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PAPER
Frequency-domain weighted FxLMS algorithm for feedback active
noise control

Yosuke SUGIURA†a), Member, Ryota NOGUCHI†, Nonmember, and Tetsuya SHIMAMURA†, Member

SUMMARY In this paper, we propose the frequency-domain weighted
FxLMS algorithm for feedback active noise control. This algorithm aims to
resolve the slow convergence issue of the conventional FxLMS algorithms
by integrating a frequency-weighted method. This method dynamically
adjusts weights based on the amplitude-frequency characteristics of nar-
rowband noise, thereby improving tracking performance for time-varying
narrowband noise. Through simulation experiments, we reveal that the
FD-WFxNLMS algorithm achieves fast convergence, outperforming the
conventional algorithms in feedback ANC systems.
key words: active noise control, feedback ANC, filtered-x LMS, frequency-
domain adaptive algorithm

1. Introduction

Active noise control (ANC) is a technique to suppress un-
desirable noise sounds by emitting sound waves with an
opposite phase from a loudspeaker. ANC systems are cate-
gorized into three categories: feedforward ANC (FF-ANC),
feedback ANC (FB-ANC), and hybrid ANC (HANC). The
structure of the feedback ANC system is illustrated in Figure
1. Compared to other ANC systems that require a reference
microphone, the architecture of FB-ANC offers a more cost-
effective implementation. Due to its feedback configuration,
FB-ANC is adept at suppressing narrowband noise emanat-
ing from sources such as machine vibrations [1] and aircraft
[2]. In this paper, we assume that the secondary path 𝐶 (𝑧) is
accurately modeled. There are various methods [3]-[5] that
can be used for this modeling.

In Fig. 1, the control filter 𝑊 (𝑧) plays a role as a
predictor of the narrowband noise. Therefore, it is essen-
tial to continuously update the coefficients of 𝑊 (𝑧) quickly
and accurately in accordance with change of the narrowband
noise characteristics. While several methods [6], [7] em-
ploy non-linear filters like deep neural networks for superior
noise suppression, their real-time implementation is chal-
lenged by substantial computational complexity. Hence, this
paper adopts a linear filter, which offers the benefit of low
computational complexity.

The update algorithms for the control filter are typ-
ically categorized into three types: filtered-x least-mean-
square (FxLMS), filtered-x affine projection (FxAP), and
filtered-x recursive least square (FxRLS). The FxLMS al-
gorithm exhibits a simple structure, thus it has been exten-
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Fig. 1: Structure of general feedback ANC

sively studied and extended. The FxAP algorithm, which
is more computationally intensive than FxLMS, achieves a
faster convergence. While the FxRLS algorithm exhibits the
fastest convergence among them, it is infrequently employed
in practical applications due to its high computational com-
plexity. In this paper, our focus lies on the FxLMS algorithm
and enhancing its performance.

The FxLMS algorithm used in FB-ANC system has two
primary issues. The first one is instability, which is similar
to that observed in an adaptive IIR filter. To address this
problem, the constrained gain method has been investigated
[8]. This method introduces constraints into the gradient
of FxLMS to prevent large amplitude variations when the
characteristics of the error signal change. However, this
leads to the second issue: slow convergence.

The issue of slow convergence remains a fundamental
obstacle for the FxLMS algorithm. Although numerous vari-
able step-size (VSS) methods have been developed for FF-
ANC and HANC to mitigate this issue [9]-[12], it is a signifi-
cant challenge in applying most of them to FB-ANC. Among
them, Leaky-FxLMS (LFxLMS) [13] especially stands out
as one of the effective VSS methods for FB-ANC, which
employs a strategy similar to the Leaky-LMS algorithm.

The performance of LFxLMS can be enhanced by ap-
propriately adjusting the leakage factor. A few works [14],
[15] provide insights into an optimal leakage factor for
frequency-domain LFxLMS, utilizing the frequency char-
acteristics of the narrowband noise component. However,
in the practical situations, the effectiveness of the LFxLMS
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algorithm is limited since the amplitude-frequency charac-
teristics of the narrowband noise is unknown.

To tackle the issue of slow convergence, the proposed
method employs a frequency-weighted approach that dy-
namically adjusts weights of the error signal based on
the amplitude-frequency characteristics of the narrowband
noise. This method assigns larger weights only to frequen-
cies with higher amplitudes in the narrowband signal. This is
similar to the Variable Step Size (VSS) approach [15], which
assigns larger step sizes only to frequencies with higher am-
plitudes in the narrowband signal. Unlike the method in [15],
however, our method detects the amplitude of the narrow-
band signal by identifying its local peaks along the frequency
axis using an erosion operator. Therefore, the proposed
method has the advantage of achieving faster convergence
without requiring any prior information. Additionally, the
proposed method introduces the normalized step size [16],
enabling further stability and faster convergence.

This approach requires performing the erosion opera-
tion, which is a nonlinear process, on the amplitude spec-
trum. Therefore, it is difficult to implement in the time
domain. Before introducing the proposed VSS, it is es-
sential to first derive the frequency-domain block FxLMS
(FD-FxLMS) algorithm that employs FFT. Although the
FD-FxLMS algorithm with FFT has been established for FF-
ANC [17], its application to FB-ANC remains unexplored,
except for FD-FxLMS using DFT [14], wavelet transform
[18], [19], or subband filter [20]. Subsequently, the pro-
posed method is meticulously derived and validated through
the simulation experiments.

2. Frecuency-domain Block FxLMS algorithm for feed-
back ANC

In this section, we formulate the FD-FxLMS algorithm for
FB-ANC. Figure 2 shows the structure of feedback ANC us-
ing FD-FxLMS. In this figure, 𝑑𝑛 is noise at time 𝑛, modeled
as

𝑑𝑛 = 𝑢𝑛 + 𝑠𝑛, (1)

where 𝑢𝑛 is broadband noise, and 𝑠𝑛 is narrowband noise.
Let �̂� represent the control signal that reaches the error mi-
crophone through the secondary path, �̂� is represented by:

�̂�𝑛 =
𝑀−1∑
𝑘=0

𝑐𝑘𝑦𝑛−𝑘 , (2)

where the sequence [𝑐0, 𝑐1, · · · , 𝑐𝑀−1] = 𝒄 denotes the im-
pulse response of the secondary path with a length of 𝑀 .
Using �̂�𝑛, we can express the error signal detected by the
error microphone as:

𝑒𝑛 = 𝑑𝑛 + �̂�𝑛. (3)

With 𝒘𝑛 =
[
𝑤𝑛0 , 𝑤

𝑛
1 , · · · , 𝑤

𝑛
𝑀−1

]
representing the coefficient

vector of length𝑁 at time 𝑛, the control signal 𝑦𝑛 is calculated
as follows:

Fig. 2: Structure of feedback ANC with frequency-domain
block FxLMS (FD-FxLMS) algorithm.

𝑦𝑛 =
𝑀−1∑
𝑘=0

𝑤𝑛𝑘𝑑𝑛−𝑘 , (4)

where 𝑑𝑛 is the reconstructed noise signal, which is derived
by:

𝑑𝑛 = 𝑒𝑛 −
𝐿−1∑
𝑘=0

𝑐𝑘𝑦𝑛−𝑘 . (5)

It is assumed that the secondary path 𝒄 has been previously
estimated. The model of the secondary path is denoted as 𝒄,
with its length defined as 𝐿.

Next, we introduce the FD-FxLMS algorithm that in-
corporates FFT. To simplify the calculation of the FFT, 𝑁 is
set as 2𝑘 in this paper. Initially, we compute the frequency
response of 𝒄 with a length of 4𝑁 as follows:

�̂� = FFT
( [
𝑐𝐿 , 𝑐𝐿−1, ..., 𝑐1, 01×(4𝑁−𝐿) ] ) (6)

The FD-FxLMS for 𝑤𝑛𝑘 at time 𝑛 is defined by:

𝒅 =
[
01×𝑁 , 𝑑𝑛−3𝑁+1, 𝑑𝑛−3𝑁+2, ..., 𝑑𝑛

]
, (7)

�̂� = FFT(𝒅), (8)
𝒁 = �̂� ◦ �̂�, (9)
𝒆 =

[
𝑒𝑛−𝑁+1, 𝑒𝑛−𝑁+2, ..., 𝑒𝑛, 01×3𝑁 ] , (10)

𝑬 = FFT (𝒆) , (11)
𝒈 = 𝑁 · IFFT (𝒁 ◦ 𝑬) , (12)

𝒘𝑖+1 = 𝒘𝑖 − �̂�
[
𝑰𝑁×𝑀 , 0𝑁×4𝑁−𝑀 ]

𝒈𝑇 , (13)

where 0 is a zero matrix, 𝑰 is an identity matrix which
has 1 on the diagonal elements and 0 elsewhere, ◦ is an
operator of Hadamard product, and 𝜇 is a step-size parameter
which is chosen within the range (0,1) for stability. It is
important to note that while the FD-FxLMS algorithm for
feedforward ANC requires 2𝑁-points FFT/IFFT [17], this
algorithm utilizes 4𝑁-points FFT/IFFT. It is important to
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note that while the conventional FD-FxLMS algorithm for
feedforward ANC requires 2𝑁-points FFT/IFFT [17], this
algorithm utilizes 4𝑁-points FFT/IFFT. The rationale for
this requirement is explained in Appendix B.

The FD-FxLMS algorithm updates the coefficients ev-
ery 𝐾 samples. Hence, to ensure the same performance
across the TD-FxLMS and FD-FxLMS algorithms, the step-
size parameter of the FD-FxLMS needs to be scaled by 𝐾
relative to the step-size parameter of the FD-FxLMS algo-
rithm, 𝜇. Namely, �̂� is adjusted as follows:

�̂� = 𝐾𝜇. (14)

The normalized version of FD-FxLMS, that is called FD-
FxNLMS, is easily derived by defining �̂� by:

�̂� =
𝐾𝜇

𝑁
3𝑁

3𝑁−1∑
𝑖=0

𝑑2
𝑛−𝑖

, (15)

where the term 𝑁/3𝑁 in the denominator serves to scale the
power of 𝒅 across 3𝑁 samples down to 𝑁 samples. The FD-
FxNLMS algorithm using Eq. (15) demonstrates the same
convergence performance as the TD-FxNLMS algorithm.

Both the TD-FxLMS and the FD-FxLMS algorithms
for feedback ANC, despite being the normalized versions,
encounter a fundamental issue of slow convergence, espe-
cially when the narrowband noise is buried in the broadband
noise.

3. Frequency-domain Weighted Block FxLMS (FD-
WFxLMS) algorithm for FB-ANC

To enhance the performance of narrowband noise suppres-
sion, we incorporate the frequency-weighted technique into
the FD-FxLMS algorithm for FB-ANC. Specifically, the pro-
posed method assigns weights to 𝑬 which is the frequency
response of the error signal in Eq. (11). These weights
are adjusted based on the amplitude ratio between the error
signal and the broadband noise included in it.

The amplitude ratio can be roughly estimated by using
the erosion operation to 𝐸𝑘 , which is the 𝑘-th frequency
components of the error signal. The definition of the erosion
operation for |𝐸𝑘 | is given as:

Φ(|𝐸𝑘 |, 𝑙) = min ( [|𝐸𝑘−𝑙 |, |𝐸𝑘−𝑙+1 |, · · · , |𝐸𝑘+𝑙 |]) , (16)

where 𝑙 is a frame length for the erosion operation. The ero-
sion operation Φ( |𝐸𝑘 |, 𝑙) removes the positive peaks in |𝑬 |.
With the assumption that the narrowband noise is modeled
by line spectra, Φ( |𝐸𝑘 |, 𝑙) approximates the spectral enve-
lope of the broadband noise. Hence, the amplitude ratio can
be calculated by:

𝑅𝑘 =
|𝐸𝑘 |

Φ ( |𝐸𝑘 |, 𝑙)
. (17)

Furthermore, by taking the logarithm of both sides, the fol-
lowing equation is derived:

Fig. 3: Structure of feedback ANC with frequency-domain
block weighted FxLMS (FD-WFxLMS) algorithm.

log10 𝑅𝑘 = log10
|𝐸𝑘 |

Φ ( |𝐸𝑘 |, 𝑙)
= log10 |𝐸𝑘 | − log10 Φ ( |𝐸𝑘 |, 𝑙)
= log10 |𝐸𝑘 | −Φ

(
log10 |𝐸𝑘 |, 𝑙

)
(18)

The transformation from the second equation to the third
equation is provided in Appendix A. It is clear that the ra-
tio log10 𝑅𝑘 increases as the power of the narrowband noise
rises. Focusing on this property, the proposed method as-
signs a large weight for the 𝑘-th frequency bin where log10 𝑅𝑘
exhibits high values.

Figure 3 shows the structure of feedback ANC with
FD-WFxLMS algorithm. The FD-WFxLMS algorithm cal-
culates the frequency response of the weighted error signal,
�̂�, and then replace 𝑬 by it in Eq. (11). The calculation
procedure of �̂� in the Fx-WFxLMS algorithm is as follows:

�̄� 𝑖𝑘 = 𝛾�̄� 𝑖−1
𝑘 + (1 − 𝛾)

��𝐸 𝑖𝑘 �� , (19)
�̄�𝑘 = log10

(
�̄� 𝑖𝑘 + 𝜖

)
− log10 𝜖, (20)

�̄�𝑘 = �̄�𝑘 −Φ( �̄�𝑘 , 𝑙), (21)

𝛼𝑛 = 𝛽
4𝑁∑
𝑘=1

�̄�𝑘 , (22)

𝐺𝑘 = 𝛼𝑛 �̄�𝑘 + 1, (23)

�̄�𝑘 =

{
𝛼max , 𝐺𝑘 ≥ 𝛼max

𝐺𝑘 , 𝐺𝑘 < 𝛼max
, (24)

�̂� = �̄� ◦ 𝑬, (25)

where 𝛾 is a smoothing factor satisfying 0 < 𝛾 < 1, 𝜖 is a
small positive value, and 𝛽 is a positive scaling factor. In Eqs.
(19) and (20), averaging and logarithmic transformation are
applied to 𝐸𝑘 to mitigate the effects of fluctuations in 𝑬.
In Eq. (23), the weight 𝐺𝑘 is adjusted using the power of
the narrowband noise calculated in Eq. (22). The weight
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�̄�𝑘 becomes larger as the power of the narrowband noise
increases, but it approaches 1 as the narrowband noise is
effectively suppressed. For stability, 𝐺𝑘 is saturated at the
upper limit of 𝛼max.

The normalized version of FD-WFxLMS, that is FD-
WFxNLMS, is also available when the step-size parameter
is determined by Eq. (15).

4. Computational Complexity

The computational complexity of the FD-FxLMS algorithm
for FB-ANC can be calculated by counting the number of
real multiplications required for the following operations:

• In Eqs. (8), (11) and (12), 3 times of 4𝑁-points
FFT/IFFT require 3 × 4𝑁 log2 (4𝑁) = 12𝑁 log2 (4𝑁)
multiplications. The average computational complex-
ity per sample is given by 12𝑁 log2 (4𝑁)/𝐾 .

• In Eqs. (9) and (12), 2 times of Hadamard product
operations require 3× [2× 4𝑁] = 24𝑁 multiplications,
where the 3 outside the square brackets corresponds to
the complex filtering.The average computational com-
plexity per sample is given by 24𝑁/𝐾 .

• The calculation of Eq. (13) requires 𝑀 multiplications,
since

[
𝑰𝑁×𝑀 , 0𝑁×4𝑁−𝑀 ]

𝒈𝑇 can be implemented by
slicing 𝒈𝑇 within the index range of (1, 𝑀). The average
computational complexity per sample is given by 𝑀/𝐾 .

• In the control filter, 𝑀 multiplications per sample are
required to obtain 𝑦𝑛.

The FD-WFxLMS algorithm requires the following addi-
tional costs:

• In Eq. (19), 2 × 4𝑁/𝐾 = 8𝑁/𝐾 multiplications per
sample are required.

• In Eq. (23), 4𝑁/𝐾 multiplications per sample are re-
quired.

• In Eq. (25), 3 × 4𝑁/𝐾 = 12𝑁/𝐾 multiplications are
required for the complex Hadamard product operation.

Table 1 summarizes the average computational com-
plexity of each algorithm, including the operations of mul-
tiplication (Mul), addition (Add), division (Div), absolute
value (Abs), logarithm (Log), and minimum (Min). Fig-
ure 4 illustrates Weighted Million Operations Per Second
(WMOPS) [21] versus frame length 𝑁 with 𝐿 = 128,
𝐾 = 𝑀 = 𝑁 , and 𝑙 = 7. According to Ref. [21], the
weights assigned to each operator are defined as follows:
Mul (3), Add (1), Div (32), Abs (1), Log (5), and Min(1).
Here, the logarithmic function is approximated by a piece-
wise linear function using a lookup table. Under these
conditions, the frequency-domain algorithms exhibit lower
computational complexity than the time-domain algorithms,
owing to the utilization of FFT instead of convolution opera-
tions. Focusing on 𝑁 = 512, the FD-WFxLMS algorithm re-
duces WMOPS by 41.1% compared to the TD-FxLMS algo-
rithm, and the FD-WFxNLMS algorithm reduces WMOPS
by 55.8% compared to the TD-FxNLMS algorithm.

Fig. 4: WMOPS versus frame length 𝑁 for each algorithm
with 𝐿 = 128, 𝐾 = 𝑀 = 𝑁 , and 𝑙 = 7.

5. Simulation Experiments

To evaluate the effectiveness of the FD-WFxNLMS algo-
rithm, simulation experiments of FB-ANC were conducted.
In the experiments, TD-FxNLMS, TD-LFxNLMS, and FD-
FxNLMS algorithms were used for comparison. The un-
normalized series, such as TD-FxLMS, were excluded from
this experiments, due to their significantly slower conver-
gence speeds.

As a metric for performance evaluation, we employ
Averaged Noise Reduction (ANR) [22], which is calculated
using the following equation:

ANR𝑛 = 20 log10
𝐴𝑒 (𝑛)
𝐴𝑑 (𝑛)

, (26)

𝐴𝑒 (𝑛) = 𝜅𝐴𝑒 (𝑛 − 1) + (1 − 𝜅) |𝑒𝑛 |, (27)
𝐴𝑑 (𝑛) = 𝜅𝐴𝑑 (𝑛 − 1) + (1 − 𝜅) |𝑑𝑛 |. (28)

In the experiment, we set 𝐴𝑒 (0) = 0，𝐴𝑑 (0) = 0，𝜅 = 0.999.
The secondary path is obtained in a real environment,

as illustrated in Figure 5. In this setup, the control loud-
speaker is positioned 20 cm away from the error microphone
in the anechoic room. Figure 6 depicts the frequency re-
sponse of the obtained secondary path 𝑪. As shown in the
figure, the amplitude spectrum has no notches and the phase
spectrum remains linear, except at the DC and the Nyquist
frequencies. This indicates that noise can be effectively con-
trolled across the entire frequency band, except in the regions
around the DC and Nyquist frequencies. For simplicity, we
have assumed that the estimated secondary path model �̂� is
the same as 𝑪. We employed two types of noise: synthetic
noise and real noise for performance evaluation.

The parameter settings that we used are the followings:
the sampling frequency 𝐹𝑆 is set to 16 kHz, 𝑀 = 𝑁 = 𝐾 =
256, 𝜇 = 0.005, 𝑙 = 7, 𝛽 = 0.005, 𝛾 = 0.8, 𝛼max = 20,
𝜖 = 10−20.
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Table 1: Average computational complexity of each algorithm.
Algorithm Muls Adds Divs Abs Logs Mins

FxLMS 2𝑀 + 𝐿 + 1 2𝑀 + 𝐿 − 2 0 0 0 0

FxNLMS 3𝑀 + 𝐿 + 1 3𝑀 + 𝐿 − 3 1 0 0 0

FD-FxLMS
12𝑁 log2 (4𝑁 ) + 24𝑁 +𝑀

𝐾
+𝑀 24𝑁 log2 (4𝑁 ) +𝑀

𝐾
+𝑀 − 1 0 0 0 0

FD-FxNLMS
12𝑁 log2 (4𝑁 ) + 27𝑁 +𝑀

𝐾
+𝑀 24𝑁 log2 (4𝑁 ) + 3𝑁 +𝑀 − 1

𝐾
+𝑀 − 1 1

𝐾 0 0 0

FD-WFxLMS
12𝑁 log2 (4𝑁 ) + 48𝑁 +𝑀

𝐾
+𝑀 24𝑁 log2 (4𝑁 ) + 20𝑁 +𝑀 − 1

𝐾
+𝑀 − 1 0 4𝑁

𝐾
4𝑁
𝐾

4𝑁𝑙
𝐾

FD-WFxNLMS
12𝑁 log2 (4𝑁 ) + 51𝑁 +𝑀

𝐾
+𝑀 24𝑁 log2 (4𝑁 ) + 23𝑁 +𝑀 − 2

𝐾
+𝑀 − 1 1

𝐾
4𝑁
𝐾

4𝑁
𝐾

4𝑁𝑙
𝐾

Fig. 5: Experimental environment for determining the sec-
ondary path.

5.1 Case I: Active noise control using synthetic noise

In the first experiment, we conducted an active noise control
simulation using synthetic noise to assess convergence per-
formance. The broadband noise used in this experiment, 𝑢𝑛,
is generated by filtering white Gaussian noise using a 2nd-
order IIR filter. The frequency characteristics of this filter
are modeled after factory floor noise [23], which is similar
to pink noise, a common type of colored noise. The transfer
function of the filter is as follows:

𝐻 (𝑧) = 1 − 1.2 cos(0.01𝜋 𝑗)𝑧−1 + 0.36𝑧−2. (29)

The narrowband noise is defined as follows:

𝑠𝑛 =
4∑
𝑖=1

sin(𝑘𝜔𝑛𝑛), (30)

where the frequencies 𝑘𝜔𝑛 are aligned with the spectrogram
depicted in Figure 7. The broadband noise and narrowband
noise are mixed with log10

(∑
𝑠2𝑛/

∑
𝑢2
𝑛

)
= 10 [dB].

In the FD-WFxNLMS algorithm, 𝛼𝑛 is a crucial pa-
rameter, which is directly influencing the magnitude of
the weight �̄�. Figure 8 displays the transient behavior of
𝛼𝑛. This figure shows that 𝛼𝑛 decreases when narrowband
noise is suppressed, notably between 0.0 s and 2.5 s, and
between 5.0 s and 7.5 s. Conversely, 𝛼𝑛 increases quickly
with changes in the narrowband noise characteristics. This

(a) Magnitude response.

(b) Phase response.

Fig. 6: Frequency response of the secondary path.

behavior indicates that 𝛼𝑛 effectively serves as a suitable
weight for the error signal.

Figure 9 displays the ANR curves for different algo-
rithms, averaged over 100 trials. In this figure, black, yellow,
red, blue lines represent the outcomes of TD-FxNLMS, TD-
LFxNLMS, FD-FxNLMS, and FD-WFxNLMS algoritms,
respectively. As can be seen from this figure, the perfor-
mance of the FD-FxNLMS (the black line) matches that of
the TD-FxNLMS (the red line) by adopting the step-size in
Eq. (15). This figure cleary shows that the FD-WFxLMS al-
gorithm achieves the fastest convergence. Particularly within
the intervals of 2.5 s to 5 s and 7.5 s to 10 s, this algorithm
excels in tracking the narrowband noise with time-varying



6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Fig. 7: Spectrogram of the narrowband noise in Case-I.

Fig. 8: Transient behavior of 𝛼𝑛 in Case-I.

Fig. 9: ANC curves for various algorithms in Case-I (black:
TD-FxNLMS, red: FD-FxNLMS, yellow: TD-LFxNLMS,
blue: FD-WFxNLMS).

frequencies. Figure 10 illustrates the amplitude-frequency
characteristics of output for each algorithm at 7 s. It is clear
from this figure that the FD-FxWNLMS algorithm offers su-
perior noise attenuation performance, particularly at 5 kHz

Fig. 10: Amplitude-frequency characteristics of output at
7.0 s for each algorithm in Case-I (gray: error signal, black:
TD-FxNLMS, red: FD-FxNLMS, yellow: TD-LFxNLMS,
blue: FD-WFxNLMS).

by at least 7 dB over other algorithms.

5.2 Case II: Active noise control using real noise

In the second experiment, we evaluate the convergence
performance against real noise, specifically using vacuum
cleaner noise [24]. Suppressing the narrowband signal gen-
erated by the motor of the vacuum cleaner is challenging
because it varies over time according to electrical load of
the motor. Additionally, the broadband noise produced by
the exhaust further complicates the noise control process.
The spectrogram of noise is depicted in Figure 11. In this
noise, low-frequency peaks are predominantly found below
500 Hz, whereas high-frequency peaks, with a fundamen-
tal frequency oscillating around a central point of 2, 5 kHz,
appear.

The transient behavior of 𝛼𝑛 resulting from this experi-
ment is shown in Figure 12. Although small frequency fluc-
tuations are present in the noise after 1 s, 𝛼𝑛 approximately
converges to 1.

Figure 13 shows ANR curves for various algorithms.
As shown in this figure, the performance of each algorithm
is nearly identical. This is because each algorithm primarily
focuses on controlling the low-frequency narrowband noise
(∼ 600 Hz), which has relatively large amplitude. Since the
frequency fluctuations of this low-frequency noise are small,
the impact of fast tracking ability of the proposed method
is limited. However, at the points where the amplitude of
this low-frequency noise changes (around 1.5 s and 2.5 s),
the proposed method adapts more quickly to these changes
and then achieves a lower ANR.

Figure 14 illustrates the amplitude-frequency charac-
teristics of output for each algorithm at 7.0 s. This figure
highlights that the FD-WFxNLMS algorithm exhibits supe-
rior control performance, achieving notable improvements
of 5 dB at 100 Hz and 3 dB at 2.5 kHz.
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Fig. 11: Spectrogram of vacuum cleaner noise in Case-II.

Fig. 12: Transient behavior of 𝛼𝑛 in Case-II.

Fig. 13: ANC curves for various algorithms in Case-II
(black: TD-FxNLMS, red: FD-FxNLMS, yellow: TD-
LFxNLMS, blue: FD-WFxNLMS).

These experiments reveal that the FD-WFxNLMS algo-
rithm provides fast convergence, thereby enhancing tracking
performance for time-varying narrowband noise compared

Fig. 14: Amplitude-frequency characteristics of output at
7.0 s for each algorithm in Case-II (gray: error signal,
black: TD-NFxNLMS, red: FD-FxNLMS, yellow: TD-
LFxNLMS, blue: FD-WFxNLMS).

to other conventional algorithms.

6. Conclusion

In this paper, we have proposed the frequency-domain
weighted FxLMS algorithm for feedback active noise con-
trol in order to achieve the fast convergence. This
method dynamically adjusts weights based on the amplitude-
frequency characteristics of narrowband noise, thereby im-
proving tracking performance for time-varying narrowband
noise. Simulation experiments demonstrated that the FD-
WFxNLMS algorithm secures fast convergence, surpassing
traditional algorithms in feedback ANC settings.

The variable step-size (VSS) approach with frequency
weighting is potentially applicable to both FxAP and FxRLS
algorithms. FxAP, due to its similarity to FxNLMS, is ex-
pected to benefit directly from the VSS of the proposed
method. In the case of FxRLS, it may be possible to as-
sign more appropriate gain vectors or forgetting factors for
each frequency. However, several challenges remain, such as
the lack of an established method for efficiently computing
FxRLS in the frequency domain.
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Appendix A: Derivatoin of Eq. (18)

The logarithmic function log10 (𝑥) is monotonically increas-
ing for 𝑥 > 0. Therefore, the following property holds:

𝑥 < 𝑦 ⇒ log10 (𝑥) < log10 (𝑦).

Hence, for the set 𝑬𝑘 = {|𝐸𝑖 |, 𝑖 = 𝑙 − 𝑘, . . . , 𝑙 + 𝑘}, the
following holds:

𝐸𝑝 < 𝐸𝑞 ⇒ log10 (𝐸𝑝) < log10 (𝐸𝑞),

where,

𝐸𝑝 ∈ 𝑬𝑘 , ∀𝐸𝑞 ∈ 𝑬𝑘 \ {𝐸𝑝}.

This means that if 𝐸𝑝 is the minimum value of 𝑬𝑘 , then
log10 (𝐸𝑝) is also the minimum value of {log10 |𝐸𝑘 |, 𝑖 =
𝑙 − 𝑘, . . . , 𝑙 + 𝑘}, i.e.,

log10 (Φ(𝐸𝑘 , 𝑙)) = Φ(log10 (𝐸𝑘), 𝑙).

Then, Eq. (18) is derived.

Appendix B: Number of FFT-points

The time-domain FxLMS algorithm updates the 𝑘-th coeffi-
cient using the following equation:

𝑤𝑖+1
𝑘 = 𝑤𝑖𝑘 − 𝜇𝑒𝑛

𝐿−1∑
𝑙=0

𝑐𝑙𝑑𝑛−𝑘−𝑙 ,

(A· 1)

where 𝑘 = 0, 2, . . . , 𝑀 − 1. This equation can be easily ex-
tended to the block FxLMS algorithm, which updates every
𝐾 samples, as follows:

𝑤𝑖+1
𝑘 = 𝑤𝑖𝑘 − 𝜇

𝐾−1∑
𝑗=0

𝑒𝑛− 𝑗

𝐿−1∑
𝑙=0

𝑐𝑙𝑑𝑛−𝑘−𝑙− 𝑗 .

(A· 2)

Assuming 𝐿, 𝐾 , and 𝑀 are all less than or equal to 𝑁 but
close to 𝑁 , this algorithm requires up to the past 3𝑁 samples
of 𝑑𝑛.

Given that 𝑁 is represented as 2𝑘 , 4𝑁-points FFT is
necessary to compute the gradient term in the frequency
domain. Since 𝑒𝑛 has 𝐾 points, 𝑐𝑛 has 𝐿 points, and 𝑑𝑛
has 3𝑁 points, each signal is extended to 4𝑁 points using
zero-padding before applying the FFT.

In feedforward ANC, the FD-FxLMS algorithm [17]
simplifies computations by assuming 𝑑𝑛 has only 2𝑁 points
and applying a 2𝑁-points FFT. However, in feedback ANC,
accumulated feedback errors significantly degrade conver-
gence performance if 𝑑𝑛 is not sufficiently long.
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Fig. A· 1: Comparison of ANR (Active Noise Reduction)
curves for algorithms using 2𝑁-point FFT and 4𝑁-point FFT.

Figure A· 1 compares the convergence performance
of five algorithms: TD-FxNLMS, FD-FxNLMS with
2𝑁-points FFT, FD-FxNLMS with 4𝑁-points FFT, FD-
WFxNLMS with 2𝑁-points FFT, and FD-WFxNLMS with
4𝑁-points FFT. The experimental conditions are identical
to Case I in 5.1. As shown in the figure, the algorithms using
2𝑁-points FFT exhibit degraded convergence performance.
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