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Introduction to Quantum Deletion Error-Correcting Codes

Manabu HAGIWARA†, Member

SUMMARY This paper serves as an introductory overview
of quantum deletion error-correction codes, a burgeoning field
within quantum coding theory. Covering foundational concepts,
existing research, and open questions, it aims to be the first ac-
cessible resource on the subject. This paper contains basic def-
initions of terms so that readers can read it regardless of their
background. This paper invites readers to explore this primer
and take their initial steps into the realm of quantum deletion
error-correcting codes research.
key words: quantum information, deletion error-correction,
error-correcting codes, four qubits code, partial trace

1. Introduction

This paper consolidates foundational knowledge, pre-
viously known results, and open problems for those
embarking on the study of quantum deletion error-
correcting codes. It is consciously written as an in-
troductory guide to facilitate learning about these
codes, ensuring accessibility even for those without
prior knowledge of quantum information theory.

In classical coding theory, research on deletion
error-correcting codes dates back to the 1960s [13]. In
this context, deletion errors for classical sequences refer
to the transformation where a part of the sequence is
missing hence it is replaced by a partial sequence. A
single deletion error deletes only one symbol of the se-
quence. For instance, if a single deletion error occurs in
a binary sequence of length 5, such as 00010, it could be
transformed into one of the sequences of length 4: 0010,
0000, or 0001. When referring to t-deletion errors, it
implies that a single deletion error occurs t times. In
this case, the length of the sequence is shortened by
t. Without explicitly specifying t itself, when t ≥ 2,
it is referred to as multi-deletion errors. While there
are communication channel models where deletion er-
rors occur probabilistically [12], this paper imposes an
upper limit of t on the number of deletion errors.

One prominent example of a single deletion error-
correcting code is the VT code, named after Varshamov
and Tenengolts [25]. It was Levenshtein who first noted
that the VT code is capable of correcting single deletion
errors [13]. The definition of the code space VTa(n) for
the VT code is as follows:

†The author is with Department of Mathematics and
Informatics, Graduate School of Science, Chiba University,
1-33 Yayoi-cho, Inage-ku, Chiba City, Chiba Pref., 263-0022
Japan.

VTa(n) := {x ∈ {0, 1}n |
∑

1≤i≤n

ixi ≡ a (mod n+ 1)},

(1)

Here, a is an integer, n is a positive integer, and x =
x1x2 . . . xn. Throughout this paper, we denote the set
of all integers as Z and the set of all positive integers
as Z>0.

For instance, when a = 1 and n = 5, the set
VT1(5) consists of five codewords:

Codewords of VT1(5) : Bit sequences after deletion errors

10000 : 0000, 1000

11010 : 1010, 1110, 1100, 1101

00110 : 0110, 0010, 0011

01001 : 1001, 0001, 0101, 0100

10111 : 0111, 1111, 1011

After a deletion error occurs, there are a total of 16
possible sequences (2 for the first, 4 for the second, 3 for
the third, 4 for the fourth, and 3 for the fifth), yet there
is no overlap among them. This implies that when an
error occurs, resulting in a 4-bit sequence, the original
5-bit codeword can be uniquely inferred, allowing for
correct decoding.

The recognition of the capability of the VT code
to correct deletion errors dates back to the 1960s. In
contrast, examples of quantum deletion error-correcting
codes were only discovered recently in 2020 [15].

Subsequently, various examples and construction
methods of quantum deletion error-correcting codes
have been devised up to the present. Construction
methods utilizing combinatorial structures include [16],
[19], [20], while those leveraging permutation invariance
are predominant [2], [9], [14], [17], [21]. The study of
quantum deletion error-correcting codes is still in its
infancy, and the study holds promising potential for
future developments.

This paper is organized as follows: Section 2 is
devoted to fundamentals of quantum information the-
ory for reading this paper. Knowledge of basic linear
algebra is required. Quantum deletion error-correcting
code is defined in Section 3. An example of single quan-
tum deletion error-correcting code is introduced. In
Section 4, previously known results are presented. It
would be intriguing to explore generalizations and ex-
tensions of these results. Following that, in Section 5,

Copyright © 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

open problems are provided. Readers are encouraged
to take up the challenge and contribute towards their
solutions.

2. Fundamentals of Quantum Information
Theory

As a preliminary step, this section introduces funda-
mental knowledge of quantum information. Through-
out this paper, we denote the field of complex numbers
as C. Elements of the complex vector space Cℓ are

represented as column vectors:


x1
x2
...
xℓ

. On the other

hand, binary sequences are represented as row vectors:
x1x2 . . . xn ∈ {0, 1}n.

2.1 Quantum States

When the state of a physical system behaves quantum
mechanically, the system is referred to as a quantum
system. Examples of quantum systems include trapped
ions, quantum dots, nitrogen-vacancy centers, and pho-
tons. The description of the state of a quantum system
is called a quantum state. In this paper, we adopt the
characterization of quantum states using density ma-
trices and vectors. The definition of a density matrix
is as follows:

Definition 1 (density matrix). Let σ be a square ma-
trix over the complex field. The matrix σ is called a
density matrix if it satisfies the following three condi-
tions:

� Tr(σ) = 1,
where Tr denotes the trace function. In other
words, Tr(σ) is the sum of the diagonal elements
of the matrix σ.

� σ is Hermitian,
meaning that for any component σi,j, the condi-
tion σi,j = σj,i holds. Here, α denotes the complex
conjugate of the complex number α.

� σ is positive semi-definite,
implying that all eigenvalues of the matrix are real
numbers and non-negative.

The set of all ℓ-dimensional density matrices is de-
noted by S(Cℓ).

For a quantum system q, if its quantum state σ is
described by an ℓ-dimensional density matrix, then q
is called an ℓ-level quantum system. In this case, σ ∈
S(Cℓ). A quantum state of a 2-level system is referred
to as a qubit. From here, we denote the conjugate
transpose of a matrix (or vector) A as A∗.

Definition 2 (Pure State, Mixed State). A quantum

state σ is called a pure state when it can be expressed
as

σ = |ϕ〉〈ϕ|
where |ϕ〉 is a column vector, and 〈ϕ| is its conjugate
transpose, specifically, the row vector |ϕ〉∗. In some
cases, a pure state |ϕ〉〈ϕ| is represented simply as the
vector |ϕ〉.

On the other hand, a quantum state that is not
pure is referred to as a mixed state.

Let σ be a pure state such that σ = |ϕ〉〈ϕ|. Con-
sider defining a column vector |ψ〉 using a complex num-
ber c ∈ C with absolute value 1 as |ψ〉 := c|ϕ〉. In this
case, the following equality holds:

|ψ〉〈ψ| = (|ψ〉)(|ψ〉)∗

= (c|ϕ〉)(c|ϕ〉)∗

= cc|ϕ〉〈ϕ|
= σ.

Thus, while the choice of column vector is not unique,
it is unique up to scalar multiplication.

When representing a qubit in a pure state, the
symbols |0〉 and |1〉 are often employed. The former,

|0〉 :=
(
1
0

)
∈ C2, is referred to as the 0-ket. The latter,

|1〉 :=
(
0
1

)
∈ C2, is referred to as the 1-ket.

A quantum bit

(
1 0
0 0

)
can be expressed as |0〉〈0|,

indicating that it is a pure state. On the other hand,

the quantum bit

(
1/2 0
0 1/2

)
, with a rank of 2, reveals

that it is not a pure state. In other words, it is in a
mixed state.

Fact 3. There exist several vectors |ϕ1〉, |ϕ2〉, . . . , |ϕn〉 ∈
C2 such that any quantum state σ ∈ S(C2) is a linear
combination of the vectors with real number coefficients:

σ =
∑

1≤i≤n

pi|ϕi〉〈ϕi|, (2)

where p1, p2, . . . , pn are real numbers.

Indeed, |0〉, |1〉, |+〉 := (|0〉 + |1〉)/
√
2, and |0̂〉 :=

(|0〉+ i|1〉)/
√
2 are examples of such vectors. Here, i is

the imaginary unit. For any quantum bit σ ∈ S(C2),
it can be expressed using four real numbers a, b, c, d as
follows:

σ =

(
a b− ci

b+ ci d

)
. (3)

Thus, σ can be represented as:

σ =(a− b− c)|0〉〈0|
+ 2b|+〉〈+|
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+ 2c|0̂〉〈0̂|
+ (d− b− c)|1〉〈1|. (4)

2.2 Composite System Consisting of Multiple Quan-
tum Systems

Considering multiple quantum systems, let us denote
them as q1, q2, . . . , qn. If the dimension of each quan-
tum system qi is ℓi, then the quantum state of each
qi can be represented as an element of S(Cℓi). On
the other hand, when describing the state of multiple
quantum systems simultaneously, it is expressed using
the tensor product ⊗. The system formed by multiple
quantum systems is referred to as a composite system.

The tensor product of vector spaces Cl and Cm,
denoted as Cl⊗Cm, refers to the complex vector space
represented by the entire set of complex linear combina-
tions of symbols ei⊗fj for all 1 ≤ i ≤ l and 1 ≤ j ≤ m.
Here, {ei | 1 ≤ i ≤ l} and {fj | 1 ≤ j ≤ m} are
bases for Cl and Cm, respectively. Additionally, for
any v, v1, v2 ∈ Cl, w,w1, w2 ∈ Cm, and α ∈ C, the
following properties hold:

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, (5)

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2, (6)

α(v ⊗ w) = (αv)⊗ w = v ⊗ (αw). (7)

In this paper, we identify Cl ⊗ Cm with Clm

through the following correspondence:


a1
a2
...
al

⊗


b1
b2
...
bm

 7→



a1b1
a1b2
...

a1bm
a2b1
a2b2
...

a2bm
...

alb1
alb2
...

albm



. (8)

For example, |0〉 ⊗ |0〉/
√
2 + |1〉 ⊗ |1〉/

√
2 ∈ C2⊗2 is

identified with


1/
√
2

0
0

1/
√
2

 ∈ C4.

Similarly, we identify the tensor product A⊗B of
a matrix A := (ai,j)i,j of size L×M and a matrix B of
size l ×m with the following matrix of size Ll ×Mm:

A⊗B 7→


a1,1B a1,2B . . . a1,MB
a2,1B a2,2B . . . a2,MB

...
...

. . .
...

aL,1B aL,2B . . . aL,MB

 . (9)

When the level of each quantum system qi is ℓi,
the state of the composite system, comprising quan-
tum systems q1, q2, . . . , qn, is described as an element
of S(Cℓ1 ⊗Cℓ2 ⊗ · · ·⊗Cℓn). Now, considering the iden-
tification Cℓ1 ⊗ Cℓ2 ⊗ · · ·⊗Cℓn with Cℓ1ℓ2...ℓn , we can
view the state as an element of S(Cℓ1ℓ2...ℓn).

For a natural number n ∈ Z>0, define Cℓ⊗n :=
Cℓ⊗(n−1) ⊗ Cℓ (n ≥ 2), and Cℓ⊗n := Cℓ (n = 1). Cℓ⊗n

is called the n-fold tensor space of Cℓ. The quantum
state of a composite system of n two-level quantum
systems is expressed as an element of S(C2⊗n). For
b1, b2, . . . , bn ∈ {0, 1}, we write |b1b2 . . . bn〉 to denote
|b1〉⊗ |b2〉⊗ · · · ⊗ |bn〉 ∈ C2⊗n. Using this notation, the
example’s pure state |0〉⊗ |0〉/

√
2+ |1〉⊗ |1〉/

√
2 can be

expressed as |00〉/
√
2 + |11〉/

√
2.

From the above, the quantum state of the compos-
ite system of two two-level quantum systems q1 and q2,

given by


1/2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1/2

 ∈ S(C4) can be expressed

as 
1/2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1/2



=


1/2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1/2


=
1

2

(
1 0
0 0

)
⊗

(
1 0
0 0

)
+

1

2

(
0 0
0 1

)
⊗

(
0 0
0 1

)
=
1

2
|00〉〈00|+ 1

2
|11〉〈11| ∈ S(C2⊗2).

When there are n quantum systems q1, q2, . . . , qn
and m quantum systems p1, p2, . . . , pm, they can be
composed into a system of n + m quantum systems
q1, q2, . . . , qn, p1, p2, . . . , pm. In particular, if the quan-
tum state of the n quantum systems q1, q2, . . . , qn is rep-
resented by σ, then by composing with some m quan-
tum systems p1, p2, . . . , pm, the state of the composite
system is encoded into

σ ⊗ |0m〉 (10)

where |0m〉 represents the m-qubit state in which all
qubits are in the state |0〉. This happens if each state
of pi is |0〉 for 1 ≤ i ≤ m.

2.3 Subsystem and Partial Trace

Note that any quantum state σ ∈ S(C2⊗n) of n qubits
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can be expressed in the following form.

σ =
∑

x,y∈{0,1}n

σx,y|x〉〈y| (11)

=
∑

x,y∈{0,1}n

σx,y |x1〉 〈y1| ⊗ · · · ⊗ |xn〉 〈yn| . (12)

Here, x = x1, x2, . . . , xn, y = y1, y2, . . . , yn, and σx,y ∈
C. Using this representation, let us express the quan-
tum state for n−1 out of n qubits. The quantum state
of a subsystem consisting of n − 1 qubits is described
using the partial trace, which is defined as follows.

From here, the set [n] denotes the set of integers
from 1 to n, i.e.,

[n] := {1, 2 . . . , n}. (13)

Definition 4 (Partial Trace, Tri). Let i ∈ [n]. A map
Tri is defined as a map from a 2n-dimensional square
matrix to a 2n−1-dimensional square matrix, as follows.

Tri(σ) :=
∑

x,y∈{0,1}n

σx,y · Tr(|xi〉 〈yi|) |x1〉 〈y1| ⊗

· · · ⊗ |xi−1〉 〈yi−1| ⊗ |xi+1〉 〈yi+1| ⊗
· · · ⊗ |xn〉 〈yn| ,

(14)

where

σ =
∑

x,y∈{0,1}n

σx,y |x1〉 〈y1| ⊗ · · · ⊗ |xn〉 〈yn| , (15)

and the function Tr denotes the trace function, and
specifically, Tr(|xi〉〈yi|) is equal to 1 when xi = yi and
0 otherwise.

The mapping Tri is called to as the partial trace.

Fact 5. For σ ∈ S(C2⊗n), it follows that Tri(σ) ∈
S(C2⊗(n−1)).

Let σ be a quantum state of a composite system
of n two-level quantum systems q1, q2, . . . , qn, i.e., σ
is n qubits. In this case, the quantum state of the
composite system formed by excluding a specific qi and
considering the remaining n− 1 qubits is expressed by
Tri(σ). This expression is directly used in the definition
of quantum deletion error in Section 3.

Example 6. Consider a state of a composite system
for a pair of two-level quantum systems, denoted as q1
and q2, with pure state |ϕ〉 := |00〉/

√
2 + |11〉/

√
2. Ex-

pressing this state in terms of density matrix, it is

|ϕ〉〈ϕ| =


1/2 0 0 1/2
0 0 0 0
0 0 0 0
1/2 0 0 1/2

 (16)

=
1

2
|0〉〈0| ⊗ |0〉〈0|+ 1

2
|0〉〈1| ⊗ |0〉〈1|

+
1

2
|1〉〈0| ⊗ |1〉〈0|+ 1

2
|1〉〈1| ⊗ |1〉〈1|. (17)

Here, by calculating the quantum state of the quantum
system q1 alone, we obtain:

Tr2(|ϕ〉〈ϕ|) =
1

2
Tr(|0〉〈0|)|0〉〈0|+ 1

2
Tr(|0〉〈1|)|0〉〈1|

+
1

2
Tr(|1〉〈0|)|1〉〈0|+ 1

2
Tr(|1〉〈1|)|1〉〈1|

=
1

2
|0〉〈0|+ 1

2
|1〉〈1| (18)

=

(
1/2 0
0 1/2

)
. (19)

The quantum state of the composite system q1, q2 was
in a pure state, while the quantum state of the quantum
subsystem q1 became a mixed state. The state of q2 is
the same as the one of q1.

Theorem 7. For any σ, τ ∈ S(C2⊗n), i ∈ [n] and
α ∈ C, the following holds:

Tri(σ + τ) = Tri(σ) + Tri(τ).

Tri(ασ) = αTri(σ).

Proof. Let us express σ and τ in the following forms:

σ =
∑

x,y∈{0,1}n

σx,y |x1〉 〈y1| ⊗ · · · ⊗ |xn〉 〈yn| , (20)

τ =
∑

x,y∈{0,1}n

τx,y |x1〉 〈y1| ⊗ · · · ⊗ |xn〉 〈yn| . (21)

By the definition of partial trace,

Tri(σ + τ)

=
∑

x,y∈{0,1}n

(σx,y + τx,y) · Tr(|xi〉 〈yi|) |x1〉 〈y1| ⊗

· · · ⊗ |xi−1〉 〈yi−1| ⊗ |xi+1〉 〈yi+1| ⊗
· · · ⊗ |xn〉 〈yn|

=
∑

x,y∈{0,1}n

σx,y · Tr(|xi〉 〈yi|) |x1〉 〈y1| ⊗

· · · ⊗ |xi−1〉 〈yi−1| ⊗ |xi+1〉 〈yi+1| ⊗
· · · ⊗ |xn〉 〈yn|

+
∑

x,y∈{0,1}n

τx,y · Tr(|xi〉 〈yi|) |x1〉 〈y1| ⊗

· · · ⊗ |xi−1〉 〈yi−1| ⊗ |xi+1〉 〈yi+1| ⊗
· · · ⊗ |xn〉 〈yn|

=Tri(σ) + Tri(τ).

Tri(ασ) =
∑

x,y∈{0,1}n

ασx,y · Tr(|xi〉 〈yi|) |x1〉 〈y1| ⊗

· · · ⊗ |xi−1〉 〈yi−1| ⊗ |xi+1〉 〈yi+1| ⊗
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· · · ⊗ |xn〉 〈yn|

=α
∑

x,y∈{0,1}n

σx,y · Tr(|xi〉 〈yi|) |x1〉 〈y1| ⊗

· · · ⊗ |xi−1〉 〈yi−1| ⊗ |xi+1〉 〈yi+1| ⊗
· · · ⊗ |xn〉 〈yn|

=αTri(σ).

From a composite system of n quantum systems
q1, q2, . . . , qn, it is possible to extract several, forming
a subsystem qi1 , qi2 , . . . , qil . Here, 1 ≤ i1 < i2 < · · · <
il ≤ n, and l ∈ [n]. Let σ be the quantum state of the n
quantum systems q1, q2, . . . , qn, τ the quantum state of
the subsystem q1, q2, . . . , ql, and ρ the quantum state
of the subsystem ql+1, ql+2, . . . , qn. When describing
them, it should be noted that the equation

σ = τ ⊗ ρ (22)

does not necessarily hold.
In fact, in Example 6, the quantum state

of the composite system q1, q2 is given by σ =
1/2 0 0 1/2
0 0 0 0
0 0 0 0
1/2 0 0 1/2

. However, both the quantum

states τ and σ of q1 and q2, respectively, are τ = ρ =(
1/2 0
0 1/2

)
. It leads to the observation that

τ ⊗ ρ =


1/4 0 0 0
0 1/4 0 0
0 0 1/4 0
0 0 0 1/4

 6= σ. (23)

When Eq.(22) holds, it is said that τ and ρ are sep-
arable. When separable, the following relations hold:

Trl+1 ◦ Trl+2 ◦ · · · ◦ Trl+n(σ) = τ, (24)

Tr1 ◦ Tr2 ◦ · · · ◦ Trl(σ) = ρ. (25)

2.4 Quantum Operations

In this section, operations performed on quantum sys-
tems and quantum states during quantum deletion
error-correction is discussed. In Section 2.2, the state of
the composite system of two quantum systems was ob-
served. In this way, the operation of composing systems
is possible. In Section 2.3, the states of subsystems of
the composite system was observed. Thus, the opera-
tion of extracting subsystems from a system is possible.

One of the operations that do not change the num-
ber of systems is a unitary transformation. A square
matrix U is called unitary if it satisfies

UU∗ = U∗U = I, (26)

where U∗ is the conjugate transpose of U , and I is the
identity matrix.

In this paper, for any unitary matrix U , it is as-
sumed that there exists a quantum circuit such that,
through this circuit, any quantum state σ ∈ S(CN )
can be transformed to

UσU∗, (27)

where N ∈ Z>0 is the dimension of U .

For example, X :=

(
0 1
1 0

)
is a unitary matrix.

For the matrix X, there exists a quantum circuit such

that a quantum bit

(
a b
c d

)
is transformed to

X

(
a b
c d

)
X∗ =

(
d c
b a

)
. (28)

A characterization of unitary matrices is known as
follows:

Fact 8. For an N -dimensional matrix U , the following
two conditions are equivalent:

� U is unitary.
� For any x,y ∈ CN , (Ux, Uy) = (x,y) holds.

Here (, ) is the standard inner product on CN . In other
words,

((x1x2 . . . xn)
T , (y1y2 . . . yn)

T ) :=
∑

1≤i≤n

xiyi, (29)

where xi is the complex conjugate of xi.

From Fact 8, a unitary transformation U can be
characterized as a transformation that maps an orthog-
onal basis {x1,x2, . . . ,xN} of CN to another orthonor-
mal basis {y1,y2, . . . ,yN}, given by the transformation
Uxi = yi (i ∈ [N ]). Here, an orthonormal basis is a ba-
sis {z1, z2, . . . , zN} of CN such that, with respect to the
standard inner product, (zi, zi) = 1 and (zi, zj) = 0 for
i 6= j.

3. Quantum Deletion Error-Correcting Codes

In this section, we define quantum deletion error-
correcting codes and provide an example of such codes.

3.1 Classical Deletion Error-Correction

In Section 1, we introduced the VT code VT1(5) as
an example of a single deletion error-correcting code.
Though it may become somewhat formal, its meaning
is described mathematically here.

Let M := {1, 2, 3, 4, 5}, and define Enc : M →
{0, 1}5 as follows:

Enc(1) := 10000,
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Enc(2) := 11010,

Enc(3) := 00110,

Enc(4) := 01001,

Enc(5) := 10111.

Furthermore, Dec : {0, 1}4 →M is defined:

Dec(0000) = Dec(1000) := 1,

Dec(1010) = Dec(1110) = Dec(1100) = Dec(1101) := 2,

Dec(0110) = Dec(0010) = Dec(0011) := 3,

Dec(1001) = Dec(0001) = Dec(0101) = Dec(0100) := 4,

Dec(0111) = Dec(1111) = Dec(1011) := 5.

Under the aforementioned preparations, the following
holds: For any m ∈M and any i ∈ [5],

Dec ◦Deli ◦ Enc(m) = m (30)

holds, where Deli is a deletion error on the ith position,
and ◦ denotes the composition of mappings.

Eq.(30) implies that even if a single deletion er-
ror occurs after encoding a message m, it can still
be correctly estimated back to the original message m
through the decoding process.

3.2 Definition of Quantum Deletion Error-Correcting
Codes

Drawing inspiration from classical deletion error-
correcting codes, we define quantum deletion error-
correcting codes. Let k, n ∈ Z>0 with k < n. Let
Enc : S(C2⊗k) → S(C2⊗n) and Dec : S(C2⊗(n−1)) →
S(C2⊗k) be operations that can be realized as quantum
circuits.

A pair (Enc,Dec) is a single quantum deletion
error-correcting code if, for any σ ∈ S(Ck) and any
i ∈ [n], the following holds:

Dec ◦ Tri ◦ Enc(σ) = σ. (31)

Here, a single error is considered. However, if
multiple quantum deletion errors are anticipated, say
t deletion errors, then Dec : S(C2⊗(n−1)) → S(C2⊗k)
should be replaced with Dec : S(C2⊗(n−t)) → S(C2⊗k),
and Tri should be replaced with Tri1 ◦ Tri2 ◦ · · · ◦ Trit
(1 ≤ i1 < i2 < · · · < it), respectively.

The decoder Dec : S(C2⊗(n−t)) → S(C2⊗k) is as-
sumed to receive exactly n − t quantum systems as
input. To realize this assumption, situations where
the number of quantum systems can be counted or ad-
justed are required. For example, in a quantum secret
sharing system, quantum information that needs to be
kept secret is transformed into information consisting
of n qubits for distributing to n users. Subsequently,
the original quantum information can be reconstructed
from fewer than n users. In such a situation, the num-
ber of fewer users matches the number of quantum sys-
tems for reconstruction. A quantum secret sharing sys-
tem using deletion error-correction codes is proposed in

[1].

3.3 Example of Single Quantum Deletion Error-
Correcting Code

As an example of a single quantum deletion error-
correcting code, let us introduce a 4-qubit code [9]. As
a preparation, for i ∈ [16], let |fi〉, |gi〉 ∈ C2⊗4 be de-
fined as follows:

|f1〉 :=|0000〉,
|f2〉 :=|1000〉.

Additionally, for 3 ≤ i ≤ 16, let |fi〉 be one of orthonor-
mal bases of {|v〉 ∈ C2⊗4 | (|v〉, |f1〉) = (|v〉, |f2〉) = 0}.
This ensures that {|fi〉 | i ∈ [16]} forms an orthonormal
basis for C2⊗4. Note that notation 〈v | fi〉 is often used
in quantum information theory, instead of (|v〉, |fi〉) for
representing the inner product of |v〉 and |fi〉. Next,
define

|g1〉 :=
1√
2
(|0000〉+ |1111〉),

|g2〉 :=
1√
6

∑
x∈{0,1}4,wt(x)=2

|x〉,

where wt(x1x2x3x4) := #{i ∈ [4] | xi 6= 0}. Addi-
tionally, for 3 ≤ i ≤ 16, let |gi〉 be one of orthonormal
bases of {|w〉 ∈ C2⊗4 | (|w〉, |g1〉) = (|w〉, |g2〉) = 0}. By
doing this, {|gi〉 | i ∈ [16]} forms an orthonormal basis
for C2⊗4. Therefore, let us define a unitary matrix U
on C2⊗4 as follows:

U |fi〉 := |gi〉.

Since U maps an orthonormal basis to another basis, it
follows from Fact 8 that U is a unitary matrix.

With that, the encoding Enc : S(C2) → S(C2⊗4)
is defined as follows:

Enc(σ) := U(σ ⊗ |03〉〈03|)U∗, (32)

where |03〉 := |000〉. In other words, Enc is defined
as a combination of the system composition and the
unitary transformation. As mentioned in Section 2.4,
these are feasible quantum operators. Through the sys-
tem composition, denote the quantum system with the
quantum state σ before encoding by q1, and the three
quantum systems with the state |03〉 by q2, q3, q4. Then
the composite system after encoding is q1, q2, q3, q4.

Through this encoding Enc, a pure state |ϕ〉 :=
α|0〉+β|1〉 (α, β ∈ C) is transformed into the following
pure state:

Enc(|ϕ〉〈ϕ|) := (α|g1〉+ β|g2〉)(α〈g1|+ β〈g2|). (33)

By the way, it is worth noting that |g1〉, |g2〉 exhibit a
property known as permutation invariance. This means
that even if the order of the four systems q1, q2, q3, q4
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is rearranged, the quantum state remains unchanged.
While a pure state |ϕ〉 is focused above, it is important
to mention that even if the quantum state σ before
encoding is not a pure state, the encoded state Enc(σ)
is permutation invariant. The more discussion about
permutation invariance will be explained in Section 4.1.

While the domain of Enc is S(C2), let us consider
extending it to encompass all 2-dimensional square ma-
trices. Furthermore, let the range be the set of all 16-
dimensional square matrices. In this context, the fol-
lowing holds for any 2-dimensional square matrices σ, τ ,
and α ∈ C:

Enc(σ + τ) =U((σ + τ)⊗ |03〉〈03|)U∗ (34)

=U(σ ⊗ |03〉〈03|)U∗ + U(τ ⊗ |03〉〈03|)U∗

(35)

=Enc(σ) + Enc(τ). (36)

Enc(ασ) =U((ασ)⊗ |03〉〈03|)U∗ (37)

=U(α(σ ⊗ |03〉〈03|))U∗ (38)

=αU(σ ⊗ |03〉〈03|)U∗ (39)

=αEnc(σ). (40)

Next, define a decoding Dec. Define a unitary ma-
trix R on C2⊗3 by

R(|000〉) := |000〉,
R(|111〉) := |011〉,

R((|011〉+ |101〉+ |110〉)/
√
3) := |100〉,

R((|100〉+ |010〉+ |001〉)/
√
3) := |111〉,

R((|011〉+ ω|101〉+ ω2|110〉)/
√
3) := |001〉,

R((|100〉+ ω|010〉+ ω2|001〉)/
√
3) := |101〉,

R((|011〉+ ω2|101〉+ ω|110〉)/
√
3) := |010〉,

R((|100〉+ ω2|010〉+ ω|001〉)/
√
3) := |110〉,

where ω is the primitive 3rd root (−1 +
√
3i)/2 of

unity. Since R maps the orthonormal basis to another
orthonormal basis, by Fact 8, R is a unitary matrix.
Hence let us define Dec as

Dec(ρ) := Tr2 ◦ Tr3(RρR∗). (41)

As mentioned in Section 2.4, this is a feasible quantum
operation. In particular, the operation of partial trace
can be realized as a system decomposition. Through
the decomposition of the system, if we denote the three
quantum systems before decoding as r1, r2, r3, after de-
coding, they collapse into a single quantum system r1.

By properties of partial trace and unitary matrix,
for any 8-dimensional square matrices σ, τ and α ∈ C,
the following holds:

Dec(σ + τ) =Dec(σ) + Dec(τ). (42)

Dec(ασ) =αDec(σ). (43)

Let us check that the defined (Enc,Dec) is a dele-
tion error-correcting code. Due to the permutation in-
variance of Enc(σ), for any σ ∈ S(C2), the following
holds: Tr1 ◦ Enc(σ) = Tr2 ◦ Enc(σ) = Tr3 ◦ Enc(σ) =
Tr4 ◦ Enc(σ). Therefore, it is without loss of generality
to consider Tr1 ◦ Enc(σ) as the state after an error.

As stated in Eq. (4), for any σ ∈ S(C2), there
exist real numbers α, β, γ, δ such that σ = α|0〉〈0| +
β|1〉〈1|+γ|+〉〈+|+δ|0̂〉〈0̂|. Using Eq.(36) and Theorem
7, we have:

Tr1 ◦ Enc(σ) (44)

=Tr1 ◦ (Enc(α|0〉〈0|) + Enc(β|1〉〈1|)
+ Enc(γ|+〉〈+|) + Enc(δ|0̂〉〈0̂|)) (45)

=αTr1 ◦ Enc(|0〉〈0|) + βTr1 ◦ Enc(|1〉〈1|)
+ γTr1 ◦ Enc(|+〉〈+|) + δTr1 ◦ Enc(|0̂〉〈0̂|). (46)

Now, let us focus on the four pure states
|0〉, |1〉, |+〉, |0̂〉. Let |ϕ〉 be any one of these four states,
and assume that in any case

Dec ◦ Tr1 ◦ Enc(|ϕ〉〈ϕ|) = |ϕ〉〈ϕ|. (47)

Then, according to the properties (42) and (43) of Dec,
for any σ ∈ S(C2), we have:

Dec ◦ Tr1 ◦ Enc(σ) (48)

=αDec ◦ Tr1 ◦ Enc(|0〉〈0|) + βDec ◦ Tr1 ◦ Enc(|1〉〈1|)
+ γDec ◦ Tr1 ◦ Enc(|+〉〈+|) + δDec ◦ Tr1 ◦ Enc(|0̂〉〈0̂|)

(49)

=α|0〉〈0|+ β|1〉〈1|+ γ|+〉〈+|+ δ|0̂〉〈0̂| (50)

=σ. (51)

This implies that (Enc,Dec) is a single-qubit deletion
error-correcting code.

Therefore, all that remains is to show (47). To
achieve this, it is sufficient to check (31) for any pure
state. Let us explicitly state this as a claim.

Lemma 9. Let Enc be the encoding defined as in (32)
and Dec the decoding as in (41). If, for any pure state
|ϕ〉 ∈ C2, the following holds:

Dec ◦ Tr1 ◦ Enc(|ϕ〉〈ϕ|) = |ϕ〉〈ϕ|

then, (Enc,Dec) is a single-qubit deletion error-
correcting code. In other words, it can correct errors
even for mixed states.

Proof. For a pure state |ϕ〉 = α|0〉+ β|1〉, applying the
encoding Enc and the deletion error Tr1 results in the
following calculation:

Tr1 ◦ Enc(|ϕ〉〈ϕ|) = |y0〉〈y0|/2 + |y1〉〈y1|/2. (52)

Here, |y0〉 = α|000〉 + β(|011〉 + |101〉 + |110〉)/
√
3),
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|y1〉 = α|111〉+β(|100〉+ |010〉+ |001〉)/
√
3). Applying

the decoding Dec, we obtain:

Dec(|y0〉〈y0|/2 + |y1〉〈y1|/2) (53)

=Dec(|y0〉〈y0|)/2 + Dec(|y1〉〈y1|)/2 (54)

=Tr2 ◦ Tr3(R|y0〉〈y0|R∗)/2

+ Tr2 ◦ Tr3(R|y1〉〈y1|R∗)/2 (55)

=Tr2 ◦ Tr3(|ϕ〉〈ϕ| ⊗ |00〉〈00|)/2
+ Tr2 ◦ Tr3(|ϕ〉〈ϕ| ⊗ |11〉〈11|)/2 (56)

=|ϕ〉〈ϕ|/2 + |ϕ〉〈ϕ|/2 (57)

=|ϕ〉〈ϕ|. (58)

From the above, by Lemma 9, (Enc,Dec) is a single
quantum deletion error-correcting code.

4. Previously on Quantum Deletion Codes

This section introduces previously known results re-
garding quantum deletion error-correcting codes. For
detail and proofs, please refer to the original papers.
There are two main approaches to constructing codes:
focusing on permutation invariance (Section 4.1) and
reduction to combinatorial structures (Section 4.2).
This section also explores the connection between quan-
tum deletion error and insertion error (Section 4.3). Fi-
nally, this section discusses the relationship between
quantum deletion error and Pauli errors, which are
commonly addressed in quantum error-correction (Sec-
tion 4.4).

4.1 Construction Method Focused on Permutation In-
variance

Let |ϕ〉 ∈ S(C2⊗n) be the quantum state of n quantum
systems q1, q2, . . . , qn. The state |ϕ〉 is called permuta-
tion invariant if, for any bijection f on {1, 2, . . . , n}, the
permuted state of qf(1), qf(2), . . . , qf(n) equals to |ϕ〉. In
this manuscript, a quantum code Q is called permuta-
tion invariant if every state in Q is permutation invari-
ant. This means that permutation invariance is defined
from a view point of codeword, not code space. Re-
search on deletion error-correcting codes with a focus
on permutation invariance has been conducted by Mat-
sumoto [14], Ouyang [17], and Aydin et al. [2]. One of
the benefits of assuming permutation invariance is the
ability conversion of deletion errors into erasure errors.
Erasure errors refer to errors where the positions of the
errors are known. In fact, if permutation invariance
is assumed, the state after a deletion error occurs in
the first quantum system is identical to the state after
a deletion error occurs in the other quantum systems.
Therefore, treating a single deletion error as occurring
in the first qubit and decoding accordingly is permissi-
ble. In other words, the error location can be considered

as the first position, treating it as an erasure error.
This section introduces Matsumoto’s method.

Matsumoto’s research is characterized by its use of
types, making it easily understandable for informa-
tion theorists and coding theorists. Not only in Mat-
sumoto’s work but also in Ouyang’s and Aydin’s, there
is explicit mention of the code space, but detailed de-
scriptions regarding decoding are lacking. Therefore,
following the previous researchers, this section limits
its discussion to the encoding process.

Let Zℓ := {0, 1, . . . , ℓ − 1}. A probability distri-
bution P on Zℓ is called a type of length n if, for
any a ∈ Zℓ, nP (a) is an integer. In other words,
P (a) = ma/n (where ma is a certain integer) for all
a, where P (a) is the probability of occurrence of a. For
instance, for x = (x1, x2, . . . , xn) ∈ Zn

ℓ , define the dis-
tribution Px as

Px(a) :=
|{i | xi = a}|

n
. (59)

Then, Px is a type of length n. Here, |A| denotes the
cardinality of the set A.

For a type P of length n, define

T (P ) :={x ∈ Zn
ℓ | Px = P}, (60)

[P ] :={Q : type of length n

| Q(a) = P ◦ f(a) (a ∈ Zl)

by some bijection f on Zl}, (61)

T ([P ]) :=
∪

Q∈[P ]

T (Q). (62)

For instance, consider n = ℓ = 3 and set P (0) = 3/3 =
1, P (1) = P (2) = 0/3 = 0. In this case,

T ([P ]) = {(0, 0, 0), (1, 1, 1), (2, 2, 2)}. (63)

Now, if we set P ′(0) = P ′(1) = P ′(2) = 1/3, then

T ([P ′])

={(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)}.
(64)

For a type P , define a state |[P ]〉 as follows:

|[P ]〉 := 1√
|T ([P ])|

∑
x∈T ([P ])

|x〉. (65)

Then, |[P ]〉 is permutation invariant. Matsumoto
provides a sufficient condition for the set of types
P0, P1, . . . , PM−1 to construct a complex linear com-
bination of states |[P0]〉, |[P1]〉, . . . , |[PM−1]〉, forming a
single deletion error-correcting code. Expressing it in
terms of density matrices, the set of the codewords can
be represented as

{|ϕ〉〈ϕ| ∈ S(Cℓ⊗n) | |ϕ〉 =
∑
m

αm|[Pm]〉, αm ∈ C}.

(66)
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The sufficient condition is as follows:

Fact 10 (Section 3 [14]). Let P0, P1, . . . , PM−1 be types.
For any 0 ≤ i, j ≤M − 1 and any Q1 ∈ [Pi], Q2 ∈ [Pj ],
if B(Q1) ∩ B(Q2) 6= ∅, then |[P0]〉, |[P1]〉, . . . , |[PM−1]〉
forms a basis for a single deletion error-correcting
code. Here B(Q) := {Q′ : type of length n− 1 |
(n− 1)Q′(a) ≤ nQ(a), a ∈ Zℓ}.

Remark 11. In the original paper [14], an additional
condition nQ(a)− (n− 1)Q′(a) = 1 is also required as
a criterion for S(Q). However, this equation is auto-
matically satisfied when Q is a type of length n and Q′

is a type of length n − 1. Therefore, this condition is
omitted in this paper.

Moving on, let us introduce the recent achieve-
ments of Aydin et al. [2] after Matsumoto [14] and
Ouyang [17]. They have discovered a 4-qubit, single
deletion error-correcting code that is distinct from the
example in Section 3.3. For the two pure states |c0〉, |c1〉
below, a set

{|ϕ〉〈ϕ| ∈ S(C2⊗4) | ϕ = α|c0〉+ β|c1〉, α, β ∈ C} (67)

is the code space, where

|c0〉 =
1√
3
|0000〉

+
1√
6
(|1110〉+ |1101〉+ |1011〉+ |0111〉), (68)

|c1〉 =
1√
6
(|0001〉+ |0010〉+ |0100〉+ |1000〉)

− 1√
3
|1111〉. (69)

Since the coefficient of |1111〉 is negative, this code can-
not be obtained by Matsumoto’s method. Ouyang’s
method cannot be used to construct the code for the
same reason. In truth, the author initially anticipated
that a 4-qubit deletion error-correcting code would be
only one presented in Section 3.3. The discovery, by
Aydin, of a new example came as a significant surprise.

4.2 Construction Method Reduced to Combinatorial
Structure

Nakayama proposed a method to describe quantum
deletion error-correcting codes from 1-qubit to n-qubits
using a combinatorial structure [16]. For bit sequences
sets A,B ⊂ {0, 1}n satisfying the combinatorial condi-
tions (C1), (C2), and (C3) defined below, the encoding
EncA,B : S(C2) → S(C2⊗n) is defined for the pure state
|ϕ〉 = α|0〉+ β|1〉 as

EncA,B(|ϕ〉〈ϕ|) := |Φ〉〈Φ|, (70)

where |Φ〉 = α√
|A|

∑
a∈A |a〉 + β√

|B|

∑
b∈B |b〉. Decod-

ing involves the use of projective measurements and

requires additional explanations, hence it will be omit-
ted in this paper. Referring to the original paper is
recommended for detailed information.

Definition 12 (conditions (C1), (C2) and (C3)). For
non-empty sets A,B ⊂ {0, 1}n, define three conditions
(C1), (C2) and (C3) as follows.

(C1: ratio condition): For any non-empty I ⊂ [n]
and any b ∈ {0, 1},

|A||BI,b| = |B||AI,b|.

(C2: outer distance condition): For any i1, i2 ∈ [n]
and any b1, b2 ∈ {0, 1},

|∆i1,b1(A) ∩∆i2,b2(B)| = 0.

(C3: inner distance condition): For any i1, i2 ∈
[n],

|∆i1,0(A) ∩∆i2,1(A)| = 0, |∆i1,0(B) ∩∆i2,1(B)| = 0,

where

∆i,b(X) := {(a1, . . . , ai−1, ai+1, . . . , an) ∈ {0, 1}n−1|
(a1, . . . , ai−1, b, ai+1, . . . , an) ∈ X},

for a set X ⊂ {0, 1}n,

AI,b :=
∩
i∈I

∆i,b(A) ∩
∩
i∈Ic

∆i,b(A)
c,

BI,b :=
∩
i∈I

∆i,b(B) ∩
∩
i∈Ic

∆i,b(B)c,

and c is the complement operator, in particular,
Ic = [n] \ I and ∆i,b(A)

c = {0, 1}n−1 \∆i,b(A).

Theorem 13 ([16]). Let non-empty sets A,B ⊂
{0, 1}n satisfy conditions (C1), (C2), and (C3). The
image of EncA,B is a single deletion error-correcting
code.

The four-qubit code in Section 3.3 can be realized
by

A ={0000, 1111}, (71)

B ={0011, 0101, 0110, 1001, 1010, 1100}. (72)

Nakayama provided another example

A′ := {00001001, 01101111}, (73)

B′ := {00001111, 01101001} (74)

that satisfy the three conditions. A′ and B′ give a code
which is not permutation invariant.

4.3 Insertion errors and deletion errors

A counterpart to deletion errors is insertion errors. In
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classical coding theory, strong relationship between in-
sertion errors and deletion errors is known, which will
be discussed in Section 5.1.

In classical coding, a single insertion error is a
transformation of a bit sequence m1m2 . . .mi−1mi . . .
mn ∈ {0, 1}n by adding one bit, resulting in
m1m2 . . .mi−1xmi . . .mn ∈ {0, 1}n+1, where, x ∈
{0, 1}, and the error position i is assumed to be un-
known to the receiver. For example, if a single inser-
tion error occurs in the bit sequence 011, it could be
transformed into one of 0011, 0101, 0110, 1011, 0111.

How should the quantum version of insertion er-
rors be defined? The single-error version of quantum
insertion errors, as defined in [20], is as follows.

For a quantum state σ ∈ S(C2⊗n), the inser-
tion error at position i, denoted as Ii : S(C2⊗n) →
S(C2⊗(n+1)), is a transformation such that

Tri ◦ Ii(σ) = σ. (75)

Following Example 6, a non-pure quantum state(
1/2 0
0 1/2

)
can be transformed into a pure state

1/2 0 0 1/2
0 0 0 0
0 0 0 0
1/2 0 0 1/2

 by a single insertion.

When the initial state before insertion is a pure
state, Shibayama have shown that certain constraints
arise on the possible insertion errors.

Fact 14 ([20]). For a pure state σ ∈ S(C2⊗n), suppose
that a single insertion error occurs at the first position,
i.e., I1. In this case, the insertion error is separable,
i.e., there exists a quantum state τ ∈ S(C2) such that

I1(σ) = τ ⊗ σ.

The original statement is regarding multi-insertion
errors rather than single insertion errors. For further
details, please refer to the original paper [20].

For classical information, deletion errors and inser-
tion errors are commutative in the following sense:

Fact 15. For any bit sequence m, any deletion error
D, and any insertion error I, there exist insertion error
I ′ and deletion error D′ such that

I ◦D(m) = D′ ◦ I ′(m). (76)

Similarly, for any bit sequence m, any deletion er-
ror D, and any insertion error I, there exists insertion
error I ′′ and deletion error D′′ such that

D ◦ I(m) = I ′′ ◦D′′(m). (77)

For quantum states, a counterexample to the ana-
logue of Fact 15 is presented. Note that no counterex-
amples have been published in previous studies. Con-
sider a composite system of three two-level quantum

systems, denoted as q1, q2, q3, with a quantum state
represented by a pure state |ϕ〉〈ϕ| defined by

|ϕ〉 := (|010〉+ |101〉)/
√
2. (78)

First, let us delete q2 to obtain q1, q3 with its state
1/2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1/2

. Then insert q2 at the 1st po-

sition to obtain q2, q1, q3. The quantum state of this
composite system is a pure state |ψ〉〈ψ|, specifically,

|ψ〉 = |100〉+ |011〉√
2

. (79)

Let us demonstrate the impossibility of obtaining
the quantum state |ψ〉 when the insertion is performed
first at some position, followed by deletion, for the
original q1, q2, q3. Consider inserting a quantum sys-
tem q4. The composite system can be in one of the
four: 1) q1, q2, q3, q4, 2) q1, q2, q4, q3, 3) q1, q4, q2, q3, 4)
q4, q1, q2, q3.

For simplicity, let us explain the case of q4, q1, q2, q3
here. According to Fact 14, there exists a quantum
state τ ∈ S(C2) such that the composite system’s quan-
tum state can be expressed as

τ ⊗ |ϕ〉〈ϕ|. (80)

There are four possible deletions for this system, re-
sulting in quantum systems 1) q1, q2, q3, 2) q4, q2, q3, 3)
q4, q1, q3, 4) q4, q1, q2.

The quantum state of the first quantum system
q1, q2, q3 is |ϕ〉〈ϕ|, which does not match |ψ〉〈ψ|. On
the other hand, for the other three systems, obtained
by removing qi (i = 1, 2, 3) from the quantum system
q4, q1, q2, q3, the quantum state ρi can be expressed as

ρi := τ ⊗ Tri(|ϕ〉〈ϕ|). (81)

Now, it can be verified through computation that the
matrix rank of Tri(|ϕ〉〈ϕ|) is 2. In fact, for i = 1, we
have

1

2
|00〉〈00|+ 1

2
|11〉〈11| =


1/2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1/2

 . (82)

For i = 2, 3, readers are encouraged to verify it by
yourselves.

Therefore, the rank of ρi is also 2. In particular,
ρi is not a pure state. Consequently, it is impossible for
the pure state |ψ〉〈ψ| of the composite system q1, q3, q2
to match with ρi.

4.4 Pauli Error-Correction

Aydin showed that permutation-invariant codes capa-
ble of correcting quantum deletion errors are also ca-
pable of correcting Pauli errors. Pauli errors include
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quantum bit flips X, phase errors Z, and their com-
posite error XZ. In the context of quantum codes
before quantum deletion error-correction, Pauli errors
were commonly treated in general.

Fact 16 (Proposition 3.5 [2]). A permutation-invariant
code that corrects 2t deletions, also corrects all combi-
nations of t Pauli errors.

Let us outline the proof strategy. If a code can
correct 2t quantum deletion errors, it can also correct
2t quantum erasure errors. Thus, the minimum quan-
tum Hamming distance of the code must be greater
than or equal to 2t + 1. With a minimum distance of
2t+ 1 or more, the code can correct combinations of t
Pauli errors. It’s noteworthy that this proof does not
rely on permutation invariance. In other words, not
only permutation-invariant codes but any 2t quantum
deletion error-correction code is capable of correcting
combinations of t Pauli errors.

5. Open problems

Research on quantum deletion error-correction codes is
still in its early stages, and numerous challenges remain
unresolved. In this section, we will introduce some in-
stances of open problems.

5.1 Equivalence of Deletion and Insertion Error-
Correction

In classical coding theory, it is well-known that dele-
tion error-correction and insertion error-correction are
equivalent in the following sense:

Fact 17 ([13]). Let C be a set of binary strings of length
n. The following statements are equivalent:

1. C is capable of correcting t deletion errors.
2. C is capable of correcting t insertion errors.

Here, decoding assumes a bounded distance decoding
with respect to the Levenshtein distance.

A quantum analogue of Fact 17 is presented as
Problem 18 below.

Problem 18. Let Q be a subset of S(C2⊗n). Are the
following statements equivalent?

1. Q is capable of correcting t quantum deletion er-
rors.

2. Q is capable of correcting t quantum insertion er-
rors.

Some partial results have been obtained, but not
a complete solution. The 4-qubit code illustrated as a
single quantum deletion error-correction code in Sec-
tion 3 is shown to be capable of single quantum inser-
tion error-correction as well [7]. Shibayama has con-
structed a class of codes capable of correcting both sin-
gle quantum deletion and insertion errors [20]. Addi-
tionally, Shibayama demonstrated the equivalence for

Ouyang-Shibayama version of the Knill-Laflamme con-
dition between deletion and insertion [21]. An example
of a quantum code that satisfies the Knill-Laflamme
condition but is not capable of correcting a quantum
deletion error is provided [8]. Therefore, [21] does
not solve the equivalence of deletion error-correctability
and insertion error-correctability. The exploration of
the connection between the Ouyang-Shibayama version
of the Knill-Laflamme condition and quantum dele-
tion/insertion error-correction is a promising avenue
for future research. Considering these results, readers
might anticipate a positive resolution to Problem 18.

Taking the contrapositive is an effective method
for proving Fact 17. In other words, for a classical code
C, showing that “C cannot correct t deletion errors”
is equivalent to “C cannot correct t insertion errors.”
The inability to correct t deletion errors implies the ex-
istence of distinct codewords c and c′ in C and deletion
errors D(1), D(2), . . . , D(t), D′(1), D′(2), . . . , D′(t), satis-
fying

D(1) ◦D(2) ◦ · · · ◦D(t)(c) (83)

=D′(1) ◦D′(2) ◦ · · · ◦D′(t)(c′). (84)

Then, by insertion I(i) that inserts the symbol deleted
by D(i),

I(t) ◦ · · · ◦ I(2) ◦ I(1) ◦D(1) ◦D(2) ◦ · · · ◦D(t)(c)
(85)

=c (86)

=I(t) ◦ · · · ◦ I(2) ◦ I(1) ◦D′(1) ◦D′(2) ◦ · · · ◦D′(t)(c′).
(87)

By Fact 15, some insertions and deletions exist such
that

c (88)

=I(t) ◦ · · · ◦ I(2) ◦ I(1) ◦D′(1) ◦D′(2) ◦ · · · ◦D′(t)(c′)
(89)

=D′′(1) ◦D′′(2) ◦ · · · ◦D′′(t) ◦ I ′′(t) ◦ · · · ◦ I ′′(2) ◦ I ′′(1)(c′).
(90)

Again, by insertion I ′′′(i) that inserts the symbol
deleted by D′′(i),

I ′′′(1) ◦ I ′′′(2) ◦ · · · ◦ I ′′′(t)(c) (91)

=I ′′(t) ◦ · · · ◦ I ′′(2) ◦ I ′′(1)(c′). (92)

This implies that C is not capable of correcting inser-
tion errors. The converse can be shown in a similar
way.

In the aforementioned discussion, the commuta-
tivity of insertion and deletion errors (Fact 15) plays a
crucial role. However, as observed in Section 4.3, such
commutativity does not necessarily hold for quantum
insertion and quantum deletion errors. Therefore, to



12
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

solve Problem 18 positively, it is necessary to develop
a proof method that does not rely on commutativity.

5.2 Utilization of Classical Code Theory, Especially
Algebraic Approaches

In the study of quantum codes for correcting Pauli er-
rors, classical codes play a significant role. CSS codes
are constructed using pairs of classical linear codes.
For instance, they have been constructed using pairs
of Hamming codes, Reed-Solomon codes, LDPC codes,
among others. The error-correction capability of the re-
sulting CSS code is described using the classical error-
correction capabilities of the employed codes.

Various insights from classical code theory, in-
cluding methods for constructing code spaces, encod-
ing and decoding algorithms, and analysis of error-
correction capabilities, are leveraged in quantum code
theory. However, when it comes to quantum deletion
error-correction codes, insights from classical deletion
error-correction codes have not been effectively utilized.
Even in the case of the representative example of clas-
sical deletion error-correction codes, the VT code, its
knowledge is not actively applied to quantum deletion
error-correction codes. If a theoretical framework con-
necting both can be established, there is a significant
potential for advancements in the study of quantum
deletion codes using existing knowledge from classical
deletion codes.

The definition of the VT code, as described in Sec-
tion 1, is expressed through the simple algebraic condi-
tion:

x1 + 2x2 + · · ·+ nxn ≡ a (mod n+ 1).

Can we provide quantum deletion error-correction
codes using such a simple condition? Simple condi-
tions are often suitable for generalization and exten-
sion. In fact, if the coefficients of x1, x2, . . . , xn and the
value of (mod n+ 1) form a monotonically increasing
sequence of integers, the resulting code becomes a clas-
sical deletion error-correction code [6]. By replacing
the (mod n+1) in the definition of the VT code with
(mod 2n), it becomes capable of correcting not only
deletions but also insertions and bit flips [13]. Helberg
constructed codes capable of correcting up to 2 dele-
tions by replacing the coefficients of x1, x2, . . . , xn and
the value of (mod n + 1) with a sequence similar to
the Fibonacci sequence [10]. Helberg’s code had short-
comings in terms of code rate. Sima applied conditions
similar to those of the VT code and devised additional
conditions, he obtained a class of codes capable of cor-
recting 2 deletions with a high code rate [22].

Problem 19. Construct a theoretical framework that
bridges classical deletion error-correction codes and
quantum deletion error-correction codes.

Problem 20. Can we formulate simple and algebraic

conditions for constructing quantum deletion error-
correction codes?

5.3 Bounds and Codes Achieving Them

Various inequalities are employed in code research, ex-
pressing properties of codes through what is called
bounds. Singleton bound [11], [23], GV bound [5], [26],
and Hamming bound are examples. These bounds are
not only useful in the design of codes but also find
applications beyond the field, such as in constructing
cryptographic protocols [3] and sphere packing in pure
mathematics [4], [24]. Linear codes achieving Singleton
bound are called maximum distance separable (MDS)
codes. Reed-Solomon codes is an example of a class of
MDS codes [18]. Reed-Solomon codes are widely im-
plemented in information devices.

There is little known bounds for quantum deletion
error-correction codes. If we were to mention one, it
would be for the code length n that allows encoding
of a single quantum bit and corrects a single deletion
error, where

n ≥ 4 (93)

is requirement [9].
Codes introduced in Section 3 and the code by Ay-

din et al. in Section 4.1, achieve this bound. Interest-
ingly, both codes are permutation-invariant. Is this a
coincidence?

Problem 21. Provide bounds for quantum deletion
error-correction codes.

Problem 22. Are any four-qubit codes capable of cor-
recting a single quantum deletion error permutation-
invariant?

5.4 Effect on/by External Systems

Let us consider a quantum state σ ∈ S(C2⊗k) of
k quantum systems q1, . . . , qk. which are a subsystem
of k′(> k) quantum systems q1, . . . , qk, . . . , qk′ . Denote

the state of the k′ quantum systems by τ ∈ S(C2⊗k′
).

Next are questions whether quantum deletion error-
correction affects external systems and vice versa.
Problem 23. Suppose we encode σ as a quantum dele-
tion codeword, deletion errors happen, and we success-
fully correct the errors. Can we keep the state τ of the
k′ quantum systems q1, q2, . . . , qk, . . . , qk′?

Problem 24. Suppose we encode σ as a quantum dele-
tion codeword. Before performing quantum deletion
error-correction, suppose some operation is applied to
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the external systems qk+1, qk+2, . . . , qk′ . Can we recover
the state of the k quantum systems q1, q2, . . . , qk to σ?

Acknowledgment

This work was supported by JSPS KAKENHI Grant
Number 21H03393.

References

[1] Yuta Aoki and Mitsuru Tada. A quantum secret sharing
scheme with a 4-qubit code. In IEICE Tech. Rep., volume
123-338 of IT2023-38, SIP2023-71, RCS2023-213, pages
45–50, Miyagi, Jan. 2024. Thu, Jan 18, 2024 - Fri, Jan 19
: (SIP, IT, RCS).

[2] Arda Aydin, Max A Alekseyev, and Alexander Barg. A
family of permutationally invariant quantum codes. arXiv
preprint arXiv:2310.05358, 2023.

[3] George Robert Blakley. Safeguarding cryptographic
keys. In Managing Requirements Knowledge, International
Workshop on, pages 313–313. IEEE Computer Society,
1979.

[4] John Horton Conway and Neil James Alexander Sloane.
Sphere Packings, Lattices and Groups, volume 290
of Grundlehren der Mathematischen Wissenschaften.
Springer-Verlag, third edition, 1999.

[5] Edgar N Gilbert. A comparison of signalling alphabets. The
Bell system technical journal, 31(3):504–522, 1952.

[6] Manabu Hagiwara. On ordered syndromes for multi inser-
tion/deletion error-correcting codes. In 2016 IEEE inter-
national symposium on information theory (ISIT), pages
625–629. IEEE, 2016.

[7] Manabu Hagiwara. The four qubits deletion code is the first
quantum insertion code. IEICE Communications Express,
10(5):243–247, 2021.

[8] Manabu Hagiwara. Pure states in quantum deletion error-
correction. In preprint, 2024.

[9] Manabu Hagiwara and Ayumu Nakayama. A four-qubits
code that is a quantum deletion error-correcting code with
the optimal length. In 2020 IEEE International Symposium
on Information Theory (ISIT), pages 1870–1874. IEEE,
2020.

[10] Albertus Stephanus Jacobus Helberg. Coding for the cor-
rection of synchronization errors. PhD thesis, University
of Johannesburg, 1993.

[11] Yasuo Komamiya. Application of logical mathematics to in-
formation theory. Proc. 3rd Japan. Nat. Cong. Appl. Math,
437(3), 1953.

[12] Janet Leahy, Dave Touchette, and Penghui Yao. Quantum
insertion-deletion channels. ArXiv, abs/1901.00984, 2019.

[13] V. I. Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversals. Soviet physics doklady,
10(8):707–710, 1966.

[14] Ryutaroh Matsumoto and Manabu Hagiwara. Construc-
tions of l-adic t-deletion-correcting quantum codes. IEICE
Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences, 105(3):571–575, 2022.

[15] Ayumu Nakayama and Manabu Hagiwara. The first quan-
tum error-correcting code for single deletion errors. IEICE
Communications Express, page 2019XBL0154, 2020.

[16] Ayumu Nakayama and Manabu Hagiwara. Single quan-
tum deletion error-correcting codes. In 2020 International
Symposium on Information Theory and Its Applications
(ISITA), pages 329–333. IEICE, 2020.

[17] Yingkai Ouyang. Permutation-invariant quantum coding

for quantum deletion channels. In 2021 IEEE Interna-
tional Symposium on Information Theory (ISIT), pages
1499–1503. IEEE, 2021.

[18] Irving S Reed and Gustave Solomon. Polynomial codes over
certain finite fields. Journal of the society for industrial and
applied mathematics, 8(2):300–304, 1960.

[19] Taro Shibayama. New instances of quantum error-
correcting codes for single deletion errors. In 2020 Interna-
tional Symposium on Information Theory and Its Applica-
tions (ISITA), pages 334–338. IEICE, 2020.

[20] Taro Shibayama and Manabu Hagiwara. Equivalence
of quantum single insertion and single deletion error-
correctabilities, and construction of codes and decoders. In
2022 IEEE International Symposium on Information The-
ory (ISIT), pages 2957–2962. IEEE, 2022.

[21] Taro Shibayama and Yingkai Ouyang. The equivalence be-
tween correctability of deletions and insertions of separable
states in quantum codes. In 2021 IEEE Information The-
ory Workshop (ITW), pages 1–6, 2021.

[22] Jin Sima, Netanel Raviv, and Jehoshua Bruck. Two dele-
tion correcting codes from indicator vectors. IEEE trans-
actions on information theory, 66(4):2375–2391, 2019.

[23] RCRC Singleton. Maximum distance q-nary codes. IEEE
Transactions on Information Theory, 10(2):116–118, 1964.

[24] NJA Sloane. Recent bounds for codes, sphere packings and
related problems obtained by linear programming and other
methods. Contemp. Math, 9:153–185, 1982.

[25] R. R. Varshamov and G. M. Tenengol’ts. Code correcting
single asymmetric errors. Avtomat. i Telemeh., 26:288–292,
1965.

[26] Rom Rubenovich Varshamov. Estimate of the number of
signals in error correcting codes. Docklady Akad. Nauk,
SSSR, 117:739–741, 1957.

Manabu Hagiwara was born in
Ashikaga, Japan, on July 26, 1974. He
received the B.E. degree in mathematics
from Chiba University in 1997, and the
M.E. and Ph.D. degrees in mathematical
science from the University of Tokyo in
1999 and 2002, respectively. From 2002
to 2005 he was a postdoctoral fellow at
IIS, the University of Tokyo. From 2005
to 2012 he was a research scientist with
National Institute of Advanced Industrial

Science and Technology (AIST). From 2011 to 2012 he was a vis-
iting scholar with the University of Hawaii. From 2013 to 2020
he was an associate professor with Chiba University. He was the
general co-chair of the International Symposium on Information
Theory and its Application 2020 (ISITA2020), Oahu, Hawaii.
Currently, he is a full professor with Graduate School of Science,
Chiba University. His current research interests include coding
theory and combinatorics.
Prof. Hagiwara was the recipient of the ComEX Top Downloaded
Letter Award, from IEICE, in April 2020 and February 2020 and
Kioxia Research Grant Program Outstanding Research Award,
from Kioxia, in June 2020.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

