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PAPER
A Hierarchical Joint Training based Replay-Guided Contrastive
Transformer for Action Quality Assessment of Figure Skating

Yanchao LIU†a), Xina CHENG††, Nonmembers, and Takeshi IKENAGA†, Member

SUMMARY Action quality assessment (AQA) has gained prominence
as it finds widespread applications in various scenarios. Most existing
methods directly regress from single or pairwise videos, which leads to
redundant temporal features and limited views affecting the scoring mech-
anism. Moreover, direct regression only applies supervision to the last
layer, which leads to hardship in optimizing the intermediate layers such as
gradient vanishing. To end this, we propose a Hierarchical Joint Training
based Replay-Guided Contrastive Transformer, learned by a temporal con-
centration module. For network architecture, we design an extra contrastive
module for the input and its replay, and the consistency of scores guides
the model to learn the features of the same action under different views. A
temporal concentration module is proposed to extract concentrated features
such as errors or highlights, which are crucial factors affecting scoring. The
proposed hierarchical joint training provides supervision on both shallow
and deep layers, enhancing the performance of the scoring mechanism and
speed of training convergence. Extensive experiments demonstrate that
our method achieves Spearman’s Rank Correlation of 0.9642 on the RFSJ
dataset, which is the new state-of-the-art result.
key words: Action Quality Assessment, Contrastive Learning, Multi-
Supervision

1. Introduction

Action Quality Assessment (AQA) aims to evaluate how
well a specific action is performed and finds extensive ap-
plications in domains such as sports [1] and healthcare [2].
Diverging from video action recognition [3] or detection [4],
the AQA task presents a greater challenge as it necessitates
evaluating the nuanced visual distinctions among closely re-
lated actions.

In the past years, most existing works on AQA mainly
regress the assessed scores from a single video [5], [6] or a
pairwise exemplar and input videos [1], [7]. Despite their
effectiveness, these methods are limited by the viewpoint
and zoom scale of input videos. It impedes the ability to dis-
cern crucial nuances for accurate action quality assessment.
For example, in figure skating competitions, the blade-ice
contact angle during take-off and landing significantly influ-
ences the score. However, it is challenging to identify by
only a single view. Relying solely on score regression from
one perspective leads to inaccurate inferences, as the model
struggles to differentiate changes in viewpoint from inherent
action variations.

†The authors are with the Graduate School of Information,
Production and Systems, Waseda University, Kitakyushu-shi, 808-
0135 Japan.

††The authors are with Xidian University, Xi’an, 710126 China.
a) E-mail: liuyanchao@fuji.waseda.jp

Judges frequently review replay videos from various
views to determine uncertain or disputed actions, ultimately
establishing the final score in real competitive scenarios.
Based on this fact, we contend that replay data from var-
ious angles holds great significance for AQA. Motivated
by this, we introduce an innovative framework for action
quality assessment, featuring a replay-guided triple-stream
contrastive transformer. In line with recent conventional re-
search efforts [1], [7]–[9], our framework discerns disparities
between the pairwise exemplar and the input video. How-
ever, our novel triple-stream framework takes a step further
by incorporating the input video and its corresponding re-
play, employing an additional contrastive branch guided by
optimization consistency. In essence, the input video and its
replay showcase the same athlete and action but offer differ-
ent viewpoints and zoom scales, resulting in a relative score
of zero. This concept draws inspiration from self-supervised
learning, where the zero relative score acts as a constraint,
steering the network’s attention towards the athletes’ actions
rather than variations in viewpoint or scale.

We have observed that the occurrence of athlete errors
or highlight moments significantly influences the scoring.
These moments tend to cluster in specific sections of the
video, instead of uniform distribution. Building upon this
observation, we designed a Temporal Concentration Module.
To elaborate, our initial step involves uniformly grouping the
pairwise video features and devising a cross-attention con-
centration decoder for each group. This decoder extracts an
attention heatmap that highlights the concentrated correla-
tions between these features. Subsequently, we implement
a dense resampling strategy guided by the hotspots on the
heatmap, directing focused attention to errors or highlight
moments. These resampled feature pairs are then fed into a
contrastive decoder, and cross-attention mechanisms are em-
ployed to facilitate the network in learning from the errors
or highlights within each group.

Note that this work is an extended version of
our conference work that appeared in ACM Multimedia
(MM2023) [10]. Compared with the conference version, this
work includes a new Hierarchical Joint Training method for
more reliable concentrated feature extraction and enhanced
scoring performance and convergence speed.

The conference version primarily emphasizes the AQA
through the direct regression of concentrated features. This
causes inadvertently overlooking the intrinsic relationship
between the generalized feature and the concentrated fea-
ture. Given that the concentrated feature stems from the

Copyright © 200x The Institute of Electronics, Information and Communication Engineers
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generalized feature, direct regression leads to gradient van-
ishing in the generation process, affecting reliability. our
current work extends the conference version by introduc-
ing hierarchical joint training to systematically capture the
interdependence between the generalized and concentrated
features. Based on deep supervision, a shallow module is
designed to supervise training directly in the shallow layer
to ensure the reliability of extracting concentrated features.

Specifically, our novel strategy involves coordinated
training to extract concentrated features while establishing a
clear relationship with generalized features. This is achieved
through a meticulous supervision mechanism, where the gen-
eralized feature undergoes score regression in the shallow
layer. By incorporating this additional layer of supervision,
we aim to enhance the reliability of the concentration rank-
ing before the actual extraction of the concentrated feature.
Through extensive experimentation, we provide empirical
evidence to support the effectiveness of the proposed hierar-
chical joint training method.

In summary, the contributions of this work are listed as
follows:

• We propose a replay-guided temporal concentration ap-
proach for action quality assessment, which inputs ex-
emplar, input video, and replay simultaneously, learned
by concentrated attention to quantify the quality differ-
ence of errors or highlight moments between videos.

• Different from the conference version, we propose a
hierarchical joint training method to provide supervi-
sion on both shallow and deep layers, enhancing the
performance of the scoring mechanism and speed of
convergence.

• Extensive experiments demonstrate that our proposed
method improves over state-of-the-art methods.

2. Related Work

In this section, we review existing AQA methods and multi-
view learning architecture.

2.1 Action Quality Assessment

Existing methods for AQA can be broadly classified into two
categories: single-stream regressive methods and double-
stream contrastive methods. Single-stream regressive meth-
ods approach the AQA task as a regression problem opti-
mized using labeled absolute scores. Pioneering this ap-
proach, Pirsiavash et al.[11] introduced a learning-based
framework, training a regression model from spatiotem-
poral pose features to predict scores. Parmar et al.[12]
employed 3D convolutional neural networks (C3D) to ex-
tract spatiotemporal features and utilized Long Short-Term
Memory (LSTM) with Support Vector Regression (SVR) to
regress the quality score. Their work [13] also introduced a
multitask learning approach to AQA. Bertasius [14] utilized
a convolutional LSTM network and Gaussian mixture to
construct a non-linear spatiotemporal feature for assessing

the superior player in a pair of videos. Xu et al.[15] in-
tegrated self-attentive LSTM and multi-scale convolutional
skip LSTM in a single end-to-end framework. Tang et al.[5]
proposed an Uncertainty-Aware Score Distribution Learning
(USDL) framework, considering the subjectiveness of ac-
tion scores from human judges. Wang et al. [6] introduced a
tube self-attention network, generating representations with
rich contextual information through a single-object tracker.
In recent developments, double-stream contrastive methods
have emerged, framing the AQA task as a ranking prob-
lem, offering more comprehensive supervision. Doughty et
al.[16] evaluated pairwise actions by learning discriminative
and shared features. Their subsequent work[17] presented
a model for rank-aware attention, learning the most infor-
mative segments for assessing skill quality. Yu et al.[9] pro-
posed Contrastive Regression (CoRe) to learn relative scores
through pairwise comparison, guiding the network to discern
differences between videos. Bai et al.[7] proposed a Tempo-
ral Parsing Transformer to decompose holistic features into
temporal part-level representations. Li et al.[8] introduced a
pairwise contrastive learning network to guide training. Xu
et al.[1] proposed a procedure-aware approach to parse pair-
wise videos into consecutive steps with diverse semantics,
supervised by temporal segmentation annotations. A notable
departure from prior approaches, Liu et al. [10] introduced
a replay-guided temporal concentration module (TCM) that
concurrently analyzes differences between examples, input,
and its replay. We further extend [10] in this paper, incorpo-
rating a hierarchical joint training method for more reliable
concentrated feature extraction, aiming to explore an effec-
tive scoring mechanism.

2.2 Multi-View Learning Architecture

In the domain of action recognition and video prediction, the
exploration of multi-view learning architectures has garnered
attention. S. Vyas et al.[18] delve into learning a comprehen-
sive internal representation of multi-view videos, enabling
the prediction of a video clip from an unseen viewpoint and
time for action recognition. On a similar note, S. Yan et
al.[19] propose a model incorporating separate encoders to
characterize distinct views of the input video, utilizing lateral
connections to amalgamate information across views for en-
hanced video understanding. While the common objective
is to cultivate viewpoint-invariant representations, existing
methods often amalgamate features from multiple views of
a single video to delineate discrete class clusters. However,
the AQA task necessitates the model to meticulously attend
to subtle differences between the exemplar and input video
actions. Consequently, our approach refrains from directly
incorporating multi-view information from a single video.
We underscore the significance of contrastive learning, em-
ploying the relative score of 0 to constrict the input video
and its replay. This strategic choice is intended to mitigate
the impact of the network on viewpoint changes and uphold
the integrity of the learning process.
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Fig. 1 The architecture of the proposed replay-guided triple-stream contrastive transformer with hier-
archical joint training for action quality assessment. In the training phase, besides the loss between the
relative score and ground truth, the other three losses are trained hierarchically. In the testing phase, the
orange parts are not used. (Best viewed in color.)

2.3 Deeply Supervised Learning

To address the difficulty of optimization caused by a large
number of layers, Lee et al. [20] first proposed deeply-
supervised nets to directly supervise the intermediate lay-
ers of deep neural networks. In the past years, an increas-
ing number of works applied deeply supervised learning for
performance enhancement in various applications, such as
object detection [21] and semantic segmentation [22]. Most
of the existing work is directly using labels to regression
features in the hidden layer. However, we do not have real
labels of the heatmap to directly supervise the heatmap de-
coder. Therefore, we design a shallow module to perform
indirect regression of heatmap generation by preliminary
scores. Combined with deep supervision, the proposed hi-
erarchical joint training benefits to the whole network to
improve the accuracy.

3. Methodology

In this section, we first introduce the overview of the frame-
work. Then, we revisit our temporal concentration module.
Next, we describe our new hierarchical joint training method.
Finally, we introduce the inference strategy.

3.1 Overview of Framework

The network architecture is shown in Figure 1. Given an
input 𝑋 , it corresponds to an exemplar 𝑍 and a replay of

Table 1 Notations and meanings.

Notation Meaning

𝑋 Input video
𝑍 Exemplar video
𝑋𝑟 A replay video of the input 𝑋
𝑇 Frame length of video
F Spatiotemporal features extracted by I3D
S Spatiotemporal features downsampled from F
S′ Generalized feature generated by group sampling
T Temporal heatmap
P The hottest point in T
R Concentrated feature
D Fine-grained concentrated feature
G Generalized feature generated by generalized decoder
𝐺 Group number of group resamling
𝑀 Exemplars number of voting strategy
Δ𝑠 Relative score
Δ𝑠𝑟 Self-relative score
Δ𝑝𝑠 Preliminary relative score
Δ𝑝𝑠𝑟 Preliminary self-relative score
𝑠𝑥 Final score of input 𝑋
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the input 𝑋𝑟 with the same frame length 𝑇 . We extract spa-
tiotemporal features F using the I3D backbone [23]. The
I3D backbone extends 2D convolutional networks to 3D,
allowing it to process both spatial dimensions (height and
width) and the temporal dimension (time). This is crucial
for capturing motion and dynamics in video data. Then we
do the preprocess to features (down and grouping, omitted in
the figure). In shallow layers, grouped generalized features
are input to the generalized decoder with a shallow regres-
sor, aiming to directly obtain the preliminary relative score
to supervise the heatmap generation. In deep layers, we in-
put grouped generalized features into the heatmap decoder
to mine concentrated correlation, and then a dense resam-
pling strategy is adopted according to the hot region in the
heatmap to generate concentrated features. With the cooper-
ation of shallow and deep layers, the proposed hierarchical
joint training encourages the model to consider both gener-
alized and concentrated features. Finally, the concentrated
decoder and regressor quantify quality differences between
concentrated features. Table 1 explains all notations used in
subsequent sections.

3.2 Preprocessing

The utilization of high-dimensional features F, integrating
information across video clips, leads to significant redun-
dancy and computational complexity. We employ the down
module [1] to downsample the F to the S ∈ R𝑇×𝐷𝑆 , where
𝐷𝑆 is feature dimensions after downsampling. Aiming to re-
duce the noise information of long-term contrast, we evenly
divide the feature S into G non-overlapping groups. Then we
uniformly sample 𝐿 frames in each group to keep the same
length, aiming to meet the requirement that the dimensions
of the query and key are the same in the transformer de-
coder [24]. The resulting generalized feature S′ ∈ R𝐺×𝐿×𝐷𝑆

is paired and inputted into a two-branched decoder mod-
ule to facilitate the acquisition of a concentrated embedding
through cross-attention.

3.3 Temporal Concentration Module

To extract the concentration of feature S′ , we design a learn-
able temporal heatmap T(𝑋,𝐼 ) ∈ R𝐺×𝐿×𝐿 to measure the
concentrated correlation of pairwise features. Formally, the
heatmap is represented as:

T(𝑋,𝐼 ) = P
(

exp(𝛿𝑞 (S
′
𝑋
) ·𝛿𝑘 (S

′
𝐼
)𝑇/

√
𝑠)∑𝑛

𝑘=1 exp(𝛿𝑞 (S
′
𝑋
) ·𝛿𝑘 (S

′
𝐼
)𝑇/

√
𝑠)

)
, 𝐼 = 𝑍, 𝑋𝑟 ,

(1)

where 𝑠 is a scale factor in decoder [24], 𝛿 is a linear layer,
P is an average pooling module to integrate multi-head at-
tention features. The value of the heatmap T represents the
spatiotemporal correspondence between the features of the
pairwise videos, indicating the action difference. To ensure
the correspondence reliability of the heatmap, a hierarchical

joint training method is proposed, which is introduced in
Section 3.4.

Utilizing the temporal heatmap as a basis, we employ a
dense group resampling strategy on the feature vector S𝐼 .
This approach aims to encourage the model to focus on
nuanced differences by subsequently concentrating on the
cross-attention decoder. To be more specific, we identify
the highest-temperature point P ∈ R𝐺×2, representing the
feature index in pairwise groups, within the heatmap of each
group. The P is defined as:

P(𝑋,𝐼 ) =
{
argmax T𝑔

(𝑋,𝐼 ) (𝑥, 𝑦)
}𝐺
𝑔=0

, 𝐼 = 𝑍, 𝑋𝑟 . (2)

To extract concentrated features, we design a group
resampling method. For each group, the feature S𝑋 set an
anchor on index 𝑥𝑔 ∈ P𝑔

(𝑋,𝑍 ) in the temporal dimension, and
S𝑍 set an anchor on index 𝑦𝑔 ∈ P𝑔

(𝑋,𝑍 ) . Then the feature S𝑋

and S𝑍 are searched in forward and backward of the anchor
with range 𝜇 to give a concentration range [𝑥𝑔−𝜇, 𝑥𝑔+𝜇] and
[𝑦𝑔−𝜇, 𝑦𝑔+𝜇]. We uniformly resample in each concentration
range to keep the same length for the further decoder. Then
the pairwise concentrated features (R𝑋,R𝐼 ) ∈ R𝐺×𝐿×𝐷𝑆 are
input to the concentrated cross-attention decoder to predict
the score.

To mine the deep relation between the pairwise features,
we design a concentrated decoder. The decoder leverages the
seq-to-seq representation of the multi-head attention, intend-
ing to discern fine-grained differences in correspondence
between concentrated features. For a pairwise concentrated
feature (R𝑋,R𝐼 ), the decoder identifies correspondence to
produce a fine-grained concentrated feature D ∈ R𝐺×𝐿×𝐷𝑆 .S
The operation is represented as:

D
′

(𝑋,𝐼 ) = softmax(
𝛿𝑞 (R𝑋) · 𝛿𝑘 (R𝐼 )𝑇√

𝑠
) · 𝛿𝑣 (R𝐼 ), (3)

D(𝑋,𝐼 ) = MLP(D′

(𝑋,𝐼 ) ) + R𝑋, (4)
where 𝑠 is a scale factor, and 𝛿 is a linear layer, the MLP
block contains two layers with a GELU non-linearity.

To determine the relative score for pairwise features, a
regressor denoted as R is employed to combine the contrast-
ing regression components for each group. In the training
process, regression is performed for both 𝑋, 𝑍 , and 𝑋, 𝑋𝑟 ,
indicating that replay information is utilized to guide the
training process. The regression of the training phase is
represented as:

Δ𝑠 =
1
𝐺

𝐺∑︁
𝑔=0

R(D𝑔

(𝑋,𝑍 ) ), (5)

Δ𝑠𝑟 =
1
𝐺

𝐺∑︁
𝑔=0

R(D𝑔

(𝑋,𝑋𝑟 ) ). (6)

3.4 Hierarchical Joint Training

In previous stages, we assessed the relative score by regress-
ing the concentrated feature. However, direct supervision in
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deep layers causes shallow gradient vanishing, affecting the
reliability of the heatmap generated by the heatmap decoder,
and ultimately affecting the stability of the entire scoring
mechanism. Recent work [25] pointed out that shallow su-
pervision is very effective in promoting model convergence.
Motivated by this, we propose a hierarchical joint training
method, consisting of a generalized decoder and joint losses.
Specifically, as shown in Figure 2, we cooperate with the
generalized feature S′ and the concentrated feature R. Since
R is generated from S′ , supervising the process directly with
a score at the deep level results in an unreliable and non-
transparent generation process. To end this, we design a
generalized decoder, which utilizes S′ to obtain the prelimi-
nary score. The resulting preliminary score is supervised in
the optimization stage by directly updating feature concen-
tration in S′ at shallow layers.

3.4.1 Generalized Decoder

Different from the heatmap decoder, the purpose of the gen-
eralized decoder is not to generate a heatmap, but to directly
compare and learn the relationship between pairs of gener-
alized features. The generalized decoder captures the spatial
and temporal correspondences of small action differences in
different aspects through a multi-head cross-attention mech-
anism, and generates new features among pairwise features.
The generalized decoder is represented as:

G(𝑋,𝐼 ) = MLP(MHCA(𝛿(S′
𝑋), 𝛿(S

′
𝐼 ))) + S

′
𝑋, (7)

where 𝛿 is a linear layer. The transformer decoder consists
alternating layout of MHCA(Multi-Head Cross-Attention)
and MLP(MultiLayer Perceptron).

3.4.2 Shallow Regressor

Based on the embedding features G learned in the previous
step, we quantify the deviation between pairs of inputs by
learning relative scores in advance. This guides the network
to learn at a shallow level to evaluate action quality, improv-
ing overall reliability. To achieve this, a regression module
is then connected to obtain the preliminary score. The pre-
liminary score provides shallow supervision for the network
during the optimization process, which is described in detail
in the next subsection. Note that the preliminary score is not
output as a final result.

The shallow regressor consists of three linear layers and
two ReLU layers alternately, and outputs the preliminary
score by parsing pairs of G. The shallow regressor SR is
formulated as:

Δ𝑝𝑠 =
1
𝐺

𝐺∑︁
𝑔=0

SR(G𝑔

(𝑋,𝑍 ) ), (8)
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Fig. 2 Hierarchical Joint Training. We hierarchically regress the score
from both shallow layers (generalized decoder) and deep layers (concen-
trated decoder). We use a loss to supervise the heatmap generation in the
shallow layer. (We use input 𝑋 and exemplar 𝑍 as an example. Best viewed
in color)

Δ𝑝𝑠𝑟 =
1
𝐺

𝐺∑︁
𝑔=0

SR(G𝑔

(𝑋,𝑋𝑟 ) ), (9)

where the Δ𝑝𝑠 is the preliminary score. To judge the
intensity of each part in the generalized feature, the shallow
branch is trained with TCM hierarchically. The attention
weight of the generalized decoder is shared with Eq. (1).

3.4.3 Joint Loss and Optimization

We design three loss functions for joint training, which are
self-relative loss, relative loss, and preliminary loss.

Given the availability of replay information, it becomes
imperative to devise an appropriate loss function to steer
the learning process. As both the input video and its corre-
sponding replay inherently depict the same action performed
by the same athlete, their associated scores should exhibit
consistency. Taking inspiration from unsupervised learning
principles, we introduce a self-replay loss function rooted
in the notion of consistency. This loss function calculates
the mean squared error between the self-relative score and
zero, effectively emphasizing the alignment between these
scores and enforcing consistency in the learning process.
The self-relative loss function is represented as:

L𝑠 = | |Δ𝑠𝑟 − 0| |2. (10)

Besides, we also use the relative loss L𝑟 to supervise the
training process, which is represented as:

L𝑟 = | |Δ𝑠 + 𝑠𝑍 − 𝑠𝑋 | |2, (11)

where 𝑠𝑋 and 𝑠𝑍 is the groundtruth score of input and exem-
plar.

Additionally, a hierarchical joint training method con-
tributes a shallow regression for more reliable extraction of
the concentrated feature by supervision at shallow layers.
We design a preliminary loss function, which is represented
as:
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L𝑝 = | |Δ𝑝𝑠𝑟 − 0| |2 + ||Δ𝑝𝑠 + 𝑠𝑍 − 𝑠𝑋 | |2. (12)

The final joint loss function is represented as:

L = L𝑟 + L𝑠 + L𝑝 . (13)

Through the hierarchical joint training of the three loss
functions, it not only improves the overall performance of
the network, but also accelerates convergence.

3.5 Inference

In the inference phase, we only use the two-stream struc-
ture with input 𝑋 and exemplar 𝑍 . We also adopt a multi-
exemplar voting strategy. Given an input video 𝑋 , we select
𝑀 exemplars from training data to construct 𝑀 pairs using
these 𝑀 different exemplars (𝑋, 𝑍 𝑗 ) whose scores are 𝑠𝑍 𝑗

.
The inference progress is represented as:

𝑠𝑋 =
1
𝑀

𝑀∑︁
𝑗=1

(F (𝑋, 𝑍 𝑗 ) + 𝑠𝑍 𝑗
), (14)

where F means overall proposed framework.

4. Experiment

4.1 Dataset and Evaluation Metrics

We introduce the dataset and evaluation metrics in this sub-
section.

RFSJ (Replay Figure Skating Jumping) dataset. [10]
Although there are many existing AQA datasets, most of
them only provide a single-view video from the broadcast-
ing. Since these datasets lack the additional video from other
camera views, it is unfair and unsuitable to compare existing
methods on these datasets. The conference version [10] pro-
posed the RFSJ dataset including replay information with
another camera view for action quality assessment. RFSJ
focuses on various types of jumping actions, it consists of
768 live video sequences and 536 replay video sequences.
These sequences are collected from the Olympic and Euro-
pean Championship figure skating competition videos. We
randomly select 75 percent of live sequences for training and
25 percent of live sequences for testing.

Evaluation Metric. Following prior stud-
ies [1] [7] [10], we assess our experiments using two metrics.

• Spearman’s rank correlation (𝜌) aims to evaluate the
ranks of the predicted scores. 𝜌 is defined as:

𝜌 =

∑
𝑖 (𝑝𝑖 − 𝑝) (𝑞𝑖 − 𝑞)√︁∑

𝑖 (𝑝𝑖 − 𝑝)2 ∑
𝑖 (𝑞𝑖 − 𝑞)2

, (15)

where 𝑝 and 𝑞 denote the ranking of two series. The
higher 𝜌 means the result is better.

• Relative L2 distance (𝑅-ℓ2) aims to evaluate the nu-
merical values of the predicted scores. 𝑅-ℓ2 is defined
as:

Table 2 Comparisons with state-of-the-art methods. w/ RP indicates
using replay information; w/ AT indicates selecting exemplars by action
type.

Method
(w/ AT, w/ RP) 𝜌 ↑ 𝑅-ℓ2 (×100) ↓

USDL [5] 0.8577 3.8001
CoRe [9] 0.9312 0.5551
TPT [7] 0.9317 0.5523
TSA [1] 0.8990 0.7449

TCM (conf.) [10] 0.9346 0.5500
Ours 0.9642 0.2883

Table 3 Ablation study of replay information and action type.

Method
(w/ AT, w/o RP) 𝜌 ↑ 𝑅-ℓ2 (×100) ↓

USDL [5] 0.6771 3.9765
CoRe [9] 0.9132 0.6837
TPT [7] 0.9154 0.6829
TSA [1] 0.8986 0.8168

TCM (conf.) [10] 0.9152 0.6784
Ours 0.9562 0.4994

Method
(w/o AT, w/ RP) 𝜌 ↑ 𝑅-ℓ2 (×100) ↓

USDL [5] 0.8577 3.8001
CoRe [9] 0.8606 1.3170
TPT [7] 0.8620 1.3069
TSA [1] 0.7905 2.6536

TCM (conf.) [10] 0.8005 1.7011
Ours 0.8090 1.6164

𝑅-ℓ2 =
1
𝑁

𝑁∑︁
𝑖=1

(
|𝑠𝑖 − 𝑠𝑖 |

𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛

)2
, (16)

where 𝑠𝑖 and 𝑠𝑖 mean predicted score and groundtruth
for the 𝑖-th sample. The lower 𝑅-ℓ2 means the result is
better.

In subsequent section 4.3, we assess our experimental
results in comparison to state-of-the-art approaches on the
RFSJ dataset. In section 4.4, we conduct ablation studies to
assess the efficacy of the proposed model components and
designs.

4.2 Implementation Detail

We implement our proposed method in PyTorch, and our
experiments are conducted with an Nvidia RTX 3090 GPU
on Ubuntu 20.04. We adopt the I3D pretrained on Kinet-
ics [23] as the initialization of backboneB for spatiotemporal
feature extraction. Following [1], [5], [9], [10], we uniform
sample 96 frames for each video, which means 𝑇 = 96.
Then we split each video into 9 overlap clips with the same
length, containing 16 continuous frames. Specifically, we
took No. [0, 10, 20, 30, 40, 50, 60, 70, 80] frame as the
start frame for 9 overlap clips. After the downsampling
preprocess mentioned in section 3.2, the feature dimension
𝐷𝑆 is 96. We input replay sequences to the third stream to
guide the model. In some cases, the input sequence does
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not have a corresponding replay sequence, so we use a data
augmentation strategy. Specifically, we utilize zoom scale
transformation and horizontal mirror flip of the input se-
quence to simulate the replay sequence. We group sample
features S into 𝐺 = 3 groups with 𝐿 = 5 length and resample
features in concentration range 𝜇 = 3. The shallow regressor
and deep regressor modules both contain three hidden linear
layers, which are ReLU(FC(64,256)), ReLU(FC(256,64)),
and FC(64,1), to generate the predicted score. The Adam
optimizer with zero weight decay is utilized with a learning
rate of 10−4 for backbone B, and 10−3 for our proposed net-
work. In the testing phase, we set the voting number 𝑀 as
10 in the multi-exemplar voting strategy.

Note that, in previous methods [1], [5], [7], [9], the Dif-
ficulty Degree (DD) is used as prior information for training,
because the DD is fixed before the competition. However,
the base value (similar to the difficulty degree) in figure skat-
ing is changed according to the quality of the athlete’s action.
So the base value belongs to the posterior information and
cannot be used to assist training. Therefore, we select ex-
emplars from the same Action Type (AT) in the training set.
Because all action types are confirmed in the program list
before the competition, and athletes perform in sequence
during the competition.

4.3 Comparison to State-of-the-art

We present quantitative experimental results comparing our
method with recent state-of-the-art AQA approaches on the
RFSJ dataset, as detailed in Table 2. To ensure a fair compar-
ison, we incorporate the replay sequences into the training
set and conduct training for these methods using the RFSJ
dataset. The comparative analysis demonstrates the superi-
ority of our method, establishing it as state-of-the-art in AQA
performance. For a comprehensive evaluation, we consider
two key factors in our experiments. The notation ”w/ AT”
signifies that both the training and test processes utilize ac-
tion type labels, exclusively selecting exemplars from the
same action type. Conversely, ”w/ RP” indicates that the
training process incorporates replay sequence data. As indi-
cated in Table 2, under both conditions (w/ AT and w/ RP),
our method outperforms all other approaches, including the
prior version [10], achieving a Spearman’s rank correlation
of 0.9642 and an 𝑅-ℓ2 value of 0.2883.

This notable performance improvement is primarily at-
tributed to our proposed temporal concentration module and
hierarchical joint training. The TCM enhances results by
capturing the concentration of temporal features. Further-
more, the proposed hierarchical joint training method pro-
vides supervision at both shallow and deep layers. Conse-
quently, our method achieves more accurate score predictions
through regression, showcasing the efficacy of our proposed
architecture in advancing the state-of-the-art in AQA on the
RFSJ dataset.

As Figure 3 shows, we also present visualization results
of some example sequences.

WFP-34

CoRe: 6.27
TSA: 2.71

TCM: 2.76
Ours: 3.52

GT: 3.51

Input

Replay

WFP-111

CoRe: 5.80
TSA: 6.60

TCM: 6.53
Ours: 6.82

GT: 6.81

Input

Replay

ScoreSequences

Input

Replay

CoRe: 5.40
TSA: 5.37

TCM: 5.47
Ours: 4.81

GT: 4.91
MFP-100

Fig. 3 Visualization results of state-of-the-art works and ours. GT means
the ground truth

Table 4 Ablation study of different components

Method TCM L𝑠 L𝑝 𝜌 ↑ 𝑅-ℓ2 (×100) ↓

Baseline × × × 0.8990 0.7449√ × × 0.9209 0.6579
× √ × 0.9224 0.6305

TCM (conf.) [10]
√ √ × 0.9346 0.5500

Ours
√ √ √

0.9642 0.2883

4.4 Ablation Study

We conducted multiple experiments to present the outcomes
of our ablation studies.

4.4.1 Ablation Study of Replay Information and Action
Type

Table 3 illustrates the impact of replays and action types
on the experimental outcomes. The configuration labeled
”w/o RP” denotes training without the inclusion of replay
sequences, while ”w/o AT” signifies the selection of exem-
plars from random action types.

Comparing the results under the ”w/o RP” setting re-
veals that the performance of all methods is inferior com-
pared to the ”w/ RP” configuration. This observation under-
scores the positive influence of replay information within our
proposed RFSJ dataset [10] on enhancing the performance
of existing state-of-the-art methods. Notably, our method
achieves the highest Spearman’s rank correlation and 𝑅-ℓ2
result, showcasing its effectiveness in leveraging replay in-
formation. It is crucial to highlight that this superior per-
formance is attributed to the innovative design of the TCM
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(a) 𝑅-𝑙2 distribution

(b) Δ-𝑙1 distribution

Fig. 4 𝑅-ℓ2 and Δ-ℓ1 distribution, where Δ-ℓ1 means the absolute differ-
ence between the predicted score and the ground truth. Our method has
better results on both 𝑅-ℓ2 and Δ-ℓ1 distributions.

Loss

Epoch

Fig. 5 Loss decrease curve of epochs.

coupled with a novel hierarchical joint training method. This
combination enables the effective extraction of differences
within the same action type under the supervision of action
types (AT).

Conversely, under the ”w/o AT” setting, our method
lags behind state-of-the-art methods. This outcome is rooted
in the fact that replay information, which guides network
learning, is centered on the same action of the same athlete.
In this scenario, our method focuses on discerning differ-
ences caused by action types rather than evaluating action
quality, leading to a comparative decline in performance.

We compare the results in Table 3 vertically and find
that selecting exemplars by action type (w/ AT) affects the
results more than replay information (w/ RP). This is because
all two-stream contrastive networks rely on AT, which was
demonstrated in previous works [1], [7], [10], [25]. Replay
and Input video must belong to the same AT, so RP relies on
AT supervision and improves network performance under w/

AT conditions. In the absence of AT supervision, since the
exemplar may choose other action types, the RP information
limits the network’s learning process, thereby damaging the
network’s performance.

4.4.2 Ablation Study of Different Components

Table 4 provides an analysis of the contribution of each com-
ponent under the conditions of w/ AT and w/ RP. In compar-
ison to the baseline, employing only TCM yields a notable
0.0219 enhancement in Spearman’s rank correlation and a
0.087 improvement in R-ℓ2. This outcome underscores the
efficacy of our proposed TCM, which adeptly concentrates
temporal features, and mitigates the interference of redun-
dant features. Simultaneously, the triple-stream contrastive
transformer is guided by the self-replay loss function L𝑠 .
The introduction of the replay-guided method contributes a
substantial 0.0234 improvement in correlation and a 0.114
enhancement in R-ℓ2. Further augmenting the process, the
model is supervised by L𝑝 through the incorporation of a
novel hierarchical joint training method. This integration
results in a substantial 0.0652 improvement in correlation
and a significant 0.4566 improvement in R-ℓ2 compared to
the baseline. The enhancement of results is due to the con-
tribution of the joint training of deep and shallow layers.

Figure 4 shows the detail of result distribution, we ob-
serve that the proposed hierarchical joint training method
has better R-ℓ2 and absolute delta score results on both max-
imum and average values. It proves the effectiveness of the
proposed hierarchical joint training.

Figure 5 shows the loss decrease curve during the train-
ing process, we observe that the loss value not only decreased
rapidly at the initial stage, but also fluctuated smoothly in
the subsequent stage. It proves that the proposed hierar-
chical joint training method also extremely speeds up the
convergence of the network.

By combining each component, the final result attains
a state-of-the-art performance.

4.4.3 Ablation Study of Different Concentration Range

The parameter 𝜇 serves as an indicator of the concentration
degree of the TCM, prompting us to conduct a series of
experiments. Figure 6 provides a summary of the perfor-
mance with varying values of 𝜇, including 1, 3, 5, 8, and 10.
Two experiment setups were designed: one utilizing only
the loss function L𝑠 , and the other implementing the hierar-
chical joint training method, incorporating both L𝑠 and L𝑝 .
Under the L𝑠 setup. We observe distinct trends in perfor-
mance as 𝜇 varies. Specifically, when 𝜇 ranges from 1 to
3, there is a noteworthy improvement of 1.02% and 0.0643
in Spearman’s rank correlation and R-ℓ2, respectively. How-
ever, as 𝜇 increases from 3 to 5, there is a deterioration,
resulting in a decrease of 1.90% in correlation and 0.16 in
R-ℓ2. Subsequently, with further increases in 𝜇, the perfor-
mance stabilizes with slight fluctuations. In the L𝑠 + L𝑝

setup, a similar distribution of performance is observed with
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0.9252
0.9346

0.9168 0.9170 0.9185

0.9629 0.9642
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(b) Relative L2 distance ↓

Fig. 6 Ablation study of concentration range 𝜇. Note that +L𝑝 means
utilizing the hierarchical joint training method.

varying 𝜇. Notably, when 𝜇 is set to 3, it yields the optimal
performance in terms of both Spearman’s rank correlation
and R-ℓ2. We attribute this observation to the nuanced na-
ture of the concentration range: too narrow a range limits
the model’s perception of temporal actions, while too wide
a range introduces redundant features, hindering the model
from effectively discerning differences in actions. Further-
more, our analysis reveals that the introduction of L𝑝 con-
tributes to an enhancement in the generality of results, as
evidenced by the comparison between the results of the two
experiment setups. This underscores the beneficial impact
of incorporating the additional loss function in refining the
overall performance of the proposed model.

5. Conclusion

In this paper, we introduce a novel approach for action qual-
ity assessment of figure skating jumping, termed the replay-
guided triple-stream contrastive transformer with hierarchi-
cal joint training. Our proposed method leverages replay
sequences to facilitate training, enabling the learning of nu-
anced action quality quantization across various views and
zoom scales. The proposed Temporal Concentration Module
directs the model’s focus toward discerning features related
to athletes’ errors or highlights critical elements influencing
scoring outcomes. Additionally, the proposed Hierarchical
Joint Training method is employed to provide supervision on
both shallow and deep layers, enhancing the performance of
the scoring mechanism and speed of training convergence.
Extensive experiments on the RFSJ dataset prove the pro-
posed method achieves an effective scoring mechanism and
replay information is promoted to existing AQA methods.
Our study delves into the impact of replays in the realm of
figure skating for AQA. Looking ahead, we aspire to advo-

cate for the collection of additional replay information from
diverse camera views. This undertaking aims to foster a more
thorough exploration of scoring mechanisms and a deeper
understanding of actions, not only within figure skating but
also in other domains.
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