
DOI:10.1587/transfun.2024SMP0007

Publicized:2024/08/21

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Distributed and Secured Gaussian Process Learning over
Networks∗

Ling ZHU†, Nonmember, Takayuki NAKACHI††, Senior Member, Bai ZHANG†, and Yitu WANG†, Nonmembers

SUMMARY Gaussian Process (GP) has been acknowledged as a pow-
erful kernel-based machine learning technique with broad application ar-
eas, such as time series prediction and system state estimation. However,
in the era of big data, new challenges are raised for GP. For example, in the
presence of huge amount of data distributed at different locations, how to
perform GP without being faced with significant privacy concerns? In this
paper, we are aiming at constructing a distributed and secured GP learning
framework over networks. Specifically, we first propose the idea of secured
GP by incorporating random unitary transform, such that locally, the pro-
cessing of data is guaranteed to be secure. Then, noticing that gathering
data to a central node for GP learning is neither efficient nor secure, we ex-
tend secured GP into distributed learning over networks through invoking
Alternating Direction Method of Multipliers (ADMM) technique, such that
global optimality can be asymptotically reached only with local computa-
tions and parameter exchange. Finally, we demonstrate the performance
improvements through simulation.
key words: Gaussian process, Random unitary transform, ADMM, Secured
learning, Distributed learning.

1. Introduction

As smart mobile devices are equipped with advanced tech-
nology and design, it becomes possible to realize many nov-
el applications, such as digital twin, smart factory and virtu-
al reality, wherein artificial intelligence is a key enabler [2],
[3]. However, to render machine learning feasible for ad-
dressing more complicated applications and problems with
larger scales, a substantial amount of training data is a pre-
requisite [4]. Conventionally, the cloud computing paradig-
m is promising, i.e., a powerful computing server is de-
ployed near a data center to provide large enough storage
and computation capability [5]. Nevertheless, devices with
data are globally and remotely distributed, which makes it
challenging to collect data over networks, especially in the

†Ling Zhu, Bai Zhang and Yitu Wang are with the School of
Electrical and Information Engineering, in addition, Yitu Wang is
also with Microelectronics and Solid-state Electronics Device Re-
search Center (Director: Juinjei Liou) and Intelligent Equipmen-
t and Precision Measurement Technology R&D Group (2022BS-
B03104), North Minzu University, Yinchuan 750021, China.
††Takayuki Nakachi is with the Information Technology Cen-

ter, University of the Ryukyus, Nishihara-cho, Okinawa 9030213,
Japan.
∗This work is in part supported by Fundamental Research

Funds for Central Universities, North Minzu University (No.
2022QNPY07), National Natural Science Foundation of China
(No. 62301007), NingXia Natural Science Foundation for Young
Elite Scientists Sponsorship Program, and JSPS Grant-in-Aid for
Scientific Research (22K04089). Part of this work has been pre-
sented at EURASIP EUSIPCO 2021 [1].

existence of numerous unreliable service providers, unau-
thorized users and even eavesdroppers [6].

In the literature, to protect the data privacy, some re-
searches adopt Advanced Encryption Standard (AES) and
Secure Hash Algorithm (SHA) for data encryption [7],
which is computationally infeasible to decrypt the data
through brute force approach. However, key distribution and
inability to compute on cipher-texts diminish the efficien-
cy, especially when large amount of devices and data are
involved. To address this issue, Homomorphic Encryption
(HE) and secure Multi-Party Computation (MPC) become
popular for machine learning over networks, as computa-
tion directly on cipher-texts is allowed [8]. However, they
are faced with the curse of dimensionality, which makes it
difficult to scale to big data scenarios. Some researcher-
s study cancelable biometrics to lower the computational
complexity for computation in the encrypted domain [9].
For instance, Random projection (RP) could project an in-
put signal into a low dimensional sub-space using a random
matrix generated from random numbers [11]. Bio-Hashing
[10] performs encryption based on RP that transforms the
input data into a binary string called hash-code. Neverthe-
less, these encryption schemes are irreversible. Such irre-
versibility is preferable for preserving privacy, while it left a
problem to deterministically guarantee whether the process-
ing of the cipher-texts degrades the performance or not.

To address the above problems, we consider to utilize
random unitary transform for data encryption [12]. The rea-
sons are three-fold,

1. It not only preserves the privacy of the system, but also
enables computing directly on cipher-texts.

2. It is with a desired low computational complexity,
which facilitates extending the proposed algorithm to
circumstances with a large cipher-text size.

3. It guarantees the reversibility of the transform, which
analytically incurs no performance loss.

Based on random unitary transform, the authors have pro-
posed a secure sparse coding method for image compres-
sion, pattern recognition, and data analysis [6], [13]–[15]
Moving one step ahead, we would like to expend the appli-
cation scenarios of random unitary transform into GP learn-
ing. GP is a light-weight and non-parametric learning tech-
nique, which proves to be empirically effective in various
fields, e.g., non-linear regression and classification. In a nut-
shell, GPs encode domain and expert knowledge into kernel
functions to handle both linear and non-linear data. The rea-

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

sons for considering GP are two-fold,

1. Not only a single-layer fully-connected Neural Net-
work (NN) is equivalent to a GP, but also the exact
equivalence between infinitely wide Deep Neural Net-
works (DNNs) and GPs is derived in [16]. Especially,
the trained NN accuracy approaches that of the corre-
sponding GP with increasing layer width, and thus, GP
could achieve comparable performance as DNN with
appropriate kernel design.

2. The parameters in GP can be explicitly optimized
based on the Bayes theorems without stochastic
gradient-based training, which allows manipulating the
structure of GP for achieving excellent performance in
networks.

In this paper, we propose an analytical framework for
distributed and secured GP over networks. The contribu-
tions of this paper are two-fold,

1. Through invoking random unitary transform, we ex-
tend GP into secured GP, which enables directly learn-
ing on cipher-texts. In addition, it is proved both the-
oretically and through simulation that such encryption
will not affect the performance.

2. With ADMM, parallel parameter optimization in the
training phase of GP is allowed, such that a secured and
scalable GP framework is established in a principled
way for solving large-scale problems.

The rest of this article is organized as follows. Section
II introduces GP and random unitary transform. In Section
III, we propose the distributed and secured GP based on AD-
MM and random unitary transform. Section IV compares
the performance with several baselines. Finally, Section V
concludes this article.

2. Preliminary of GP and Random Unitary Transform

2.1 Preliminary of GP

In a nutshell, GP is a powerful statistical modeling tool,
whose performance is highly controlled by the kernel [17],
which determines the correlation between any two data
points.

First of all, we briefly introduce GP. Given input X and
noisy observations Y

Y = f(X) + ε, (1)

where

X =

x1
x2
.
.
.
xN

 ,Y =

y1
y2
.
.
.
yN

 , (2)

ε is an i.i.d. Gaussian noise with zero mean and σ2 variance,
which is caused by system errors, such as measurement and

modeling inaccuracy. Under the framework of GP, the map-
ping function f(·) is approximated according to a probabil-
ity distribution as

f(X) ∼ GP(m(X),K(X,X)). (3)

It is seen that the approximation accuracy is entirely con-
trolled by the mean function m(X), w.l.o.g. set to zero, and
the covariance function K(X,X), which is called kernel of
GP.

When applying GP to perform data regression, i.e., in-
ferring the distribution of Y∗ given a new input X∗, where

X∗ =

x∗1
x∗2
.
.
.
x∗M

 ,Y∗ =

y∗1
y∗2
.
.
.
y∗M

 , (4)

we first derive the joint prior distribution of Y together with

Y∗ as
[

Y
f(X∗)

]
, which follows

N
([

0
0

]
,

[
K(X,X) + σ2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
, (5)

where the kernel K(X,X) is generally chosen as a Posi-
tive and Symmetric semi-Definite (PSD) function, and the
entries of K(·) are given as Kij = K(xi, xj). Then, by
conditioning the joint Gaussian prior distribution on X, the
posterior distribution of f(X∗) can be analytically derived
as

p(f(X∗)|(X,X∗)) ∼ N (f̂(X∗), σ2(X∗)), (6)

where the regression mean and variance are

f̂(X∗) = KT
∗ (K(X,X) + σ2I)−1Y

σ2(X∗) = K(X∗,X∗)−KT
∗ (K(X,X) + σ2I)−1K(X,X∗).

(7)
The parameters in K and σ are trained according to

min
K,σ

YT (K(X,X) + σ2I)−1X + log |K(X,X) + σ2I|,
(8)

which can be solved by gradient algorithms, such as Adap-
tive Moment Estimation (Adam) [17].

2.2 Preliminary of Random Unitary Transform

In order to not only preserve the privacy of the system, but
also enable computing on cipher-texts, the random unitary
transform is one promising method, which proves to be ef-
fective for biometric template protection [12]. Moreover,
random unitary transform provides us with a desired low
computational complexity, which makes it possible to apply
the proposed algorithm to the scenarios with a large cipher-
text size. Therefore, the encrypted training and testing sam-
ples are generated using random unitary transform.

Any vector v ∈ Rm×1 encrypted by random unitary

ZHU et al.: DISTRIBUTED AND SECURED GAUSSIAN PROCESS LEARNING OVER NETWORKS
3

matrix Qp ∈ Cm×m with private key p can be expressed as
follows,

v = f(p,v) = Qpv, (9)

where v is the encrypted vector, and the unitary matrix Qp

satisfies
Q∗pQp = I, (10)

where [·]∗ and I represents the Hermitian transpose and i-
dentity matrix, respectively. Gram-Schmidt orthogonaliza-
tion can be adopted for generating Qp

†. The encrypted vec-
tor has three properties as follows,

• Conservation of the Euclidean distances

||vi − vj ||22 = ||vi − vj ||22, (11)

• Norm isometry

||v||22 = ||v||22, (12)

• Conservation of inner products

vi × vTj = vi × vTj , (13)

where vi and vj are two distinct vectors with the same di-
mension.

3. Distributed and Secured GP over Networks

In this section, we first propose the idea of secured GP by
utilizing random unitary transform. However, when apply-
ing secured GP to solve large-scale problems, where data
are distributed at different locations, we are faced with two
significant challenges,

1. The same key must be used for all devices involved
to encrypt the data, which significantly diminishes the
utility of secured GP.

2. Data should be gathered at the central node for GP
learning, which consumes a large quantity of commu-
nication resource.

To address the above problems, we invoke ADMM to pro-
pose a distributed and secured GP learning framework,
where devices could use different keys for encryption, in ad-
dition, only local computation and parameter exchange are
needed to achieve global optimality.

3.1 System Configuration

In this paper, we consider a general system consisting of one
central node with communication capability, i.e., the cloud
server, and K edge servers, who is in charge of data collec-
tion from local user devices, and with certain communica-
tion and computation capability. To perform GP learning,
denote the global training dataset as D = {X,Y}, which
is formulated by aggregating K training subsets at the edge
servers, i.e., D = {D1 ∪ D2, · · · ,∪DK}, where subset at

†Such encrypting technique has been proved to be robust in
terms of brute-face attack, diversity and irreversibility [12].

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

Edge device 1

Edge device 2

Edge device 3

Cloud Server

Training

Parameter Exchange

Testing

Fig. 1: System configuration

the i-th edge server is denoted as Di = {Xi,Yi}.
The objective of the design is as follows,

• To protect data privacy when the i-th edge server col-
lects data from local user devices, the cloud allocates
a designated key pi to the i-th edge server so as to en-
crypt the data based on random unitary transform.

• To achieve the best GP learning performance without
actually aggregating data from all edge servers, i.e.,
without the knowledge of D, we adopt ADMM, where
the cloud server is mainly responsible for updating the
global ADMM parameters based on the local ADMM
parameters from edge servers at the training phase, and
each local GP model is trained based on its own subset
Di.

Fig. 1 shows the system configuration the proposed dis-
tributed and secured GP learning framework.

3.2 Secured GP

Since the data is encrypted when the i-th edge server collects
data from local user devices, in this subsection, we consider
the problem at the i-th edge server-side.

As for the encryption of the training data, the GP input
Xi and GP output Yi are transformed into the encrypted
GP input X̂i and GP output Ŷi by using the random unitary
matrix Qpi generated with the private key pi, which can be

4
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

calculated as follows,

X̂i = XiQpi =

x̂i,1
x̂i,2
.
.
.

x̂i,N

 , Ŷi = YiQpi =

ŷi,1
ŷi,2
.
.
.

ŷi,M

 .
(14)

As for the encryption of the testing data, the encrypted GP
input X̂∗i and GP output Ŷ∗i for testing are generated us-
ing the random unitary matrix Qqi with a private key qi as
follows,

X̂∗i = X∗iQqi =

x̂∗i,1
x̂∗i,2
.
.
.

x̂∗i,N

 , Ŷ
∗
i = Y∗iQqi =

ŷ∗i,1
ŷ∗i,2
.
.
.

ŷ∗i,M

 .
(15)

Given encrypted input X̂i and noisy output observation

Ŷi = f(X̂i) + ε, (16)

Secured GP seeks to infer the latent function f(·). Similar-
ly, the joint prior distribution of Ŷi together with f(X̂∗i) is
given by the following equation[

Ŷi

f(X̂∗i)

]
∼ N

([
0
0

]
,

[
K(X̂i, X̂i) + σ2I K(X̂i, X̂

∗
i)

K(X̂∗i , X̂i) K(X̂∗i , X̂
∗
i)

])
,

(17)
by conditioning the joint Gaussian prior distribution on X̂i,
the posterior distribution of f(X̂∗i) can be analytically de-
rived as

p(f(X̂∗i)|(X̂i, X̂
∗
i)) ∼ N (f̂(X̂∗i), σ

2(X̂∗i)), (18)

where the regression mean and variance are

f̂(X̂∗i) = KT
∗ (K(X̂i, X̂i) + σ2I)−1Ŷi

σ2(X̂∗i) = K(X̂∗i , X̂
∗
i)−KT

∗ (K(X̂i, X̂i) + σ2I)−1K(X̂i, X̂
∗
i).

(19)
To determine the relationship between Eq. (7) before

encryption and Eq. (19) after encryption, it is necessary to
consider the kernel function in closed form. In this paper,
we consider two commonly adopted candidates,
1). The Radial Basis Function (RBF) kernel

kRBF (xk, xj) = exp

(
− |xk − xj |

2

2γ2

)
. (20)

2). The Rational Quadratic (RQ) kernel

kRQ(xk, xj) =

(
1 +
|xk − xj |2

2νγ2

)
. (21)

When using kRBF (·) and kRQ(·) to process encrypted data,
we have

kRBF (x̂k, x̂j) = exp

(
− |x̂k − x̂j |

2

2γ2

)
= exp

(
− |(xk − xj)Qpi |2

2γ2

)
= exp

(
− |xk − xj |

2

2γ2

)
= kRBF (xk, xj),

(22)

and

kRQ(x̂k, x̂j) =

(
1 +
|x̂k − x̂j |2

2νγ2

)
=

(
1 +
|(xk − xj)Q2

pi

2νγ2

)
= kRQ(xk, xj).

(23)

However, the covariance between the encrypted input X̂i

for training and the encrypted input X̂∗i for testing does not
match the covariance for the non-encrypted data. This is
because the encrypted training data X̂i and the encrypted
test data X̂∗i are generated using different random unitary
transforms Qpi and Qqi . Take RBF kernel for example,

kRBF (x̂k, x̂
∗
j) = exp

(
−
|x̂k − x̂∗j |2

2γ2

)
= exp

(
− |xkQpi − xjQqi)|2

2γ2

)
6= kRBF (xk, x

∗
j),

(24)

When the random unitary transform is generated using
the same private key (pi = qi) for training and testing,
kRBF (x̂k, x̂

∗
j) = kRBF (xk, x

∗
j) is satisfied. Therefore, the

prediction mean and variance estimated by secured GP are
equal to those estimated by GP for non-encrypted data, i.e.,

f̂(X̂∗i) = f̂(X∗i)Qpi ,

σ2(X̂∗i) = σ2(X∗i).
(25)

We can use the keys pi and qi to control privacy. For legiti-
mate users, we distribute the same key (pi = qi).

3.3 Distributed and Secured GP

To perform secured GP learning based on D without actu-
ally aggregating {D1,D2, · · · ,DK} to the cloud server, we
propose a distributed and secured GP learning framework
based on ADMM in this sub-section.

For this purpose, we first approximate the probability
distribution ofD by a product of the probability distributions
of Di,∀i ∈ {1, 2, · · · ,K} as follows [18],

p(Ŷ|X̂; θ) ≈
K∏
i=1

pi(Ŷi|X̂i; θ), (26)

log p(Ŷ|X̂; θ) ≈
K∑
i=1

log pi(Ŷi|X̂i; θ), (27)

ZHU et al.: DISTRIBUTED AND SECURED GAUSSIAN PROCESS LEARNING OVER NETWORKS
5

where θ denotes the parameters in K and σ that need to
be trained. The philosophy behind such approximation is
to approximate the covariance matrix of full dataset with a
block-diagonal matrix of the same size. In this stand, the
standard centralized training Eq. (8) can be partitioned into
parallel parameter training, which is expressed as

min
θ

K∑
i=1

ŶT
i (K(X̂i, X̂i) + σ2I)−1X̂i

+ log |K(X̂i, X̂i) + σ2I|.

(28)

Therefore, each local GP model at edge servers merely
needs to optimize its own cost function as in Eq. (28) w.r.t θ,
where the calculation only involves operations on the small
covariance matrix K(X̂i, X̂i) instead of the full covariance
matrix, whose size is ni × ni, where ni denotes the number
of data points in the subset Di. In this sense, the computa-
tional complexity for each local secured GP model can be
reduced from O((

∑
i ni)

3) to O(n3i).
However, the training in Eq. (28) is non-trivial. Specif-

ically, for each iteration step, the local cost and local deriva-
tive information must be collected at the cloud server and
coordinated as the global cost and derivative among the edge
servers. Since the number of iterations required for the con-
vergence is generally not small, the communication over-
head should be large. In the meantime, the rigorous syn-
chronous requirement also significantly restricts its practi-
cal application in real systems. To address this problem, we
invoke the ADMM technique, where the original problem is
decomposed into small local subproblems that can be solved
in a coordinated way [19]. Based on ADMM, problem in E-
q. (28) an be recast into the following optimization problem

min
θi

K∑
i=1

ŶT
i (K(X̂i, X̂i) + σ2I)−1X̂i

+ log |K(X̂i, X̂i) + σ2I|,
s.t.θi − θ = 0,∀i ∈ {1, 2, · · · ,K},

(29)

where θi represents the local parameter. With the new opti-
mization problem in Eq. (29), each local secured GP model
is free to train its own local parameter θi based on the local
subset Di. By applying ADMM, the local parameters will
eventually converge to the global parameter θ after certain
iterations.

To solve problem in Eq. (29) with ADMM, we formu-
late the augmented Lagrangian as

L =

K∑
i=1

ŶT
i (K(X̂i, X̂i) + σ2I)−1X̂i

+ log |K(X̂i, X̂i) + σ2I|

+

K∑
i=1

λi(θi − θ) +

K∑
i=1

α

2
||θi − θ||22,

(30)

where λi is the dual variable and α > 0 is a fixed augment-
ed Lagrangian parameter. The sequential update of ADMM

parameters in the (t+ 1)-th iteration can be derived as

θt+1
i = arg min

θti

Lt(θti , θ
t, λti),

θt+1 =
1

K

K∑
i=1

(θt+1
i +

1

α
λti),

λt+1
i = λti + α(θt+1

i − θt+1),

(31)

where the first equation optimizes the local cost function;
the second equation reduces the distance between θi and θ.
Since the marginal likelihood function for hyper-parameter
optimization is a well established non-convex optimization
problem, the convergence of ADMM cannot be guaranteed.
But fortunately, a few iterations is often sufficient for AD-
MM to converge to an acceptable accuracy level in practi-
cal applications. Therefore, ADMM has been applied to a
variety of distributed settings in machine learning such as
model fitting, regression, and classification, where the ob-
jective function is non-convex, such as [20]–[22]. We verify
through simulation that the centralized GP and the distribut-
ed GP will converge to the same loss level, which proves that
there will be little performance loss by adopting ADMM.
In addition, we evaluated the performance loss induced by
non-convergence or convergence to another local optima for
such non-convex problem by evaluating on two large-scale
datasets, namely the Protein Dataset and the Chem Dataset.
As shown in Fig. 7and Fig. 8, it is discovered that such
performance loss becomes smaller when the number of iter-
ations is chosen larger. With sufficient number of iterations,
the performance gap could be small enough.

3.4 Performance Analysis

In this subsection, we analyze both the computational com-
plexity as well as the communicational overhead of the pro-
posed distributed computing framework, which are further
compared with those of the corresponding centralized algo-
rithm.

1. Computational complexity.
Regarding the conventional centralized algorithm, s-

ince the central node should collect the full dataset from
each node as D = ∪i∈{1,2,··· ,K}Di, the associated com-
putational complexity of parameter training by solving Eq.
(28) is O((

∑K
i=1 |Di|)3) = O((

∑K
i=1 ni)

3).
Regarding the proposed distributed algorithm, as the i-

th node locally optimizes the optimization problem Eq. (30),
the associated computational complexity is O((|Di|)3) =
O((ni)

3), which is greatly reduced compared with the
centralized algorithm. However, the computing time of
the proposed distributed framework follows the order of
O(r(maxi{ni})3), where r denotes the number of itera-
tions, which is not guaranteed to be smaller than the com-
puting time of the centralized algorithm in case r > K3.
But fortunately, a few iterations is often sufficient for AD-
MM to converge to an acceptable accuracy level in practical
applications.

6
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

2. Communicational overhead.
Regarding the conventional centralized algorithm, s-

ince the central node should collect the full dataset from
each node as D = ∪i∈{1,2,··· ,K}Di, the associated com-
munication overhead is O(

∑K
i=1 ni).

Regarding the proposed distributed algorithm, as itera-
tive approach is adopted for parameter training, which is Eq.
(31). During this process, θi,∀i and λi,∀i are gathered at
the central node, then θ is distributed to all the nodes, where
the associated communication overhead follows the order of
O(rK), where r denotes the number of iterations and K is
the number of nodes. Note that the amount of data exchange
is significantly reduced compared with the centralized algo-
rithm.

Remark 1. To obtain the best global model parameters θ
without aggregating all the training data at the center node.
We propose a distributed computing framework, such that
the i-th node merely needs to optimize its parameter θi lo-
cally. Only with parameter exchange, θi,∀i could converge
to θ. In this sense, huge amount of data exchange can be
totally avoided, at the cost of slight performance degrada-
tion†.

4. Future Work

Since the kernel function K(X,X) controls the perfor-
mance of GP, there exists a bunch of viable kernel functions.
Some commonly used kernel functions are as follows:
1). RBF kernel in Eq. (20).
2). RQ kernel in Eq. (21).
It is proven in this research that they are compatible with the
encryption method random unitary transform, i.e., the pre-
diction mean and variance estimated by secured GP are e-
qual to those estimated by GP for non-encrypted data. Even
though with RBF kernel and RQ kernel, GP could achieve
adequate performance in a wide variety of scenarios, there
exists several circumstances that GP cannot perform well.
For instance, in Fig. 2, we provide the analysis of two d-
ifferent time series from a network traffic dataset, name-
ly GEANT, in spectrum domain in our previous research
[23]. Specifically, these time series are collected from d-
ifferent starting points (t = 1 and t = 100) with the same
length (400 data points), i.e., {y(1), y(2), · · · , y(400)} and
{y(100), y(101), · · · , y(499)}. Besides the dominant pat-
tern (peaks with the highest amplitude in y-axis), nondom-
inant patterns (peaks with lower amplitude in y-axis) also
exist. Moreover, the positions of these peaks (in x-axis)
vary according to time. RBF kernel and RQ kernel can only
capture the peak located at the origin, and thus leading to
large modeling error and low prediction accuracy. To ad-
dress such problem, there exists other useful kernels, such
as
†The performance comparison between the centralized algo-

rithm and the proposed distributed one is evaluated through simu-
lation

Fig. 2: Spectrum graph of two different network traffic time
series

3). The Periodic kernel

kPeriodic(xk, xj) = exp

(
− 2 sin2(π|xk − xj |/p)

l2

)
,

(32)
where p denotes the periodicity, and l is the length scale.
4) The Matern kernel

kMartern(xk, xj) =

2l−ν

Γ(ν)

(√
2ν|xk − xj |

l

)ν
Kν

(√
2ν|xk − xj |

l

)
,

(33)

where ν denotes the smoothness, l is the length scale, K·
represents modified Bessel function of the second kind, and
Γ(·) is the Gamma function.
However, they are not compatible with the encryption
method random unitary transform, which limits the imple-
mentation scenarios of the proposed distributed and secured
computing framework. In the future, we are willing to in-
vestigate on discovering more compatible kernel functions,
and theoretically consider how to orchestrate random uni-
tary transform with kernels, such as Periodic kernel, Matern
kernel and etc., so as to enhance the significance of the pro-
posed framework.

5. Simulation Results

In this section, we perform the following experiments us-
ing diabetes data from the medical analysis field and syn-
thetic data to investigate the effectiveness of the proposed
distributed and secured GP learning framework.

5.1 Dataset Description

We first evaluate the privacy preserving property of secured
GP. The diabetes data includes quantitative measures for 442
diabetes patients on 10 baseline variables such as age, gen-
der, BMI, and disease progression one year after baseline
[24], [25]. Our proposed framework predicts a measure of
disease progression from the 10 baseline variables. The G-
P input X is set as the test data of 10 baseline variables

ZHU et al.: DISTRIBUTED AND SECURED GAUSSIAN PROCESS LEARNING OVER NETWORKS
7

Table 1: Performance comparison in terms of MSE and
PPMCC

RBF kernel:
Private key p = q p 6= q

MSE 2.16× 10−24 8044

PPMCC 1.0 −0.3

RQ kernel:
Private key p = q p 6= q

MSE 2.10× 10−18 8040

PPMCC 1.0 −0.3

(i.e., D = 10), and the GP output Y is set as the disease
progression. Data from 353 patients are used for training
(N = 397) and data from 89 patients are used for testing
(M = 45).

The input X is encrypted using the random unitary
transform Qp generated by the following equation,

Qp = HPRGp, (34)

where Qp is generated by the Gram-Schmidt orthogonaliza-
tion. HPR is a permutation matrix ofD×D dimension that
randomly replaces each element of the input signal x ∈ RD.
An example of HPR when the number of dimensions of the
input data is D = 4 is given below,

HPR =

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 . (35)

Since both HPR and Gp have a unitary matrix, Qp satisfies
the condition of the random unitary matrix:

QH
p Qp = (HPRGp)

H(HPRGp) = I. (36)

5.2 Performance Metrics

The estimation accuracy of secured GP is compared with
that of GP for non-encrypted data based on the similarity
between disease progression Y∗ estimated by GP and S∗ es-
timated by secured GP. The Mean Square Error (MSE) and
Pearson Product-Moment Correlation Coefficient (PPMCC)
are used to measure similarity indexes:

MSE =
1

N

N∑
i=1

(y∗i − s∗i)2, (37)

PPMCC =

∑N
i=1(y∗i − y∗)(s∗i − s∗)√∑N

i=1(y∗i − y∗)2
√∑N

i=1(s∗i − s∗)2
, (38)

where y∗i ∈ Y∗ is disease progression estimated by GP and
s∗i ∈ S∗ is disease progression estimated by secured GP, and
y∗ and s∗ are the respective average values. When the PPM-
CC is close to 1, there is a strong correlation, and secured
GP can estimate the same values as GP. We evaluated the

performance of two different kernels (RBF, RQ). In addi-
tion, two patterns are verified for the random unitary trans-
form for encrypting the training and testing data: one when
the same private key (p = q) is used and the other when
different private keys (p 6= q) are used.

Table I shows the MSE and PPMCC of Y∗ and S∗.
When the private keys are the same (p = q), secured GP
has a small MSE and the associated PPMCC = 1, indicat-
ing that the estimation performance of secured GP does not
deteriorate compared with conventional GP. However, when
the private keys are different, the MSE is large and the PPM-
CC is small, demonstrating that we can control the privacy
through key distribution. Fig. 3 shows the relationship be-
tween the disease progression Y∗ and S∗ when using the
RBF kernel. It illustrates that the output Y∗ estimated by
secured GP is almost the same as that of GP when p = q.
Similar results can be obtained when using RQ kernel.

Fig. 3: Relationship between disease progression Y∗ esti-
mated by GP and S∗ estimated by secured GP when using
RBF kernel

5.3 Security Strength

i). Key Space:

We evaluate the safety of the encrypted input X̂ =
XQp in terms of the key space of Qp. The key space is
calculated assuming a case of restoration by brute force at-
tack. We consider a case of the random unitary transform
being generated by Eq. (34).

First, elements of the unitary transform are limited to
real numbers (orthogonal matrix) for Gp. The degree of
freedom is D2, which is equal to the number of matrix ele-
ments. However, the unitary matrix is subject to the follow-
ing conditions:

1. The column vectors of the unitary matrix are orthog-
onal to each other. The number of conditional expres-
sions imposed isDC2 = D(D−1)/2 (number of com-
binations that select two from D column vectors) from
the condition.

2. The norm of each column vector = 1. The number of
conditional expressions imposed is D from the condi-
tion.

8
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Table 2: Absolute value of PPMCC for diabetes input X
(D = 10)

Ave Max Min
0.122 0.526 8.51× 10−6

Fig. 4: Absolute value of PPMCC for synthetic input X

Therefore, the degree of freedom is D2 − [D(D − 1)/2 +
D] = D(D − 1)/2 for the random unitary transform Gp.
Assuming each element is represented by an 8-bit fixed
point number, the size of the key space is 8D(D−1)/2.

Next, the combination pattern is D! for the permuta-
tion matrix HPR. Therefore, the size of the key space of
the random unitary transform Qp is 8D(D−1)/2×D!. Com-
pared with the key space used in the Advanced Encryption
Standard (AES), the key space is wider than the 128-bit case
and narrower than the 256-bit space when the number of el-
ements used in this simulation is D = 10. If D > 13, it will
be wider than the 256-bit key space.

ii). Irreversibility:

We investigate the security strength of the encrypted
input X̂ = XQp via simulations. The security strength is e-
valuated based on the absolute value of the PPMCC between
the original input X and the decrypted input X̂QH

q that is at-
tacked by the illegitimate users (i.e., p 6= q). Generally, the
two samples can be regarded as uncorrelated when the abso-
lute value of the PPMCC between two data samples is less
than 0.2. We assume 100 legitimate users (i.e., generate 100
kinds of random unitary matrices Qp). Then the illegitimate
users try to decrypt each piece of encrypted input using 100
kinds of random unitary matrices Qq that differed from the
ones used in encryption. We test 10000 matrix combination
patterns.

Table II shows the average, maximum, and minimum
values of the absolute PPMCC for diabetes data. The ab-
solute PPMCC is small on average, but the maximum val-
ue is relatively large. The key space is not considered to
be large enough when the dimension D = 10. Fig. 4
shows the absolute value of the PPMCC for synthetic in-

put X. The input data X (in which each element follows
a normal Gaussian distribution) is generated with different
dimensions (D = 5, 10, 20, 50, 100). The absolute value of
the PPMCC clearly decreases as the dimensionD increases.
If D is greater than around 30, both the average value and
the maximum value are less than 0.2. From the perspective
of irreversibility, security is stronger when the dimension D
is larger.

5.4 Convergence of the Distributed and Secured GP

We evaluate the convergence property of the proposed dis-
tributed and secured GP framework, where the system con-
sists of one cloud server and 10 edge servers. The number
of training data at the edge servers satisfies nk = nj ,∀i, j ∈
{1, 2, · · · ,K}, and the subsets satisfies Dk ∩Dj = ∅,∀k 6=
j. It is observed in Fig. 5 that the convergence speed of the
GP with the knowledge of the full dataset D is faster, i.e.,
with approximately 40 iterations, while the distributed GP
converges slower, i.e., requires about 120 iterations. How-
ever, the centralized GP and the distributed GP will converge
to the same loss level, which proves that there will be little
performance loss by adopting ADMM at the cost of small
communicational overhead.

0 20 40 60 80 100 120
Iteration

100

150

200

250

300

350

Lo
ss

Fig. 5: Loss function of ADMM

5.5 Performance comparison

We compare the performance of the proposed distributed
computing framework and the corresponding centralized
computing framework using several large-scale datasets as
in Fig. 6 following [26], where the Protein dataset describes
the physicochemical properties of the protein tertiary struc-
ture, and the Chem dataset concerns the physical simula-
tions relating to electron energies in molecules. 10 nodes
are considered, each of which possesses non-overlapping
10% of the full training dataset. The performance of regres-
sion is quantified using the standardized mean square error
(SMSE), which is defined as

SMSE =

∑N
i=1(y∗i − s∗i)2

Nvar(y∗)
. (39)

Fig. 7 demonstrates the performance comparison on
the Protein dataset, and Fig. 8 presents the performance
comparison on the Chem dataset. The number of iterations

ZHU et al.: DISTRIBUTED AND SECURED GAUSSIAN PROCESS LEARNING OVER NETWORKS
9

for the centralized algorithm denotes the number of itera-
tions of the gradient algorithm for minimizing the marginal
likelihood, while the number of iterations for the proposed
distributed algorithm represents that of ADMM. It is discov-
ered that with larger number of iterations for the proposed
distributed framework, the performance in terms of SMSE
becomes closer to the centralized algorithm. However, there
exists a small performance gap, which is caused by the non-
convergence (or convergence to another local optima) of
ADMM induced by the non-convexity of the marginal like-
lihood function.

Dataset Dimension of the data Training samples Testing samples
Protein 9 35000 10730
Chem 15 60000 11969

Fig. 6: Brief Introduction of the Datasets

100 iterations 300 iterations 500 iterations
Centralized algorithm 0.324
Proposed framework 0.446 0.371 0.329

Fig. 7: Results on the Protein Dataset in terms of SMSE

100 iterations 500 iterations 1000 iterations
Centralized algorithm 0.022
Proposed framework 0.053 0.031 0.024

Fig. 8: Results on the Chem Dataset in terms of SMSE

6. Conclusions

In this paper, we proposed a distributed and secured G-
P learning framework. Especially, we have two findings:
1). The proposed secured GP is deterministically reversible,
and thus, we will not suffer from performance degradation
when directly computing on cipher-texts. 2). By incorpo-
rating ADMM, not only each edge server could use a dis-
tinct key for encryption, but also the communication over-
head is largely reduced for reaching the global optimality,
which significantly extends the implementation scenarios of
the proposed framework. In addition, we verified the effec-
tiveness of the proposed framework using diabetes data from
the medical analysis field and synthetic data. In the future,
we are willing to theoretically consider how to orchestrate
random unitary transform with more kernel functions, such
as Periodic kernel, Matern kernel and etc., so as to further
extend the implementation scenarios of the proposed frame-
work.

References

[1] T. Nakachi and Y. Wang, “Secure computation of Gaussian process
regression for data analysis,” EURASIP EUSIPCO 2021, pp. 1441-
1445, Aug. 2021.

[2] Y. Wang, W. Wang, V. K. Lau, T. Nakachi and Z. Zhang, “Stochas-
tic resource allocation and delay analysis for mobile edge computing
systems,” IEEE Trans. Commun., vol. 71, no. 7, pp. 4018-4033, Jul.
2023.

[3] H. Jiang, X. Dai, Z. Xiao and A. K. Iyengar, “Joint task offloading and
resource allocation for energy-constrained mobile edge computing,”
IEEE Trans. Mobile Comput., vol. 22, no. 7, pp. 4000-4015, Jul. 2023.

[4] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen and
J. S. Rellermeyer, “A survey on distributed machine learning,” ACM
Comput. Surveys, vol. 53, no. 2, pp. 1-33, Mar. 2020.

[5] M. M. Sadeeq, N. M. Abdulkareem, S. R. Zeebaree, D. M. Ahmed,
A. S. Sami and R. R. Zebari, “IoT and cloud computing issues, chal-
lenges and opportunities: A review,” Qubahan Academic J., vol. 1,
no. 2, pp. 1-7, Mar. 2021.

[6] Y. Wang and T. Nakachi, “A privacy-preserving learning framework
for face recognition in edge and cloud networks,” IEEE Access, vol.
8, pp. 136056-136070, Jul. 2020.

[7] A. Khalid, A. Aziz, C. Wang, M. ONeill and W. Liu, “Resource-
shared crypto-coprocessor of AES Enc/Dec with SHA-3,” IEEE Tran-
s. Circuits Syst. I: Reg. Papers, vol. 67, no. 12, pp. 4869-4882, Dec.
2020.

[8] C. V. Mouchet, “Multiparty homomorphic encryption: From theory to
practice,” EPFL Press, Aug. 2023.

[9] V. Patel, N. Ratha, and R. Chellappa, “Cancelable biometrics: A re-
view,” IEEE Signal Process. Mag., vol. 32, no. 5, pp. 54-65, 2015.

[10] A. B. J. Teoh, A. Goh, and D. C. L. Ngo, “Random multispace quan-
tization as an analytic mechanism for biohashing of biometric and
random identity inputs,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
28, no. 12, pp. 1892-1901, 2006.

[11] M. Binjubeir, A. A. Ahmed, M. A. B. Ismail, A. S. Sadiq and M. K.
Khan, “Comprehensive survey on big data privacy protection,” IEEE
Access, vol. 8, pp. 20067-20079, Dec. 2019.

[12] I. Nakamura, Y. Tonomura, and H. Kiya, “Unitary transform-based
template protection and its application to l2-norm minimization prob-
lems,” IEICE Trans. Inf. Syst., vol. E99-D, no. 1, pp. 60-68, 2016.

[13] T. Nakachi, Y. Bandoh and H. Kiya, “Secure overcomplete dictio-
nary learning for sparse representation,” IEICE Trans. Inf. Syst., vol.
E103.D, no. 1, pp. 50-58, Jan. 2020.

[14] T. Nakachi and H. Kiya, “Secure OMP computation maintaining s-
parse representations and its application to EtC systems,” IEICE Tran-
s. Inf. Syst., vol. E103.D, no. 9, pp. 1988-1997, 2020.

[15] Y. Bandoh, T. Nakachi and H. Kiya, “Distributed secure sparse mod-
eling based on random unitary transform,” IEEE Access, vol. 8, pp.
211762-211772, Aug. 2020.

[16] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J.
Sohl-Dickstein, “Deep neural networks as gaussian processes,” arXiv
preprint arXiv:1711.00165, 2017.

[17] C. E. Rasmussen and C. I. K. Williams, “Gaussian processes for ma-
chine learning,” MIT Press, 2006.

[18] J. W. Ng and M. P. Deisenroth, “Hierarchical mixture-of-experts
model for large-scale Gaussian process regression,” arXiv preprint
arXiv:1412.3078, 2014.

[19] Y. Xu, F. Yin, W. Xu, J. Lin, and S. Cui, “Wireless traffic prediction
with scalable Gaussian process: Framework, algorithms, and verifi-
cation,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1291-1306,
2019.

[20] H. Zhang, J. Gao, J. Qian, J. Yang, C. Xu, and B. Zhang, “Linear re-
gression problem relaxations solved by nonconvex ADMM with con-
vergence analysis,” IEEE Trans. Circuits Syst. Video Technol., vol. 34,
no. 2, Feb. 2024.

[21] R. F. Barber, and E. Y. Sidky, “Convergence for nonconvex ADMM,

10
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

with applications to CT imaging,” J. Machine Learning Research, vol.
25, no. 38, pp. 1-46, 2024.

[22] Z. Zha, X. Zhang, Y. Wu, Q. Wang, X. Liu, L. Tang, and X. Yuan,
“Non-convex weighted lp nuclear norm based ADMM framework
for image restoration,” Neurocomputing, vol. 311, pp. 209-224, Oc-
t. 2018.

[23] Y. Wang, T. Nakachi, and W. Wang, “Pattern discovery and multi-
slot-ahead forecast of network traffic: A revisiting to Gaussian pro-
cess,” IEEE Trans. Netw. Service Manag., vol. 20, no. 2, pp. 1691-
1706, Jun. 2023.

[24] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle re-
gression,” Annals Statistics, vol. 32, no. 2, pp. 407-499, 2004.

[25] scikit-learn, https://scikit-learn.org/stable/index.html.
[26] H. Liu, J. Cai, Y. S. Ong, and Y. Wang, “Understanding and compar-

ing scalable Gaussian process regression for big data,” Knowledge-
Based Syst., vol. 164, pp. 324-335, Jan. 2019.

Ling Zhu received the master’s degree from
Tongji University, Shanghai, China, in 2011.
She is currently a Lecturer with the School of
Electrical and Information Engineering, North
Minzu University, China.

Takayuki Nakachi received the Ph.D de-
gree in electrical engineering from Keio Univer-
sity, Tokyo, Japan, in 1997. From 1997 to 2021,
he was a senior researcher with Nippon Tele-
graph and Telephone Corporation (NTT), Japan.
From 2006 to 2007, he was a visiting scientist at
Stanford University. He is currently a Professor
with the Information Technology Center, Uni-
versity of the Ryukyus, Japan.

Bai Zhang received the Ph.D degree from
Beijing University of Technology, Beijing, Chi-
na, in 2014. He is currently an associated pro-
fessor with the School of Electrical and Infor-
mation Engineering, North Minzu University,
China.

Yitu Wang received the Ph.D. degree from
Zhejiang University, Hangzhou, China, in 2018.
From August to November 2014, he was a visit-
ing scholar with the University of Paris-Sud, Or-
say, France. From January 2019 to March 2022,
he was a researcher with NTT Innovation Lab-
oratories, NTT Corporation, Japan. He is cur-
rently a Lecturer with the School of Electrical
and Information Engineering, North Minzu U-
niversity, China.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

