract specification is known as the Choreography
Realization Problem (CRP) [3]. We have studied the CRP
when choreography is given by an acyclic relation of events in
[4] and when choreography is given by two acyclic relations
in [5]. However, we found that acyclic relations were not an
adequate formalism to model choreography; we proposed to
use event structures [6,7] as a modeling formalism in [8]. In
[9], we studied conflict reduction of event structures to check
the realizability of a choreography. In this paper, we study
the method to generate event structure from choreography.

2. Preliminaries

2.1 Choreography Realization Problem

Figure 1 shows the choreography realization procedure in our
research. We defines an abstract specification using commu-
nication diagrams in unified modeling language (UML) [10].
The communication diagram is one of behavior diagrams of
UML. “Communication Diagrams focus on the interaction
between Lifelines where the architecture of the internal struc-
ture and how this corresponds with the message passing is
central. The sequencing of Messages is given through a se-
quence numbering scheme [10].” In this paper, the Lifelines

†The author is with the Faculty of Information Science and
Technology, Osaka Institute of Technology, irakata, JAPAN.

††The author is with the School of Engineering, Osaka Univer-
sity, Suita, JAPAN.

UML Model

service1
service2

service3

a

b

State Machine Model

Communication Diagram

(service1)

Acyclic Relation

1.get event relation

2. generate event structure

 of entire system

3. divide event strucutre into

 those for each services

4. convert to state machine

!b

?b

!a !c

?a

#

?c

Event Structure

service1

?b

!a !c
#

Fig. 1: choreography realization procedure

are called services; the sequencing of Messages is defined
as an acyclic relation in some way. Because one commu-
nication diagram is used to define one scenario, a set of
communication diagrams is used to define a choreography.
A concrete model is expressed using the state-machine dia-
gram of UML. Because one state-machine diagram is used
to express the behavior of one service, a set of state-machine
diagrams is used to define the behavior of entire system.

At step 1 of our procedure, ordering relation of events
that occur in services is got for each communication dia-
grams using the method proposed in [11]. At step2, one
event structure of entire systems is generated by combining
event relations. The procedure to generate an event structure
is shown in Sect. 3. An event structure for each service is
retrieved by dividing the event structure at step 3; a state-
machine diagram is generated by converting an event struc-
ture to a state-machine diagram at step 4. This paper focuses
the generating method of the event structure of entire system
at step 2.

2.2 Event Structure

Event structures are mathematical modeling notation that is
able to express behavior of concurrent systems. The fun-
damental class of event structures is the prime event struc-
ture [6]; this paper uses the flow event structure [7].

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

a

d

b c
#

(a) F1

{a}

{a,b}

b

{a,c}

c

{a,b,d}

d

{a,c,d}

d

{b}

a

{c}

a

ab c

(b) (Conf (F1) , 𝑇)
Fig. 2: FES F1 (a) and its configuration space (b)

Definition 1 (flow event structure) A flow event structure
(FES) is a tuple F = (𝐸, ≺, # , 𝜆), where 𝐸 is a set of events,
≺ is a flow relation, # is a conflict relation such that

1. the flow relation ≺⊆ 𝐸 × 𝐸 is irreflexive;
2. the conflict relation # ⊆ 𝐸 × 𝐸 is symmetric,

and 𝜆 : 𝐸 → Σ is a labeling function from events to the
alphabet Σ.

The labeling function is used for two or more events
having the same label. Initially, the label is the event itself.
In Sect. 3.2, we will introduce the combination procedure of
event structures. Then, two or more events have the same
meaning; in this case, the events have the same label.

The ≺-predecessors of an event 𝑒 ∈ 𝐸 are defined as
•𝑒 = {𝑒′ | 𝑒′ ≺ 𝑒}; the definition of ≺-predecessors is
extended to the set 𝑋 of events as •𝑋 =

∪
𝑥∈𝑋 •𝑥.

Fig. 2 (a) depicts an FES. A flow relation is represented
with a double-headed arrow, and a conflict relation is repre-
sented with a dotted line labeled by a sharp (#). When is is
complicated, the # label will be omitted.

The flow relation is not required to be transitive. The ≺-
predecessors •𝑒 of an event 𝑒 can be seen as a set of possible
immediate causes for 𝑒 in an FES. In an FES, conflicts can
exist in •𝑒; the event 𝑒 needs to be preceded by a maximal and
conflict-free subset of •𝑒. The set of maximal and conflict-
free ≺-predecessors of an event 𝑒 is denoted by Φ(𝑒). In
the FES in Fig. 2 (a), events 𝑏 and 𝑐 are in conflict; ≺-
predecessors of event 𝑑 are •𝑑 = {𝑎, 𝑏, 𝑐} and the set of
maximal and conflict-free ≺-predecessors of 𝑑 is Φ(𝑑) =
{{𝑎, 𝑏}, {𝑎, 𝑐}}. Thus, the occurrence of 𝑑 must be preceded
by either {𝑎, 𝑏} or {𝑎, 𝑐}.

In an FES, the flow relation is required to be irreflexive
only; thus, it could be cyclic. An FES is called acyclic when
the flow relation is acyclic. In this paper, we assume any
FES to be acyclic.

The notion of configuration in an FES is defined in
[7, 12, 13] as follows:

Definition 2 (configuration) The configuration of an FES
F is a finite set of events 𝐶 ⊆ 𝐸 such that

a

b

#

d

c

(a) F2

{b}

{b,c}

c

b

{a}

a

(b) (Conf (F2) , 𝑇)
Fig. 3: An example of semantic conflict. Events 𝑎 and 𝑐 are
in semantic conflict because no configuration that contains
both 𝑎 and 𝑐 exists in Conf (F2).

1. (conflict-freeness) ¬(𝑒 # 𝑒′) for all 𝑒, 𝑒′ ∈ 𝐶;
2. (≺-closedness) ≺∗

|𝐶 is a partial order;
3. (maximality) for all 𝑒 ∈ 𝐶 and 𝑒′ ∉ 𝐶 s.t. 𝑒′ ≺ 𝑒, there

exists an 𝑒′′ ∈ 𝐶 such that 𝑒′ # 𝑒′′ ≺ 𝑒,

where ≺∗ is the reflexive and transitive closure of ≺; ≺ |𝐶 is
the restriction of ≺ to the relation on 𝐶.

The set of all “labeled”-configurations of an FES F is
denoted by Conf (F). A configuration space is the graph
whose vertex set is Conf (F) and an edge represents a transi-
tion from one configuration to another configuration.

A configuration is a conflict-free and ≺-closed subset
of events. The third condition means that given an event
𝑒 ∈ 𝐶, for any ≺-predecessor 𝑒′ ≺ 𝑒, either 𝑒′ ∈ 𝐶 or it is
excluded by the existence of 𝑒′′ ∈ 𝐶 such that 𝑒′ # 𝑒′′ ≺ 𝑒.
Thus, for any 𝑒 ∈ 𝐶, the configuration 𝐶 must include a
maximal and conflict-free subset of the ≺-predecessors of 𝑒.
The configuration space of the FES F1 is depicted in Fig. 2
(b).

In the FES in Fig. 3 (a), events 𝑎 and 𝑐 are not syn-
tactically in conflict; however, there is no configuration that
contains both 𝑎 and 𝑐. Thus, 𝑎 and 𝑐 are semantically in
conflict.

Definition 3 (semantic conflict) The events 𝑒 and 𝑒′ in an
FES F are in semantic conflict, which is denoted by 𝑒 #𝑆 𝑒′,
when for all configurations 𝐶 ∈ Conf (F), it does not hold
that {𝑒, 𝑒′} ⊆ 𝐶.

Clearly, # ⊆ #𝑆 . Moreover, 𝑒 #𝑆 𝑒 could be possible; in
this case, 𝑒 never occurs and is called dead.

In our procedure shown in Fig. 1, an event structure is
divided into event structures for each service. One may raise
the idea that non-existence of conflicts among services is a
necessary condition for realizability of given choreography.
However, this is not true from the existence semantic con-
flicts. In [9], we introduced the notion of conflict reduction
for the checking of realizability.

The following definitions are introduced in [7] to define
sets of events that can be safely merged.

Definition 4 For given set 𝑋 of events, the set of maximal

MIYAMOTO and AKAMATSU: GENERATING EVENT STRUCTURE FROM SET OF ACYCLIC RELATIONS IN CHOREOGRAPHY REALIZATION
3

and conflict-free subsets of 𝑋 is denoted by 𝑚𝑐(𝑋).

Definition 5 (direct conflict). Let F = (𝐸, #, ≺, 𝜆) be an
FES and let 𝑒, 𝑒′ ∈ 𝐸 . We say that 𝑒 is a direct conflict for
𝑒#𝑒′, denoted as 𝑒#𝛿𝑒

′, if ∃𝑌 ∈ 𝑚𝑐(•𝑒) such that 𝑌 ∪ {𝑒′}
is conflict-free.

3. Generate event structure of entire system

3.1 Overview

As described in 2.1, in the proposed procedure, the event
structure of entire system is generated from multiple acyclic
relations. The proposed procedure is composed of two steps:
1) combining multiple event structures into an event struc-
ture and 2) folding the event structure. Because an acyclic
relation is a special case of event structure, the combination
procedure is discussed as the problem of combining multiple
event structures.

3.2 Combining event structures

Let 𝐹 = {F1, · · · , F𝑛}, the combined event structure F𝑚 =
(𝐸𝑚, #𝑚, ≺𝑚, 𝜆𝑚) is defined as follows:

𝐸𝑚 =𝐸1 ∪ · · · ∪ 𝐸𝑛

#𝑚 =#1 ∪ · · · ∪ #𝑛
∪ {(𝑒𝑎, 𝑒𝑏) | 𝑒𝑎 ∈ 𝐸𝑎, 𝑒𝑏 ∈ 𝐸𝑏, F, F𝑏 ∈ 𝐹, F𝑎 ≠ F𝑏}

≺𝑚= ≺1 ∪ · · · ∪ ≺𝑛

𝜆𝑚 =𝜆1 ∪ · · · ∪ 𝜆𝑛

Then, the following lemma holds.

Lemma 1 Let F𝑚 be the combined event structure from 𝐹 =
{F1, · · · , F𝑛}, then Conf (F1) ∪ · · · ∪Conf (F𝑛) = Conf (F𝑚)
holds.

Proof 1 Suppose that there exists 𝐶 ∈ Conf (F1) ∪ · · · ∪
Conf (F𝑛) such that 𝐶 ∉ Conf (F𝑚). There must exist
𝑒𝑎, 𝑒

′
𝑎 ∈ 𝐸𝑎 for some F𝑎such that 𝑒𝑎, 𝑒′𝑎 ∈ 𝐶 and 𝑒𝑎#𝑚𝑒′𝑎.

Since 𝐶 ∈ Conf (F𝑎), ¬(𝑒𝑎#𝑎𝑒′𝑎). However, the combina-
tion procedure does not add any conflict between events in
the same event structure. Thus, 𝐶 must be in Conf (F𝑚), i.e.,
Conf (F1) ∪ · · · ∪ Conf (F𝑛) ⊆ Conf (F𝑚).

Since the combination procedure does not restrict
the behavior of each event structure in 𝐹. Therefore,
Conf (F𝑚) ⊆ Conf (F1) ∪ · · · ∪ Conf (F𝑛). □

An example of combination is shown in Fig. 4. The
event structures F1 in Fig. 4(a) and F2 in Fig. 4(b) are
combined; the resulting event structure F𝑚 is shown in
Fig. 4(c). The set of configurations of F1 is Conf (F1) =
{∅, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}}, that of F2 is
Conf (F2) = {∅, {𝑒}, {𝑒, 𝑐}, {𝑒, 𝑐, 𝑓 }}, and that of F𝑚 is
Conf (F𝑚) = {∅, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑒},
{𝑒, 𝑐}, {𝑒, 𝑐, 𝑓 }}; i.e., Conf (F1) ∪ Conf (F2) = Conf (F𝑚).

a

b c
#

d

(a) F1

e

c

f

(b) F2

a

b c c’

e

fd

(c) F𝑚
Fig. 4: Combination of event structures

3.3 Folding event structures

When multiple event structures are combined into one by
event structure composition, there may be events with the
same label in the combined event structure. A process for
merging multiple events with the same label while maintain-
ing the behavior of the event structure has been proposed
in [7]. This sections introduces the conditions under which
event merging is possible and the event merging process,
and describes event merging when there are multiple pairs
of events that can be merged.

Let F = (𝐸, #, ≺, 𝜆), a set 𝑋 ⊆ 𝐸 of events is called
combinable when the following conditions holds [7]:

1. ∀𝑥, 𝑥′ ∈ 𝑋 : 𝜆(𝑥) = 𝜆 (𝑥′) and 𝑥#𝑥′
2. ∀𝑥, 𝑥′ ∈ 𝑋,∀𝑒 ∈ 𝐸 : 𝑥#𝛿𝑒 ⇒ 𝑥′#𝑒
3. ∀𝑥, 𝑥′ ∈ 𝑋,∀𝑒 ∈ 𝐸 : 𝑥 ≺ 𝑒 ⇒ 𝑥′ ≺ 𝑒 ∨ 𝑥′#𝑒
4. ∀𝑥, 𝑥′ ∈ 𝑋,∀𝑒 ∈ 𝐸 : [𝑒 ≺ 𝑥 ⇒ •𝑥′ ≠ ∅ ∧ {𝑒 ≺

𝑥′ ∨ (∀𝑒′ ≺ 𝑥′ ∧ 𝑒′ ∉ •𝑥 : 𝑒#𝑒′)}]
5. ∀𝑥 ∈ 𝑋,∀𝑒, 𝑒′ ∈ 𝐸 : [𝑥, 𝑒′ ∈ •𝑒 ∧ 𝑥#𝑒′ ∧ ¬ (𝑋#𝑒′)

⇒ ∀𝑌 ∈ 𝑚𝑐(•𝑒) : {(𝑥 ∈ 𝑌 ⇒ ∃𝑒′′ ∈ 𝑌\{𝑥}, 𝑒′′#𝑒′) ∧
(𝑋 ∩ 𝑌 = ∅ ⇒ ∃𝑒′′ ∈ 𝑌, 𝑋#𝑒′′)}]

Let F/𝑋 = (𝐸/𝑋, #/𝑋, ≺/𝑋, 𝜆/𝑋) be the event structure
after merging all events in a combinable set 𝑋 , 𝑒 with 𝑒#∀𝑋
be an event that is in conflict with every events in 𝑋 , and 𝑒
with 𝑒 ≺∃ 𝑋 be an event that precedes at least one event in
𝑋; then, each element of F/𝑋 is calculated as follows:

𝐸/𝑋 = (𝐸\𝑋) ∪ {𝑒𝑋}

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

a

b c

e

fd

Fig. 5: The event structure F/𝑋 after merging 𝑐 and 𝑐′ of F𝑚
in Fig. 4(c)

a

b c
#

d

(a) F1

e

a

f

(b) F2

a

b c a’

#

e
#

f

#
#

d

#

#

#

#

#

#

#

(c) F𝑚
Fig. 6: 𝑋 = {𝑎, 𝑎′} in F𝑚 is not combinable

#/𝑋 = # | (𝐸\𝑋) ∪
{
(𝑒, 𝑒𝑋) | 𝑒#∀𝑋

}
≺/𝑋 =≺ | (𝐸\𝑋) ∪

{
(𝑒, 𝑒𝑋) | 𝑒 ≺∃ 𝑋

}
∪
{
(𝑒𝑋, 𝑒′) | 𝑋 ≺∃ 𝑒′

}
𝜆/𝑋 = 𝜆/𝑋 [𝑒𝑋 ↦→ 𝜆(𝑥), 𝑥 ∈ 𝑋] .

The set 𝑋 = {𝑐, 𝑐′} of F𝑚 in Fig. 4(c) satisfy the condi-
tions of combinable sets. The event structure after merging
𝑐 and 𝑐′ is shown in Fig. 5.

Let us see another example. The event structure F1 in
Fig. 6(a) and F2 in Fig. 6(b) are combined; the resulting event
structure F𝑚 is shown in Fig. 6(c). The set 𝑋 = {𝑎, 𝑎′} is
not combinable since the condition 4) is not satisfied.

The set 𝑋 = {𝑎, 𝑎′} in F in Fig. 7 is not combin-
able because the condition 2) is not satisfied, however,

a a’

b c

d

(a) F

a

b c

d

(b) F/𝑋
Fig. 7: The set 𝑋 = {𝑎, 𝑎′} in F is not combinable, however,
Conf (F) = Conf (F/𝑋)

a b

c c’ d’

d

(a) F𝑚

a b

c d’

d

(b) F/𝑋𝑐

a

b c

c’ d

(c) F/𝑋𝑑

Fig. 8: The order in which the events are merged produces
differ event structures

Conf (F) = Conf (F/𝑋). The example shows that the con-
dition of combinable set is a sufficient condition. Therefore,
there is a room to improve the the condition. This is included
in our future research topics.

When multiple combinable sets of events exist in an
event structure, the folded event structure may differ de-
pending on the order in which the events are merged. In the
event structure F𝑚 of Fig. 8(a), the sets 𝑋𝑐 = {𝑐, 𝑐′} and
𝑋𝑑 = {𝑑, 𝑑′} are combinable. The event structure merging
events in 𝑋𝑐 is shown in Fig. 8(b) and the event structure
merging events in 𝑋𝑑 is shown in Fig. 8(c). In this case, the
event set 𝑋𝑑 in Fig. 8(b) does not satisfy the condition (2,
and the event set 𝑋𝑐 does not satisfy the condition (3. There-

MIYAMOTO and AKAMATSU: GENERATING EVENT STRUCTURE FROM SET OF ACYCLIC RELATIONS IN CHOREOGRAPHY REALIZATION
5

A

S3

S4

S2S1

B

C DE

F

(a) cd1

A

S3

S4

S2S1

B

G

DE

F

(b) cd2

A

S3

S2S1

B

E

F

(c) cd3

Fig. 9: Choreography of Ex.1

B C D E FA

(a) cd1

E FA

G

B

D

(b) cd2

B EA F

(c) cd3

Fig. 10: Message relation of Ex.1

fore, in this case, the event structure after merging differs
depending on the order of merging events.

4. Case study

Let us consider a system with four services: S1, S2, S3, and
S4.

The abstract specification for this system is given by the
communication diagram shown in Fig. 9 and the ordering
relationship between messages shown in Fig. 10. There are
three scenarios for the execution of this system.

In the first scenario, when S2 receives message A sent
by S1, S2 sends message B to S3, and S3 sends message C
to S4 after receiving B. S4 sends reply message D to S3, S3
sends message E to S2 upon receiving D, and S2 sends F to
S1 after receiving E.

In the second scenario, when S2 receives message A
sent by S1, S2 sends message B to S3 and message G to
S4; when S4 receives G, it sends message D to S3; when
S3 receives B and D, it sends E to S2; after receiving E, S2
sends F to S1; after receiving E, S2 sends F to S1.

In the third scenario, when S2 receives message A sent
by S1, S2 sends message B to S3; S3 receives B and sends

?A?A ?A

!A !A

?B

?B

!B!B !B

?D

!D

?E

?E

!E

!E

?F

?F

!F

!F

?G

!G

!A

?B

?C

!C

?D

!D

?E

!E

?F

!F

Fig. 11: Combined event structure of Ex.1

message E back to S2; S2 sends F to S1 after receiving E.
If we transform the ordering relation between messages

shown in Fig. 10 to the ordering relation between sending and
receiving events of a message by the method shown in [11]
and combine them by the method shown in 3.2, we obtain the
event structure in Fig. 11. The sending event of message 𝑚
is denoted by !𝑚 and the receiving event by ?𝑚. The colors
in the figure indicate the service in which the event occurs.
For example, red events occur in service S1.

As described in Sect. 3.3, different event structures are
generated depending on the order of merging. Therefore,
we randomly determined the order of merging in the event
structure in Fig. 11 and tried multiple times; then, we ob-
tained two types of event structures. One of them is shown
in Fig. 12 (a). In the event structure conflict-reduction by
the method shown in [9] is performed, and the reduced event
structure is shown in Figure 12 (b). In the event structure,
the conflict !G#!E and !G#!C exist across different services
S2 and S3. Since such choreography is not realizable, the
choreography needs to be modified.

Figure 13 shows the communication diagram cd2 in
the modified choreography (Ex.2). cd1 and cd3 are omitted
because they are the same as before the modification. In the
modified choreography, the message in cd2 is changed from
B, D, E to B’, D’, E’. This allows the receiving service to

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

?A

!B!G

!A

?B

!C

!E

!E

?C

!D

?G

?D

?E

!F

?F

(a)

?A

!B !G

!A

?B

!C

!E

!E

?C

!D

?D

?E

!F

?F

?G

(b)

Fig. 12: (a) Folded event structure of Ex.1, and (b) the re-
duced event structure

A

S3

S4

S2S1

B’

G

D’E’

F

cd2
Fig. 13: Choreography of Ex.2

understand the difference in messages.
The event structure that is synthesized and folded in

the same way from the modified choreography is shown in
Fig. 14 and the reduced event structure is shown in Fig. 15.
The event structure in Figure 15 is not unrealizable be-
cause the two conflicts exist in the same service. Note that
the literature [9] only shows the sufficient condition for un-
realizability, and the condition for feasibility has not been
derived yet.

5. Conclusions

In this paper, we study the method to generate event structure
from choreography; we demonstrated the proposed method

?A

!B !G !B’

!A

?B

?B

!C

?G

?B’

?E’

!E’

?D’

!D’

?C

?D

!D

!E

?E

!F

?F

Fig. 14: Folded event structure of Ex.2

via case studies. Our next research topic includes the method
to convert the event structure to state machines for each
service.

Acknowledgment

This work is supported by JSPS KAKENHI Grant Number
JP20K11746.

References

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall Professional Technical Reference, 2005.

[2] A. Stutz, A. Fay, M. Barth, and M. Maurmaier, “Orchestration vs.
Choreography Functional Association for Future Automation Sys-
tems,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 8268–8275, 2020.

[3] T. Bultan and X. Fu, “Specification of realizable service conversa-
tions using collaboration diagrams,” Service Oriented Computing
and Applications, vol. 2, no. 1, pp. 27–39, Apr. 2008.

[4] T. Miyamoto, “Choreography Realization by Re-Constructible De-
composition of Acyclic Relations,” IEICE Transactions on Informa-
tion and Systems, vol. E99.D, no. 6, pp. 1420 – 1427, 06 2016.

[5] T. Kinoshita and T. Miyamoto, “Realizability of Choreography Given
by Two Scenarios,” IEICE Transactions on Fundamentals of Elec-
tronics Communications and Computer Sciences, vol. E101.A, no. 2,
pp. 345 – 356, 00 2018.

[6] M. Nielsen, G. Plotkin, and G. Winskel, “Petri nets, event structures
and domains, part I,” Theoretical Computer Science, vol. 13, no. 1,

MIYAMOTO and AKAMATSU: GENERATING EVENT STRUCTURE FROM SET OF ACYCLIC RELATIONS IN CHOREOGRAPHY REALIZATION
7

?A

!B !G !B’

!A

?B

?B

!C

!E

?C

!D

?D

?E

!F

?F

?G

!D’ ?B’

!E’

?E’

?D’

Fig. 15: Reduced event structure of Ex.2

pp. 85–108, Jan. 1981.
[7] A. Armas-Cervantes, P. Baldan, and L. Garcı́a-Bañuelos, “Reduction

of event structures under history preserving bisimulation,” Journal
of Logical and Algebraic Methods in Programming, vol. 85, no. 6,
pp. 1110–1130, Oct. 2016.

[8] M. Izawa and T. Miyamoto, “A study on re-constructibility of event
structures,” IEICE Transactions on Information and Systems, vol.
E103.D, no. 8, pp. 1810–1813, 2020.

[9] T. Miyamoto and M. Izawa, “Conflict reduction of acyclic flow event
structures,” IEICE Trans. on Fund. of Elec., Comm, and Comput.
Sci., vol. E106-A, no. 5, 2023.

[10] “OMG Unified Modeling Language,” Tech. Rep., 2017.
[11] T. Miyamoto, Y. Hasegawa, and H. Oimura, “An approach for syn-

thesizing intelligible state machine models from choreography using
Petri nets,” IEICE Transactions on Information and Systems, vol.
E97.D, no. 5, pp. 1171–1180, May 2014.

[12] G. Boudol and I. Castellani, “Permutation of transitions - An event
structure semantics for CCS and SCCS,” LNCS, vol. 354, pp. 411–
427, 1989.

[13] G. Boudol, “Flow event structures and flow nets,” LNCS, vol. 469,
pp. 62–95, 1990.

Toshiyuki Miyamoto received his B.E. and
M.E. degrees in electronic engineering from Os-

aka University, Japan in 1992 and 1994, respec-
tively. Moreover, he received Dr. of Eng. degree
in electrical engineering from Osaka University,
Japan in 1997. From 2000 to 2001, he was a vis-
iting researcher in Department of Electrical and
Computer Engineering at Carnegie Mellon Uni-
versity, Pittsburgh, PA. Currently, he is a Profes-
sor with the Faculty of Information Science and
Technology, Osaka Institute of Technology. His

areas of research interests include theory and applications of concurrent
systems and multi-agent systems. He is a member of IEEE, SICE, and
ISCIE.

Hiroki Akamatsu received the B.E. and M.I.S.T. degrees from Osaka
University, Osaka, Japan in 2022 and 2024, respectively.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

