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Aesthetic Evaluation of Chinese Calligraphy Using TabNet:
Interpretability and Novel Features for Improved Accuracy

Soh YOSHIDA†a), Member, Nozomi YATOH†, Nonmember, and Mitsuji MUNEYASU†, Fellow

SUMMARY The aesthetic evaluation of Chinese calligraphy, an art
form with deep cultural roots and subjective interpretations, poses sig-
nificant challenges in artificial intelligence. In this paper, we extend the
methodology introduced in previous work using TabNet, a deep learning
approach, to enhance the accuracy and interpretability of assessing the aes-
thetic qualities of Chinese calligraphy. Our study incorporates an expanded
feature set: we add 10 new characteristics to the previously established 22
global shape features. This comprehensive feature ensemble captures the
subtleties of Chinese calligraphy in accordance with its traditional artistic
standards. Using TabNet, well known for its interpretability within deep
learning frameworks, we aim to predict aesthetic scores with increased pre-
cision. We performed a rigorous evaluation using the Chinese Handwriting
Aesthetic Evaluation Database. Our approach improved accuracy and elu-
cidated the underlying reasoning behind the model’s predictions, thereby
enhancing transparency.
key words: Chinese calligraphy, aesthetic evaluation, TabNet, regression

1. Introduction

Chinese calligraphy, a significant cultural heritage with a
long history [1], is important in artistic research, education
[2], and the archaeological examination of ancient text [3].
However, assessing the aesthetic value of Chinese charac-
ters objectively, accurately, and interpretably using artificial
intelligence is challenging. Research on the aesthetic eval-
uation of images is aimed at scoring and predicting the im-
pressions they elicit. This field of research, which spans
photography [4], Western painting [5], ink painting [6], and
web design [7], often uses both handcrafted features and
deep learning methodologies [8]. By contrast, the study of
Chinese characters primarily relies on handcrafted features.
This preference stems from the belief that the aesthetic value
of these characters is deeply rooted in traditional Chinese
calligraphy principles [9], [10].

Sun et al. [11] introduced character features based
on these calligraphy principles by combining global shape
features and radical layout features to assess aesthetics us-
ing the Chinese Handwriting Aesthetic Evaluation Database
(CHAED), as illustrated in Fig. 1, and multi-layer percep-
tron (MLP). However, this approach encounters obstacles
in evaluation transparency and capturing fine character nu-
ances. The complexity of machine learning models makes
it difficult to discern the effect of specific features on predic-
tions, which limits their practical application. Additionally,
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Fig. 1: Examples of bad to good aesthetic qualities of the
same Chinese characters in CHAED.

global shape features mirror broad calligraphic rules and
may overlook subtle stylistic differences crucial to character
impressions.

In this paper, we propose an aesthetic evaluation method
that leverages TabNet, which is renowned for its inter-
pretability. By selecting key character features for prediction
using an attention-based deep learning approach, we aim to
enhance both accuracy and interpretability (Novelty 1). Fur-
thermore, we refine and introduce new global shape features,
thereby enriching the feature set to enable a more comprehen-
sive evaluation (Novelty 2). Through rigorous testing and
comparison with other regression models, we demonstrated
the effectiveness of our approach in evaluating the aesthetic
quality of handwritten Chinese characters and addressed the
limitations of existing methods.

2. Previous Aesthetic Evaluation Method [11]

In Sun’s method, character images are processed as black and
white binary images, from which 22 global shape features
are derived based on pixel information. Additionally, the
characters are divided into radicals and 10 radical layout fea-
tures are designed to quantify their positional relationships.
However, because radical layout features require calibration
based on dictionary lookup, they are less suited for process-
ing the diverse range of characters spanning from ancient
to modern times. Therefore, we focus on global shape fea-
tures. These features are established from three perspectives:
stability, distribution of whitespace, and density of strokes.

As Chinese characters are typically arranged vertically,
an appropriately aligned character must maintain stability
on both sides. Each image contains a single character, with
the bounding box (BBox) around the character defined by its
width 𝑊𝑏 and height 𝐻𝑏.

• 𝑓1 (Convex Hull Rectangularity): defined by the ratio
𝑓1 = 𝑃𝑐/𝑃𝑏, where 𝑃𝑐 is the perimeter of the convex
hull (the smallest polygon enclosing all points of a char-
acter) and 𝑃𝑏 is the perimeter of the character’s BBox.
A value of 1 indicates a perfect rectangle and lower
values suggest instability.
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• 𝑓2, 𝑓3 (Axis Slope and Intercept): the character’s axis is
modeled as a line 𝑦 = 𝑘𝑥 + 𝑏. The slope 𝑘 and intercept
𝑏 are determined using least squares regression, with 𝑘

representing the axis tilt ( 𝑓2 = 𝑘) and 𝑏 normalized by
the BBox width ( 𝑓3 = 𝑏/𝑊𝑏).

• 𝑓4, 𝑓5 (Center of Gravity): the center of gravity (𝑥𝑔, 𝑦𝑔)
is calculated using (𝑥𝑔, 𝑦𝑔) = 1/𝐶∑𝑊𝑏

𝑖=1
∑𝐻𝑏

𝑗=1 (𝑥𝑖 , 𝑦 𝑗 ) ×
𝐼𝑖, 𝑗 , where 𝐶 is the total number of black pixels in the
character image and 𝐼𝑖, 𝑗 = 1 for black pixels. The nor-
malized coordinates are 𝑓4 = 𝑥𝑔/𝐻𝑏 and 𝑓5 = 𝑦𝑔/𝑊𝑏.

The distribution of the margins indicates whether the
black pixels in the image are dense.

• 𝑓6 (Convexity): a classical measure for the distribution
of whitespace, calculated as 𝑓6 = 𝐶/𝐴convex, where
𝐴convex is the area of the convex hull and 𝐶 is the total
count of black pixels.

• 𝑓7 (Convex Hull Cut Ratio): reflects the area ratio of the
left part of the convex hull when split by the character
axis, determined from 𝑓2 and 𝑓3. It is calculated as
𝑓7 = 𝐴left/𝐴convex, where 𝐴left denotes the area of the
left section post-cut.

• 𝑓8– 𝑓11 (Quadrant Pixel Distribution Ratio): the char-
acter’s convex hull is divided into four quadrants using
the center (𝑥𝑐, 𝑦𝑐) as the origin. For each quadrant
𝑖 (𝑖 = 1, 2, 3, 4), the ratio of pixel count 𝐶𝑖 to the
quadrant’s convex hull area 𝐴convex(𝑖) is computed as
𝑓7+𝑖 = 𝐶𝑖/𝐴convex(𝑖) .

• 𝑓12– 𝑓17 (Mesh Layout): the mesh divides the black pix-
els of the character image evenly in both the horizontal
and vertical directions. A 4 × 4 mesh is used. The 𝑖𝑡ℎ

(𝑖 = 1, 2, 3) vertical line’s 𝑥-coordinate is 𝑥vLine(𝑖) and
the 𝑗 𝑡ℎ ( 𝑗 = 1, 2, 3) horizontal line’s 𝑦-coordinate is
𝑦hLine( 𝑗 ) . For normalization, the positions of the ver-
tical and horizontal lines are divided by 𝐻𝑏 and 𝑊𝑏,
yielding 𝑓11+𝑖 = 𝑥vLine(𝑖)/𝐻𝑏 and 𝑓14+ 𝑗 = 𝑦hLine( 𝑗 )/𝑊𝑏,
respectively.

The density of the stroke count is an important feature of
Chinese characters, which are composed mainly of straight
lines.

• 𝑓18 (Maximum Fill Ratio): designed based on shape
density analysis, this feature fills in the gaps within
characters by drawing lines between black pixels at
the edges of rows and columns. It describes the dis-
tance between strokes and achieves posture invariance
by rotating the character image once to fill gaps, cal-
culated as 𝑓18 = max𝛼 𝐶gap(𝛼)/(𝐶gap(𝛼) + 𝐶), where
𝛼 = 1◦, 2◦, . . . , 90◦ denotes the rotation angle and
𝐶gap(𝛼) is the number of pixels that fill the gaps when
the image is rotated by 𝛼 degrees.

• 𝑓19– 𝑓22 (Pixel Projection Variance): reflects the pres-
ence of the four most common types of strokes in Chi-
nese characters: horizontal, vertical, left oblique, and
right oblique. They are observed by projecting black
pixels onto the 𝑥-axis rotated by 𝛼 = 0◦, 45◦, 90◦, 135◦,
respectively. The variance of the distribution after

projection, 𝛿𝛼, defines these features: 𝑓18+𝑖 = 𝛿𝛼
(𝑖 = 1, 2, 3, 4).

These extracted features serve as inputs for training the
aesthetic evaluation model. A regression model using a four-
layer MLP, with 𝑓1– 𝑓22 as input features and the mean square
error (MSE) as the loss function, is constructed for aesthetic
evaluation. Note that radical layout features were added in
the original literature.

3. Proposed Method

3.1 Proposed Global Shape Features

In this study, we enhance our approach by refining four prin-
cipal global shape features from the original set of 22 using
conventional machine learning techniques: extra tree [12],
random forest [13], LightGBM [14], and XGBoost [15],
along with TabNet. The specifics of our experimental setup
are detailed in Section 4.1. Through ensemble evaluation,
the axis slope ( 𝑓2) emerged as the most significant feature,
which highlights the critical role of bilateral symmetry in
aesthetic assessments. Next in importance, the convexity
measure ( 𝑓6) underscored the substantial influence of stroke
density on overall impressions. The pixel projection variance
at 90◦ ( 𝑓21) illuminated the contribution of stroke angle sta-
bility, inherent to Chinese characters, to creating a clean and
neat impression. Additionally, the center of gravity along the
𝑥-axis ( 𝑓4) stressed the importance of stability in aesthetic
judgment. Leveraging these insights, we introduce 10 new
features, as shown in Fig. 2, to provide a more nuanced
understanding of character aesthetics.

• 𝑓23 (Aspect Ratio): reflects the width to height ratio
of a character’s BBox, calculated as 𝑓23 = 𝐻𝑏/𝑊𝑏. It
indicates that well-balanced characters tend to have a
near-square BBox.

• 𝑓24, 𝑓25 (Convex Hull Centroid): represents the centroid
within a character’s convex hull and calculated from the
entire convex hull, including margins. After the hull’s
margins are replaced with black pixels, the centroid
(𝑥cg, 𝑦cg) is computed using the same procedure as 𝑓4,
𝑓5, and normalized by the BBox dimensions, yielding
𝑓23 = 𝑥cg/𝐻𝑏, 𝑓24 = 𝑦cg/𝑊𝑏.

• 𝑓26– 𝑓29 (Bisected Image Centroids): evaluate symme-
try by dividing the image along the character’s cen-
troid, and computing the centroids (𝑥gright, 𝑦gright) and
(𝑥gleft, 𝑦gleft) for the right and left halves, respectively.
These are normalized by the BBox dimensions to ob-
tain 𝑓26 = 𝑥gright/𝐻𝑏, 𝑓27 = 𝑦gright/𝑊𝑏, 𝑓28 = 𝑥gleft/𝐻𝑏,
𝑓29 = 𝑦gleft/𝑊𝑏.

• 𝑓30, 𝑓31 (Stroke Angles): directly measure the horizon-
tality and verticality of strokes by thinning the charac-
ter image, detecting the longest vertical and horizontal
strokes, and calculating their angles relative to the hor-
izontal line as 𝑓30 and 𝑓31. Characters that lack vertical
or horizontal strokes are assigned an initial value of
360◦.
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Fig. 2: Proposed global character shape features.

• 𝑓32 (Structure Category): classifies character structure
into six types based on radicals, thereby offering sim-
plified structural information without specific radical
positioning. Fig. 3 shows the structure categories: (a)
single-element characters, (b) characters divisible hori-
zontally with radicals, (c) vertically divisible characters
with crown or foot radicals, (d) characters with “hang-
ing” radicals that allow division around and within,
(e) characters with “enclosing” radicals distinguishable
around and within, and (f) characters with “embracing”
radicals distinguishable around and within.

(a) (b) (c) (d) (e) (f)

Fig. 3: Proposed layout categorical feature: 𝑓32.

3.2 Aesthetic Evaluation Using TabNet

The TabNet encoder consists of two types of transformers:
the feature transformer (FT) layer for feature determination
and the attentive transformer (AT) layer for selecting impor-
tant features. To enhance interpretability, an attention mask
(AM) layer calculates and aggregates feature contributions.
TabNet operates on sequential decision steps and selects fea-
tures for each 𝑖𝑡ℎ step (𝑖 = 1, . . . , 𝑁steps) through masking,
therby aggregating processed feature representations for in-
terpretability. 𝑁steps represents the total number of steps.
The encoding and learning processes from the input to the
output layer are detailed as follows:
Input layer: feature vector 𝑓 ∈ R𝐵×𝐷 undergoes normaliza-
tion via a batch normalization (BN) layer before proceeding
to the FT layer, where 𝐵 represents the batch size and 𝐷

(= 32) is the number of dimensions.
FT layer: comprises four blocks of fully connected (FC) lay-
ers, BN layers, and gated linear units (GLUs) [16], where the
GLU serves as the activation function that determines feature
passage. The first two blocks share weights across decision
steps, whereas the last two have independent weights for each
step. Each block’s output, normalized by

√
0.5, connects to

the next block’s input and output via skip connections. The
FT output splits into 𝑑 [𝑖] ∈ R𝑁𝑑 and 𝑎[𝑖] ∈ R𝑁𝑎 , where 𝑁𝑑

and 𝑁𝑎 represent each of the dimensions, and they are inputs
for the following layers’ (𝑖 + 1)𝑡ℎ step, respectively. Note

that the FT layer connected after the input layer is used to
obtain the initial values, whose outputs are denoted by 𝑑 [0]
and 𝑎[0]. Counting decision steps starts at the next AT layer.
AT layer: decides which features to select and which to
ignore. Following an FC layer and BN layer, a scale
is applied. A learnable mask 𝑀 [𝑖] ∈ R𝐵×𝐷 at the 𝑖𝑡ℎ

decision step selects features of 𝑓 as 𝑀 [𝑖] · 𝑓 , where∑𝐷
𝑗=1 𝑀 [𝑖]𝑏, 𝑗 = 1. 𝑀 [𝑖]𝑏, 𝑗 represents the (𝑏, 𝑗) compo-

nent of 𝑀 [𝑖]. The scale 𝑃[𝑖] ∈ R𝐵×𝐷 reflects the empha-
sis placed on each feature in the previous steps, updated
as 𝑃[𝑖] =

∏𝑖
𝑗=1 𝑃[𝑖] (𝛾 − 𝑀 [ 𝑗]). Initially, 𝑃[0] = 1𝐵×𝐷 ,

where 𝛾 is a relaxation parameter. Mask 𝑀 [𝑖] is determined
by 𝑀 [𝑖] = sparsemax(𝑃[𝑖] ·ℎ𝑖 (𝑎[𝑖−1])), where ℎ𝑖 is a layer
that combines the FC and BN layers at step 𝑖. Sparsemax [17]
is an activation function that adds sparsity to outputs, similar
to softmax. The output of the AT layer is then forwarded to
the AM layer.
AM layer: for interpretability, the AT layer’s generated
mask calculates the feature contribution degrees, forming
an aggregated feature importance mask. If 𝑀 [𝑖]𝑏, 𝑗 = 0,
the feature dimension 𝑗 of instance 𝑏 does not contribute
to the 𝑖𝑡ℎ step. The contribution degree 𝜂𝑏 [𝑖] is calcu-
lated as 𝜂𝑏 [𝑖] =

∑𝑁𝑑

𝑐=1 ReLU(𝑑 [𝑖]𝑏,𝑐). The importance
mask for aggregated features is represented by 𝑀

𝑎𝑔𝑔

𝑏, 𝑗
=∑𝑁steps

𝑖=1 𝜂𝑏 [𝑖]𝑀𝑏, 𝑗 [𝑖]
/∑𝐷

𝑗=1
∑𝑁steps

𝑖=1 𝜂𝑏 [𝑖]𝑀𝑏, 𝑗 [𝑖] .The output
that passes through the AM layer is fed into the FT layer.
Output layer: the output 𝑑 [𝑖] from the FT layer at the
𝑖𝑡ℎ step is aggregated using the ReLU activation func-
tion as 𝑑 =

∑𝑁steps
𝑖=1 ReLU(𝑑 [𝑖]). This aggregated out-

put passes through an FC layer to produce the predic-
tion. The proposed method defines the loss function as
the MSE, by comparing the actual aesthetic score with the
predicted score. Additionally, a regularization term 𝐿sparse =∑𝑁steps

𝑖=1
∑𝐵

𝑏=1
∑𝐷

𝑗=1 −𝑀 [𝑖]𝑏, 𝑗 log(𝑀 [𝑖]𝑏, 𝑗 + 𝜖)/(𝑁steps · 𝐵) is
included with a regularization parameter 𝜆sparse to enhance
the sparsity of feature selection, where 𝜖 is a small number
added to maintain numerical stability.
Tabular self-supervised learning: before TabNet is trained
for aesthetic score prediction, a self-supervised pre-training
phase is conducted to enhance predictive performance. In
this phase, the encoder’s output is processed by the FT
and FC layers. A binary mask 𝑆 ∈ R𝐵×𝐷 , based on
Bernoulli sampling, is applied to the input feature vector
𝑓 for reconstruction, where each 𝑆𝑏, 𝑗 ∈ {0, 1} indicates
whether a feature is retained or masked. The reconstruc-
tion error is defined as 𝐿recon =

∑𝐵
𝑏=1

∑𝐷
𝑗=1 | ( 𝑓𝑏, 𝑗 − 𝑓𝑏, 𝑗 ) | ·

𝑆𝑏, 𝑗/
√︃∑𝐵

𝑏=1 ( 𝑓𝑏, 𝑗 − 1/𝐵∑𝐵
𝑏=1 𝑓𝑏, 𝑗 ) |2, where 𝑓𝑏, 𝑗 and 𝑓𝑏, 𝑗

represent the predicted and input values of the feature vector
at position (𝑏, 𝑗), respectively.

4. Experiments

4.1 Dataset and Experimental Setup

Dataset. CHAED reported in the literature [11] was used
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to validate the effectiveness of the proposed method through
comparative experiments. CHAED comprises 100 types
of characters, each with 10 handwritten Chinese characters
representing different impressions. Each of 1,000 character
images is assigned an aesthetic impression score based on
surveys from 33 evaluators via crowdsourcing. After 10 un-
usable images were excluded, 990 images were processed to
extract global shape features, with 891 designated as training
data and 99 as test data.
Experimental condition. In accordance with the size of
the dataset and the dimensions of the proposed features, the
TabNet configuration included the settings of 𝑁𝑑 = 8, 𝑁𝑎 =

16, 𝑁steps = 3, 𝐵 = 16, 𝛾 = 1.5, and 𝜆sparse = 1.0 × 10−3.
The Adam optimizer was used with an initial learning rate
of 0.02, which was decreased by 0.1 every 10 epochs if there
was no reduction in loss. The comparative methods were
linear regression [18], 𝑘–nearest neighbors (𝑘–NN) [19],
support vector regression (SVR) [20], extra trees, random
forest, LightGBM, and XGBoost, with optimal parameters
determined through grid search. The mean absolute error
(MAE), which is the average absolute difference between
the predicted values and actual scores within the dataset,
was used as the evaluation metric.

4.2 Results

Table 1 shows the results, which indicate that TabNet, using
32 global shape features, achieved the lowest MAE. This
outcome suggests that the proposed method most accurately
reflects human subjective evaluations. Specifically, the ad-
dition of features improved the predictive accuracy of the
proposed method. However, accuracy declined for some
comparative methods. To analyze this, Fig. 4(a) illustrates
the strength of the relationship between two variables based
on Pearson’s correlation coefficient. Notably, features 𝑓24–
𝑓29, designed based on insights from the existing 22 features,
showed significant correlations, which led to prediction in-
stability caused by multicollinearity [21]. By contrast, fea-
ture selection techniques such as TabNet and decision tree
variants proved effective when the proposed features were
added. Specifically, TabNet uses AT layers to select relevant
features at each decision step, which mitigates the effect of
multicollinearity. Decision tree-based methods such as ex-
tra tree and random forest make splitting decisions based on

Table 1: Comparison of MAE for various methods.
XXXXXXXXMethod

Feature
𝑓1– 𝑓22 𝑓1– 𝑓32

Linear regression 16.69 16.61
𝑘–NN 17.62 18.72
SVR 16.59 15.89
Extra tree 15.91 15.33
Random forest 16.39 15.71
LightGBM 16.61 15.89
XGBoost 17.03 16.76
MLP (Sun et al.) [11] 17.85 19.96
TabNet (ours) 12.58 11.96

f1 f3 f5 f7 f9 f11 f13 f15 f17 f19 f21 f23 f25 f27 f29 f31
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f7

f9
f1

1
f1
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1
f2

3
f2

5
f2

7
f2

9
f3

1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Correlation coefficients

et al.

(b) Absolute error

Fig. 4: Statistical analysis.

individual features, which makes them less sensitive to cor-
relations between features. This explains why these meth-
ods improved performance when the expanded feature set
was used, whereas models such as linear regression, 𝑘-NN,
and MLP either maintained or decreased performance. Fig.
4(b) shows a comparison of the distribution of scoring errors
between previous methods and the proposed method, and
demonstrates the enhanced robustness with our approach
because median predictions were within a 10-point error
margin and the outliers are significantly suppressed.

Fig. 5 shows the character images 罢, along with the
corresponding scores and features that contributed to pre-
dictions, as identified by AM. The contributing features ( 𝑓5,
𝑓12, 𝑓17, 𝑓21, 𝑓24, 𝑓27) focus on stroke density and the charac-
ter’s center of gravity, which indicates that character balance
influences the aesthetic impression. In this case study, we
indicated features 𝑓12– 𝑓17 using red lines on the different
images to enable us to discuss character balance. We ana-
lyze three characters with low, medium, and high aesthetic
scores to provide a comprehensive view of how the model
evaluates characters across different quality levels and to
identify which features are consistently important or change
in importance based on the aesthetic score.

• The consistent importance of 𝑓21 (pixel projection vari-
ance, 𝛼 = 90◦) and 𝑓24 (𝑥-coordinate of the convex
hull’s center of gravity) across all score ranges suggests
that they have a fundamental role in evaluating the struc-
ture of罢. It is likely that 𝑓21 assesses the arrangement
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(a) (15.15, 33.75)
𝑓17, 𝑓21, 𝑓24, 𝑓27

(b) (49.96, 41.10)
𝑓17, 𝑓21, 𝑓24, 𝑓27

(c) (96.96, 85.97)
𝑓5, 𝑓12, 𝑓21, 𝑓24

Fig. 5: Case study: the caption indicates the target score,
predicted score (bold), and contributing features.

of vertical strokes in罒 and去, whereas 𝑓24 evaluates
the left-right balance. The prominence of 𝑓24 indi-
cates that left-right symmetry and the balance between
罒 and 去 significantly affect the aesthetic evaluation.
This feature is likely to reflect the balance between the
mesh-like structure of 罒 and the asymmetrical shape
of去.

• For low and medium scores, 𝑓17 (mesh layout of the
horizontal line) and 𝑓27 (𝑦-coordinate of the right half’s
center of gravity) appear to be important, which sug-
gests that they have role in identifying character imbal-
ance.

• For high scores, 𝑓5 (𝑦-coordinate of the center of grav-
ity) and 𝑓12 (mesh layout of the vertical line) are sig-
nificant. Given that Chinese character strokes typically
progress from top-left to bottom-right, this suggests
that, to be aesthetically pleasing,罢 characters need to
have on overall vertical balance and appropriate left-
side arrangement. The well-structured 罒 and harmo-
niously arranged 去 are likely to contribute to high
aesthetic evaluations.
This analysis also highlights a limitation of the proposed

method: its tendency to make conservative predictions, par-
ticularly at the score extremes. This means that the model
may lean toward the dataset’s average for very high or low
true scores, thereby leading to prediction errors. Address-
ing this limitation requires refining the model’s sensitivity to
features in future work, particularly for accurately handling
extreme cases.

5. Conclusions

In this paper, we presented a novel method to assess the aes-
thetic impressions of Chinese characters leveraging TabNet.
Our experimental findings underscore the proposed method’s
effectiveness by demonstrating notable performance and in-
terpretability.

Acknowledgment

This work was supported by JSPS, KAKENHI Grant
Number 22K18007, Japan. We thank Edanz
(https://jp.edanz.com/ac) for editing a draft of this
manuscript.

References

[1] Y. Xu and R. Shen, “Aesthetic evaluation of chinese calligraphy:

a cross-cultural comparative study,” Current Psychology, vol.42,
pp.23096–23109, 2023.

[2] M. Wang, Q. Fu, X. Wang, Z. Wu, M. Zhou, et al., “Evaluation of
chinese calligraphy by using dbsc vectorization and icp algorithm,”
Mathematical Problems in Engineering, vol.2016, 2016.

[3] T. Fujita, “A basic consideration for the handwrighting analysis of the
han woodslips,” Essays on the Occation of the 70th Anniversary of
the Institute of Oriental and Occidental Studies, Kansai University,
pp.357–376, 2013.

[4] L. Li, H. Zhu, S. Zhao, G. Ding, H. Jiang, and A. Tan, “Personality
driven multi-task learning for image aesthetic assessment,” Proceed-
ings of the IEEE International Conference on Multimedia and Expo,
pp.430–435, 2019.

[5] C. Li and T. Chen, “Aesthetic visual quality assessment of paintings,”
IEEE Journal of Selected Topics in Signal Processing, vol.3, no.2,
pp.236–252, 2009.

[6] A. Sartori, V. Yanulevskaya, A.A. Salah, J. Uijlings, E. Bruni, and
N. Sebe, “Affective analysis of professional and amateur abstract
paintings using statistical analysis and art theory,” ACM Transactions
on Interactive Intelligent Systems, vol.5, no.2, 2015.

[7] J. Zhang, Y. Miao, J. Zhang, and J. Yu, “Inkthetics: A compre-
hensive computational model for aesthetic evaluation of chinese ink
paintings,” IEEE Access, vol.8, pp.225857–225871, 2020.

[8] K. Saira, U. Muhammad, and H. Ullah, “A survey of hand crafted
and deep learning methods for image aesthetic assessment,” CoRR,
vol.abs/2103.11616, 2021.

[9] W. Li, Y. Song, and C. Zhou, “Computationally evaluating and syn-
thesizing chinese calligraphy,” Neurocomputing, vol.135, pp.299–
305, 2014.

[10] M. Sun, X. Gong, H. Nie, M.M. Iqbal, and B. Xie, “Srafe:
Siamese regression aesthetic fusion evaluation for chinese calli-
graphic copy,” CAAI Transactions on Intelligence Technology, vol.8,
no.3, pp.1077–1086, 2023.

[11] R. Sun, Z. Lian, Y. Tang, and J. Xiao, “Aesthetic visual quality
evaluation of chinese handwritings,” Proceedings of the International
Conference on Artificial Intelligence, pp.2510–2516, 2015.

[12] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine learning, vol.63, pp.3–42, 2006.

[13] R. Genuer, J.M. Poggi, R. Genuer, and J.M. Poggi, Random forests,
Springer, 2020.

[14] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.Y. Liu, “LightGBM: A highly efficient gradient boosting decision
tree,” Advances in Neural Information Processing Systems, 2017.

[15] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting sys-
tem,” Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp.785–794, 2016.

[16] S. Narang, H.W. Chung, Y. Tay, W. Fedus, T. Fevry, M. Matena,
K. Malkan, N. Fiedel, N. Shazeer, Z. Lan, Y. Zhou, W. Li, N. Ding,
J. Marcus, A. Roberts, and C. Raffel, “Do transformer modifica-
tions transfer across implementations and applications?,” CoRR,
vol.abs/2102.11972, 2021.

[17] A.F.T. Martins and R.F. Astudillo, “From softmax to sparsemax:
a sparse model of attention and multi-label classification,” Proceed-
ings of the International Conference on Machine Learning, pp.1614–
1623, 2016.

[18] F. Galton, “Regression towards mediocrity in hereditary stature,” The
Journal of the Anthropological Institute of Great Britain and Ireland,
vol.15, pp.246–263, 1886.

[19] A. Mucherino, P.J. Papajorgji, and P.M. Pardalos, k-Nearest Neighbor
Classification, Springer New York, 2009.

[20] H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, and V. Vap-
nik, “Support vector regression machines,” Proceedings of the In-
ternational Conference on Neural Information Processing Systems,
pp.155–161, 1996.

[21] G. Smith, “10-multiple regression,” in Essential Statistics, Regres-
sion, and Econometrics (Second Edition), pp.301–337, Academic
Press, 2015.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

