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Mean Squared Error Analysis of Noisy Average Consensus
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SUMMARY A continuous-time average consensus system is a linear
dynamical system defined over a graph, where each node has its own state
value that evolves according to a simultaneous linear differential equation.
A node is allowed to interact with neighboring nodes. Average consensus
is a phenomenon that the all the state values converge to the average of the
initial state values. In this paper, we assume that a node can communicate
with neighboring nodes through an additive white Gaussian noise channel.
We first formulate the noisy average consensus system by using a stochastic
differential equation (SDE), which allows us to use the Euler-Maruyama
method, a numerical technique for solving SDEs. By studying the stochastic
behavior of the residual error of the Euler-Maruyama method, we arrive at
the covariance evolution equation. The analysis of the residual error leads
to a compact formula for mean squared error (MSE), which shows that the
sum of the inverse eigenvalues of the Laplacian matrix is the most dominant
factor influencing the MSE.
key words: average consensus, stochastic differential equation, Euler-
Maruyama method, MSE

1. Introduction

Continuous-time average consensus system is a linear dy-
namical system defined over a connected graph [1]. Each
node has its own state value, and it evolves according to a si-
multaneous linear differential equation where a node is only
allowed to interact with neighboring nodes. The ordinary
differential equation (ODE) at the node 𝑖(1 ≤ 𝑖 ≤ 𝑛) gov-
erning the evolution of the state value 𝑥𝑖 (𝑡) of the node 𝑖 is
given by

𝑑𝑥𝑖 (𝑡)
𝑑𝑡

= −
∑︁
𝑗∈N𝑖

𝜇𝑖 𝑗 (𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)). (1)

The set N𝑖 denote the neighboring nodes of node 𝑖, while the
positive scalar 𝜇𝑖 𝑗 denotes the edge weight associated with
the edge (𝑖, 𝑗). The same ODE applies to all other nodes
as well. These dynamics gradually decrease the differences
between the state values of neighboring nodes, leading to a
phenomenon called average consensus that the all the state
values converge to the average of the initial state values [2].

The average consensus system has been studied in nu-
merous fields such as multi-agent control [3], distributed
algorithm [4], formation control [5]. An excellent survey on
average consensus systems can be found in [1].

In this paper, we will examine average consensus sys-
tems within the context of communications across noisy
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channels, such as wireless networks. Specifically, we con-
sider the scenario in which nodes engage in local wireless
communication, such as drones flying in the air or sensors
dispersed across a designated area. It is assumed that each
node can only communicate with neighboring nodes via an
additive white Gaussian noise (AWGN) channel. The objec-
tive of the communication is to aggregate the information
held by all nodes through the application of average consen-
sus systems. As previously stated, the consensus value is the
average of the initial state values.

In this setting, we must account for the impact of Gaus-
sian noise on the differential equations. The differential
equation for a noisy average consensus system takes the form:

𝑑𝑥𝑖 (𝑡)
𝑑𝑡

= −
∑︁
𝑗∈N𝑖

𝜇𝑖 𝑗 (𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)) + 𝛼𝑊𝑖 (𝑡), (2)

where 𝑊𝑖 (𝑡) represents an additive white Gaussian process,
and 𝛼 is a positive constant. The noise𝑊𝑖 (𝑡) can be consid-
ered as the sum of the noises occurring on the edges adjacent
to the node 𝑖. In a noiseless average consensus system, it is
well-established that the second smallest eigenvalue of the
Laplacian matrix of the graph determines the convergence
speed to the average [4]. The convergence behavior of a
noisy system may be quite different from that of the noise-
less system due to the presence of edge noise. However, the
stochastic dynamics of such a system has not yet been stud-
ied. Studies on discrete-time consensus protocols subject
to additive noise can be found in [6][7], but to the best of
our knowledge, there are no prior studies on continuous-time
noisy consensus systems.

The main goal of this paper is to study the stochastic dy-
namics of continuous-time noisy average consensus system.
The theoretical understanding of the stochastic behavior of
such systems will be valuable for various areas such as multi-
agent control and the design of consensus-based distributed
algorithms for noisy environments.

The primary contributions of this paper are as follows.
We first formulate the noisy average consensus systems us-
ing stochastic differential equations (SDE) [8][9]. This SDE
formulation facilitates mathematically rigorous treatment
of noisy average consensus. We use the Euler-Maruyama
method [8] for solving the SDE, which is a numerical method
for solving SDEs. We derive a closed-form mean squared
error (MSE) formula by analyzing the stochastic behavior
of the residual errors in the Euler-Maruyama method. We
show that the MSE is dominated by the sum of the inverse
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eigenvalues of the Laplacian matrix.
The outline of the paper is as follows. In Section 2,

we introduce the mathematical notation used throughout the
paper, and then provide the definition and fundamental prop-
erties of average consensus systems. In Section 3, we define
a noisy average consensus system as a SDE. In Section 4,
we present an analysis of the stochastic behavior of the con-
sensus error and derive a concise MSE formula. Finally, in
Section 5, we conclude the discussion.

2. Preliminaries

2.1 Notation

The following notation will be used throughout this paper.
The symbols R and R+ represent the set of real numbers and
the set of positive real numbers, respectively. The one di-
mensional Gaussian distribution with mean 𝜇 and variance
𝜎2 is denoted by N(𝜇, 𝜎2). The multivariate Gaussian dis-
tribution with mean vector µ and covariance matrix 𝚺 is
represented by N(µ,𝚺). The expectation operator is de-
noted by E[·]. The notation diag(x) is the diagonal matrix
whose diagonal elements are given by x ∈ R𝑛. The matrix
exponential exp(X) (X ∈ R𝑛×𝑛) is defined by

exp(X) ≡
∞∑︁
𝑘=0

1
𝑘!
X 𝑘 . (3)

The Frobenius norm ofX ∈ R𝑛×𝑛 is denoted by ∥X ∥𝐹 . The
notation [𝑛] denotes the set of consecutive integers from 1
to 𝑛.

2.2 Average Consensus

Let 𝐺 ≡ (𝑉, 𝐸) be a connected undirected graph where
𝑉 = [𝑛]. Suppose that a node 𝑖 ∈ 𝑉 can be regarded as an
agent communicating over the graph 𝐺. Namely, a node 𝑖
and a node 𝑗 can communicate with each other if (𝑖, 𝑗) ∈ 𝐸 .
We will not distinguish (𝑖, 𝑗) and ( 𝑗 , 𝑖) because the graph 𝐺
is undirected.

Each node 𝑖 has a state value 𝑥𝑖 (𝑡) ∈ R(𝑡 ≥ 0) where 𝑡 ∈
R represents continuous-time variable. The neighborhood of
a node 𝑖 ∈ 𝑉 is represented by

N𝑖 ≡ { 𝑗 ∈ 𝑉 : ( 𝑗 , 𝑖) ∈ 𝐸, 𝑖 ≠ 𝑗}. (4)

Note that the node 𝑖 is excluded from N𝑖 . For any time 𝑡, a
node 𝑖 ∈ 𝑉 can access the self-state 𝑥𝑖 (𝑡) and the state values
of its neighborhood, i.e., 𝑥 𝑗 (𝑡), 𝑗 ∈ N𝑖 but cannot access to
the other state values.

In this section, we briefly review the basic properties of
the average consensus processes [1]. We now assume that
the set of state values

x(𝑡) ≡ (𝑥1 (𝑡), 𝑥2 (𝑡), . . . , 𝑥𝑛 (𝑡))𝑇 (5)

are evolved according to the simultaneous differential equa-
tions

𝑑𝑥𝑖 (𝑡)
𝑑𝑡

= −
∑︁
𝑗∈N𝑖

𝜇𝑖 𝑗 (𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)), 𝑖 ∈ [𝑛], (6)

where the initial condition is

x(0) = c ≡ (𝑐1, 𝑐2, . . . , 𝑐𝑛)𝑇 ∈ R𝑛. (7)

The edge weight 𝜇𝑖 𝑗 ∈ R(𝜇𝑖 𝑗 > 0) follows the symmetric
condition

𝜇𝑖 𝑗 = 𝜇 𝑗𝑖 , 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑛] . (8)

Let𝚫 ≡ (Δ1,Δ2, . . . ,Δ𝑛)𝑇 ∈ R𝑛+ be a degree sequence where
Δ𝑖 is defined by

Δ𝑖 ≡
∑︁
𝑗∈N𝑖

𝜇𝑖 𝑗 , 𝑖 ∈ [𝑛] . (9)

The continuous-time dynamical system (6) is called an
average consensus system because a state value converges to
the average of the initial state values at the limit of 𝑡 → ∞,
i.e,

lim
𝑡→∞

x(𝑡) = 1
𝑛

(
𝑛∑︁
𝑖=1

𝑐𝑖

)
1= 𝛾1, (10)

where the vector 1 represents (1, 1, . . . , 1)𝑇 and 𝛾 is defined
by

𝛾 ≡ 1
𝑛

𝑛∑︁
𝑖=1

𝑐𝑖 . (11)

We define the Laplacian matrix L ≡ {𝐿𝑖 𝑗 } ∈ R𝑛×𝑛 of
this consensus system as follows:

𝐿𝑖 𝑗 = Δ𝑖 , 𝑖 = 𝑗 , 𝑖 ∈ [𝑛], (12)
𝐿𝑖 𝑗 = −𝜇𝑖 𝑗 , 𝑖 ≠ 𝑗 and (𝑖, 𝑗) ∈ 𝐸, (13)
𝐿𝑖 𝑗 = 0, 𝑖 ≠ 𝑗 and (𝑖, 𝑗) ∉ 𝐸. (14)

From this definition, a Laplacian matrix satisfies

L1 = 0, (15)
diag(L) = 𝚫, (16)

L = L𝑇 . (17)

Note that the eigenvalues of the Laplacian matrix L
are nonnegative real because L is a positive semi-definite
symmetric matrix. Let 𝜆1 = 0 < 𝜆2 ≤ . . . ≤ 𝜆𝑛 be the
eigenvalues of L and ξ1, ξ2, . . . , ξ𝑛 be the corresponding or-
thonormal eigenvectors. The first eigenvector ξ1 ≡ (1/

√
𝑛)1

is corresponding to the eigenvalue 𝜆1 = 0, which results in
Lξ1 = 0.

By using the notion of the Laplacian matrix, the dy-
namical system (6) can be compactly rewritten as

𝑑x(𝑡)
𝑑𝑡

= −Lx(𝑡), (18)

where the initial condition is x(0) = c. The dynamical
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behaviors of the average consensus system (18) are thus
characterized by the Laplacian matrix L. Since the ODE
(18) is a linear ODE, it can be easily solved. The solution of
the ODE (18) is given by

x(𝑡) = exp(−L𝑡)x(0), 𝑡 ≥ 0. (19)

LetU ≡ (ξ1, ξ2, . . . , ξ𝑛) ∈ R𝑛×𝑛 whereU is an orthog-
onal matrix. The Laplacian matrix L can be diagonalized
by using U , i.e.,

L = Udiag(𝜆1, . . . , 𝜆𝑛)U𝑇 . (20)

On the basis of the diagonalization, we have the spectral
expansion of the matrix exponential:

exp(−L𝑡) = exp(−Udiag(𝜆1, . . . , 𝜆𝑛)U𝑇 𝑡)
= U exp(−diag(𝜆1, . . . , 𝜆𝑛)𝑡)U𝑇

=

𝑛∑︁
𝑖=1

exp(−𝜆𝑖𝑡)ξ𝑖ξ𝑇𝑖 . (21)

Substituting this to x(𝑡) = exp(−L𝑡)x(0), we immediately
have

x(𝑡) = 1
𝑛
1(1𝑇 )c +

𝑛∑︁
𝑖=2

exp(−𝜆𝑖𝑡)ξ𝑖ξ𝑇𝑖 c. (22)

The second term of the right-hand side converges to zero
since 𝜆𝑘 > 0 for 𝑘 = 2, 3, . . . , 𝑛. This explains why average
consensus happens, i.e., the convergence to the average of
the initial state values (10). The second smallest eigenvalue
𝜆2, called algebraic connectivity [11], determines the con-
vergence speed because exp(−𝜆2𝑡)ξ2ξ

T
2 shows the slowest

convergence in the second term.

3. Noisy average consensus system

3.1 SDE formulation

The dynamical model (2) containing a white Gaussian noise
process is mathematically challenging to handle. We will use
a common approach [8] of approximating the white Gaus-
sian process by using the standard Wiener process. Instead
of model (2), we will focus on the following stochastic dif-
ferential equation (SDE) [9]

𝑑x(𝑡) = −Lx(𝑡)𝑑𝑡 + 𝛼𝑑b(𝑡) (23)

to study the noisy average consensus system. The param-
eter 𝛼 is a positive real number, and it represents the in-
tensity of the noises. The stochastic term b(𝑡) represents
the 𝑛-dimensional standard Wiener process. The elements
of b(𝑡) = (𝑏1 (𝑡), 𝑏2 (𝑡), . . . , 𝑏𝑛 (𝑡))𝑇 are independent one
dimensional-standard Wiener processes. For the Wiener
process 𝑏(𝑡), we have 𝑏(0) = 0, 𝐸 [𝑏(𝑡)] = 0, and it satisfies

𝑏(𝑡) − 𝑏(𝑠) ∼ N (0, 𝑡 − 𝑠), 0 ≤ 𝑠 ≤ 𝑡. (24)

3.2 Approaches for studying stochastic dynamics

Our primary objective in the following analysis is to investi-
gate the stochastic dynamics of the noisy average consensus
system, focusing on deriving the mean and covariance of the
solution x(𝑡) for the SDE (23) because the solution of the
SDE is a stochastic process.

There are two approaches to analyze the system. The
first approach relies on the established theory of Ito calculus
[9], which is used to handle stochastic integrals directly (see
Fig. 1). Ito calculus can be applied to derive the first and
second moments of the solution of (23).

Alternatively, the second approach employs the Euler-
Maruyama (EM) method [8] and utilizes the weak conver-
gence property [8] of the EM method. We will adopt the
latter approach in our analysis, as it does not require knowl-
edge of advanced stochastic calculus if we accept the weak
convergence property. Additionally, this approach can be
naturally extended to the analysis on the discrete-time noisy
average consensus system. Namely, the analysis presented in
Section 4 is essentially an analysis for a discrete-time noisy
consensus system.

SDE (22)
Mean and

covariance at 
time t

EM recursive
equation (25)

Ito calculus

Discretization

Discrete time
mean and
covariance

Weak convergence
propertyGaussian

 property

Fig. 1 Two approaches for deriving the mean and covariance of x(𝑡 ) .
This paper follows the lower path using the EM method.

3.3 Euler-Maruyama method

We use the Euler-Maruyama method corresponding to this
SDE so as to study the stochastic behavior of the solution of
the SDE (23) defined above. The EM method is well-known
numerical method for solving SDEs [8].

Assume that we need numerical solutions of a SDE in
the time interval 0 ≤ 𝑡 ≤ 𝑇 . We divide this interval into
𝑁 bins and let 𝑡𝑘 ≡ 𝑘𝜂, 𝑘 = 0, 1, . . . , 𝑁 where the interval
𝜂 is given by 𝜂 ≡ 𝑇/𝑁. Let us define a discretized sample
x(𝑘 ) be x(𝑘 ) ≡ x(𝑡𝑘). It should be noted that, the choice of
the width 𝜂 is crucial in order to ensure the stability and the
accuracy of the EM method. A small width leads to a more
accurate solution, but requires more computational time. A
large width may be computationally efficient but may lead to
instability in the solution.

The recursive equation of the EM method correspond-
ing to SDE (23) is given by
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x(𝑘+1) = x(𝑘 ) − 𝜂Lx(𝑘 ) + 𝛼w (𝑘 ) , 𝑘 = 0, 1, 2, . . . , 𝑁 − 1,
(25)

where each element of w (𝑘 ) ≡ (𝑤 (𝑘 )
1 , 𝑤

(𝑘 )
2 , . . . , 𝑤

(𝑘 )
𝑛 )𝑇 fol-

lows w (𝑘 ) ∼ N(0, 𝜂I). In the following discussion, we will
use the equivalent expression [8]:

x(𝑘+1) = x(𝑘 ) − 𝜂Lx(𝑘 ) + 𝛼√𝜂z (𝑘 ) , 𝑘 = 0, 1, 2, . . . , 𝑁 − 1,
(26)

where z (𝑘 ) is a random vector following the multivariate
Gaussian distribution N(0, I). The initial vector x(0) is set
to be c. This recursive equation will be referred to as the
Euler-Maruyama recursive equation.

Figure 2 presents a solution evaluated with the EM
method. The cycle graph with 10 nodes with the degree
sequence 𝚫 = (2, 2, . . . , 2) and edge weight 1 is assumed.
The initial value is randomly initialized as x(0) ∼ N (0, I).
We can confirm that the state values are certainly converging
to the average value 𝛾 in the case of noiseless case (left). On
the other hand, the state vector fluctuates around the average
in the noisy case (right).

Fig. 2 Trajectories ofx(𝑡𝑘 ) = (𝑥1 (𝑡𝑘 ) , . . . , 𝑥𝑛 (𝑡𝑘 ) ) estimated by using
the EM method. Cycle graph with 10 nodes were used. The range [0, 10.0]
are discretized with 𝑁 = 100 points. The consensus average value is
𝛾 = −0.3267. Left panel: noiseless case (𝛼 = 0.0) , Right panel: noisy
case (𝛼 = 0.1) .

4. Analysis for Noisy average consensus

4.1 Recursive equation for residual error

In the following, we will analyze the stochastic behavior of
the residual error. This will be the basis for the MSE formula
to be presented.

Recall that the initial state vector is c =

(𝑐1, 𝑐2, . . . , 𝑐𝑛)𝑇 and that the average of the initial values
is denoted by 𝛾. Since the set of eigenvectors {ξ1, . . . , ξ𝑛}
of L is an orthonormal base, we can expand the initial state
vector c as

c = 𝜁1ξ1 + 𝜁2ξ2 + · · · + 𝜁𝑛ξ𝑛, (27)

where the coefficient is obtained by 𝜁𝑖 = c𝑇ξ𝑖 (𝑖 ∈ [𝑛]).
Note that 𝜁1ξ1 = 𝛾1 holds.

At the initial index 𝑘 = 0, the Euler-Maruyama recur-
sive equation becomes

x(1) = x(0) − 𝜂Lx(0) + 𝛼√𝜂z (0) . (28)

Since Lξ1 = 0, we have

x(1) = x(0) − 𝜂L(x(0) − 𝛾1) + 𝛼√𝜂z (0) ,

Subtracting 𝛾1 from the both sides, we get

x(1) − 𝛾1 = (I − 𝜂L) (x(0) − 𝛾1) + 𝛼√𝜂z (0) . (29)

For the index 𝑘 ≥ 1, the Euler-Maruyama recursive equation
from (26) can be written as

x(𝑘+1) = (I − 𝜂L)x(𝑘 ) + 𝛼√𝜂z (𝑘 ) . (30)

Subtracting 𝛾1 from the both sides, we have

x(𝑘+1) − 𝛾1 = (I − 𝜂L)x(𝑘 ) − 𝛾1 + 𝛼√𝜂z (𝑘 ) . (31)

By using the relation (I − 𝜂L)𝛾1 = 𝛾1, we can rewrite the
above equation as

x(𝑘+1) − 𝛾1 = (I − 𝜂L)x(𝑘 ) − (I − 𝜂L)𝛾1 + 𝛼√𝜂z (𝑘 )

= (I − 𝜂L) (x(𝑘 ) − 𝛾1) + 𝛼√𝜂z (𝑘 ) . (32)

It can be confirmed the above recursion (32) is consistent
with the initial equation (29). We here summarize the above
argument as the following lemma.

Lemma 1: Let e(𝑘 ) ≡ x(𝑘 ) − 𝛾1 be the residual error at
index 𝑘 . The evolution of the residual error of the EM
method is described by

e(𝑘+1) = (I − 𝜂L)e(𝑘 ) + 𝛼√𝜂z (𝑘 ) (33)

for 𝑘 ≥ 0.

The residual error e(𝑘 ) denotes the error between the
average vector 𝛾1 and the state vector x(𝑘 ) at time index 𝑘 .
By analyzing the statistical behavior of e(𝑘 ) , we can gain
insight into the stochastic properties of the dynamics of the
noisy consensus system.

4.2 Asymptotic mean of residual error

Let a vectorx ∼ N(µ,𝚺). Recall that the vector obtained by
a linear map y = Ax also follows the Gaussian distribution,
i.e.,

y ∼ N(Aµ,A𝚺A𝑇 ), (34)

where A ∈ R𝑛×𝑛. If two Gaussian vectors a ∼ N(µ𝑎,𝚺𝑎)
and b ∼ N(µ𝑏,𝚺𝑏) are independent, the sum z = a + b
becomes also Gaussian, i.e,

z ∼ N(µ𝑎 + µ𝑏,𝚺𝑎 + 𝚺𝑏). (35)
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In the recursive equation (33), it is evident that e(1)

follows a multivariate Gaussian distribution because

e(1) = (I − 𝜂L) (c − 𝛾1) + 𝛼√𝜂z (0) (36)

is the sum of a constant vector and a Gaussian random vector.
From the above properties of Gaussian random vectors, the
residual error vector e(𝑘 ) follows the multivariate Gaussian
distribution N(µ(𝑘 ) ,𝚺 (𝑘 ) ) where the mean vector µ(𝑘 ) and
the covariance matrix 𝚺 (𝑘 ) are recursively determined by

µ(𝑘+1) = (I − 𝜂L)µ(𝑘 ) , (37)

𝚺 (𝑘+1) = (I − 𝜂L)𝚺 (𝑘 ) (I − 𝜂L)𝑇 + 𝛼2𝜂I (38)

for 𝑘 ≥ 0 where the initial values are formally given by

µ(0) = c − 𝛾1, (39)

𝚺 (0) = O. (40)

Solving the recursive equation, we can get the asymptotic
mean formula as follows.

Lemma 2: Suppose that 𝑇 > 0 is given. The asymptotic
mean of residual error as 𝑁 → ∞ is given by

lim
𝑁→∞

µ(𝑁 ) = exp(−L𝑇) (c − 𝛾1). (41)

(Proof) We formally set the initial mean as µ(0) = c − 𝛾1.
The mean recursion is given as µ(𝑘 ) = (I − 𝜂L)𝑘 (c − 𝛾1)
for 𝑘 ≥ 1. Recall that the eigenvalue decomposition of L is
given by L = Udiag(𝜆1, . . . , 𝜆𝑛)U𝑇 . From

I − 𝜂L = U (I − 𝜂diag(𝜆1, . . . , 𝜆𝑛))U𝑇 , (42)

we have

(I − 𝜂L)𝑘 = Udiag((1 − 𝜂𝜆1)𝑘 , . . . , (1 − 𝜂𝜆𝑛)𝑘)U𝑇 .

(43)

This implies, from the definition of exponential function,

lim
𝑁→∞

(
I − 𝑇

𝑁
L

)𝑁
= exp(−L𝑇), (44)

where 𝜂 = 𝑇/𝑁 .
It is easy to confirm that the claim of this lemma is

consistent with the continuous solution of noiseless case
(19). Namely, at the limit of 𝛼 → 0, the state evolution of
the noisy system converges to that of the noiseless system.

4.3 Asymptotic covariance of residual error

We here discuss the asymptotic behavior of the covariance
matrix 𝚺 (𝑁 ) at the limit of 𝑁 → ∞.

Lemma 3: Suppose that 𝑇 > 0 is given. The asymptotic
covariance matrix at 𝑁 → ∞ is given by

lim
𝑁→∞

𝚺 (𝑁 ) = Udiag
(
𝛼2𝑇, 𝜃2, 𝜃3, . . . , 𝜃𝑛

)
U𝑇 , (45)

where 𝜃𝑖 is defined by

𝜃𝑖 ≡
𝛼2

2𝜆𝑖

(
1 − 𝑒−2𝜆𝑖𝑇

)
. (46)

(Proof) Recall that

I − 𝜂L = Udiag(1, 1 − 𝜂𝜆2 . . . , 1 − 𝜂𝜆𝑛)U𝑇 . (47)

Let 𝚺 (𝑘 ) = Udiag(𝑠 (𝑘 )1 , . . . , 𝑠
(𝑘 )
𝑛 )U𝑇 . A spectral represen-

tation of the covariance evolution (38) is thus given by

diag(𝑠 (𝑘+1)
1 , . . . , 𝑠

(𝑘+1)
𝑛 )

= diag(𝑠 (𝑘 )1 , 𝑠
(𝑘 )
2 (1 − 𝜂𝜆2)2 . . . , 𝑠

(𝑘 )
𝑛 (1 − 𝜂𝜆𝑛)2) + 𝛼2𝜂I ,

(48)

where 𝑠 (0)
𝑖

= 0 for 𝑖 = 1, 2, . . . , 𝑛. The first component
follows a recursion 𝑠 (𝑘+1)

1 = 𝑠
(𝑘 )
1 + 𝛼2𝜂 and thus we have

𝑠
(𝑁 )
1 = 𝛼2𝜂𝑁 = 𝛼2𝑇. Another component follows

𝑠
(𝑘+1)
𝑖

= 𝑠
(𝑘 )
𝑖

(1 − 𝜂𝜆𝑖)2 + 𝛼2𝜂. (49)

Let us consider the characteristic equation of (49) which is
given by

𝑠 = 𝑠(1 − 𝜂𝜆𝑖)2 + 𝛼2𝜂. (50)

The solution of the equation is given by

𝑠 =
𝛼2𝜂

1 − (1 − 𝜂𝜆𝑖)2 . (51)

The above recursive equation (49) thus can be transformed
as

𝑠
(𝑘+1)
𝑖

− 𝑠 = (𝑠 (𝑘 )
𝑖

− 𝑠) (1 − 𝜂𝜆𝑖)2. (52)

From the above equation, 𝑠 (𝑁 )
𝑖

can be solved as

𝑠
(𝑁 )
𝑖

= 𝑠 + (𝑠 (0)
𝑖

− 𝑠) (1 − 𝜂𝜆𝑖)2𝑁 , (53)

where 𝜂 = 𝑇/𝑁 . Taking the limit 𝑁 → ∞, we have

lim
𝑁→∞

𝑠
(𝑁 )
𝑖

=
𝛼2

2𝜆𝑖

(
1 − 𝑒−2𝜆𝑖𝑇

)
(54)

for 𝑖 = 2, 3, . . . , 𝑛. We thus have the claim of this lemma.

4.4 Weak convergence of Euler-Maruyama method

As previously noted, the asymptotic mean (41) is consistent
with the continuous solution. The weak convergence prop-
erty of the EM method [8] allows us to obtain the moments
of the error at time 𝑡.

We will briefly explain the weak convergence property.
Suppose a SDE with the form:

𝑑x(𝑡) = 𝜙(x(𝑡))𝑑𝑡 + 𝜓(x(𝑡))𝑑b(𝑡). (55)

If 𝜙 and 𝜓 are bounded and Lipschitz continuous, then the
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finite order moment estimated by the EM method converges
to the exact moment of the solution x(𝑡) at the limit 𝑁 → ∞
[8]. A function 𝑓 (𝑥) is said to be bounded if there exists
𝐾 > 0 such that ∥ 𝑓 (𝑥)∥2 ≤ 𝐾2 (1 + ∥𝑥∥2). This property
is called the weak convergence property. In our case, the
SDE (23) has bounded and Lipschitz continuous coefficient
functions, i.e, 𝜙(x) = −Lx and 𝜓(x) = 𝛼. Hence, we can
employ the weak convergence property in our analysis.

Suppose x(𝑡) is a solution of SDE (23) with the initial
condition x(0) = c. Let µ(𝑡) be the mean vector of the
residual error e(𝑡) = x(𝑡) − 𝛾1 and 𝚺(𝑡) is the covariance
matrix of the residual error e(𝑡).
Theorem 1: For a positive real number 𝑡 > 0, the mean and
the covariance matrix of the residual error e(𝑡) are given by

µ(𝑡) = exp(−L𝑡) (c − 𝛾1) (56)

𝚺(𝑡) = Udiag
(
𝛼2𝑡, 𝜃2, 𝜃3, . . . , 𝜃𝑛

)
U𝑇 . (57)

(Proof) Due to the weak convergence property of the EM
method, the first and second moments of the error are con-
verged to the asymptotic mean and covariance of the EM
method [8], i.e.,

µ(𝑇) = lim
𝑁→∞

µ(𝑁 ) (58)

𝚺(𝑇) = lim
𝑁→∞

𝚺 (𝑁 ) , (59)

where 𝑁 and 𝑇 are related by 𝑇 = 𝜂𝑁 . Applying Lemmas 2
and 3 and replacing the variable 𝑇 by 𝑡 provide the claim of
the theorem.

4.5 Mean squared error

In the following, we assume that the initial state vector c
follows Gaussian distribution N(0, I).

In this setting, µ(𝑡) also follows multivariate Gaussian
distribution with the mean vector0 and the covariance matrix
Q(𝑡)Q(𝑡)𝑇 where

Q(𝑡) ≡ exp(−L𝑡)
(
I − 1

𝑛
1(1𝑇 )

)
(60)

because µ(𝑡) can be rewritten as

µ(𝑡) = exp(−L𝑡) (c − 𝛾1) = exp(−L𝑡)
(
I − 1

𝑛
1(1𝑇 )

)
c.

(61)

By using the result of Theorem 1, we immediately have
the following corollary indicating the MSE formula.

Corollary 1: The mean squared error (MSE)

MSE(𝑡) ≡ E[∥x(𝑡) − 𝛾1∥2
2] (62)

is given by

MSE(𝑡) = 𝛼2𝑡 + 𝛼
2

2

𝑛∑︁
𝑖=2

1 − 𝑒−2𝜆𝑖 𝑡

𝜆𝑖
+ tr(Q(𝑡)Q(𝑡)𝑇 ).

(Proof) We can rewrite x(𝑡) as:

x(𝑡) = 𝛾1 +Q(𝑡)c +w, (63)

where w ∼ N(0,𝚺(𝑡)), and w and c are independent. We
thus have

MSE(𝑡) = tr(𝚺(𝑡)) + tr(Q(𝑡)Q(𝑡)𝑇 )

= 𝛼2𝑡 + 𝛼
2

2

𝑛∑︁
𝑖=2

1 − 𝑒−2𝜆𝑖 𝑡

𝜆𝑖
+ tr(Q(𝑡)Q(𝑡)𝑇 )

(64)

due to Theorem 1.
Since the value of the term tr(Q(𝑡)Q(𝑡)𝑇 ) is exponen-

tially decreasing with 𝑡, tr(𝚺(𝑡)) is dominant in MSE(𝑡) for
sufficiently large 𝑡. For sufficiently large 𝑡, the MSE is well
approximated by the asymptotic MSE (AMSE) as

MSE(𝑡) ≃ AMSE(𝑡) ≡ 𝛼2𝑡 + 𝛼
2

2

𝑛∑︁
𝑖=2

1
𝜆𝑖

(65)

because tr(Q(𝑡)Q(𝑡)𝑇 ) is negligible, and 1 − 𝑒−2𝜆𝑖 𝑡 can
be well approximated to 1. We can observe that the sum
of inverse eigenvalue

∑𝑛
𝑖=2 (1/𝜆𝑖) of the Laplacian matrix

determines the intercept of the AMSE(𝑡). In other words,
the graph topology influences the stochastic error behavior
through the sum of inverse eigenvalues of the Laplacian
matrix.

Figure 3 presents a comparison of MSE(𝑡) evaluated by
the EM method (26) and the formula in (64). In this experi-
ment, the cycle graph with 10 nodes is used. The values of
AMSE(𝑡) are also included in Fig. 3. We can see that the
theoretical values of MSE(𝑡) and estimated values by the EM
method are quite close. Furthermore, the estimated values
tend to approach AMSE(𝑡) as 𝑡 grows. This is consistent
with the approximation in (65).

Fig. 3 Comparison of MSE: The label Euler-Maruyama represents
MSE(𝑡 ) estimated by using samples generated by the EM method. Theoret-
ical MSE(𝑡 ) represents the values evaluated by (64).Theoretical AMSE(𝑡 )
represents the values of AMSE(𝑡 ) . Cycle graph with 10 nodes with
𝚫 = (2, 2, . . . , 2) are used. The parameter setting is as follows: 𝑁 = 250,
𝑇 = 10, 𝛼 = 0.2. 5000 samples are generated by the EM method for
estimating MSE(𝑡 ) .
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5. Conclusion

In this paper, we have formulated a noisy average consen-
sus system through a SDE. This formulation allows for an
analytical study of the stochastic dynamics of the system.
We derived a formula for the evolution of covariance for the
EM method. Through the weak convergence property, we
have established Theorem 1 and derived a MSE formula that
provides the MSE at time 𝑡. Analysis of the MSE formula
reveals that the sum of inverse eigenvalues for the Lapla-
cian matrix is the most significant factor impacting the MSE
dynamics.

It is important to note that the theoretical understanding
gained in this study will also provide valuable perspective
on consensus-based distributed algorithms in noisy environ-
ments. The exploration of potential applications will be an
open area for further studies.
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