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SUMMARY Realization of large quantum computers is believed to jeop-
ardize the security of cryptosystems relying on computational complexity of
some mathematical problems, such as prime factorization and discrete log-
arithm problem. In this light, post-quantum cryptography, which is secure
even after large quantum computers are realized, has been getting a lot of
attention. National Institute of Standards and Technology (NIST) recently
started a standardization process for post-quantum cryptosystems. The
McEliece public-key cryptosystem based on quasi-cyclic moderate-density
parity-check (QC-MDPC) codes is a promising candidate in this NIST stan-
dardization. Recently, attacks on the QC-MDPC McEliece scheme have
extensively been investigated. The one proposed by Guo et al. exploits
statistical information of decoding errors to reconstruct the secret key. This
attack is twofold: (1) obtaining the distance spectrum of the secret key
from statistical information of decoding errors, and (2) reconstructing the
secret key from the distance spectrum. The bit-flipping decoding, which
is commonly used to decode the QC-MDPC scheme, is considered to be
vulnerable to the first part of this attack. Meanwhile the second part of
the attack in the original version by Guo et al. requires considerable time
because they use recursive search in this part. In this paper, we propose
another method to reconstruct the secret key from the obtained distance
spectrum on the basis of a method proposed by Fabšič et al. They found
that the key construction can be mapped to a clique problem in graph theory.
Using their observation, we apply a breadth-first search algorithm to the key
reconstruction. Numerical experiments show that our method reconstructs
the secret key more efficiently than recursive search in the original key
reconstruction proposed by Guo et al.
key words: QC-MDPC, decoding error rate, distance spectrum, key recov-
ery attack, clique problem

1. Introduction

The evolution and spread of networks have made cryptogra-
phy indispensable in modern society. Although cryptosys-
tems based on factoring or discrete logarithm are widely
utilized, they can be cracked by a large quantum computer,
which can solve both problems in polynomial time [1]. Ac-
cordingly, providing new secure cryptosystems in a “post-
quantum” world, where large quantum computers are avail-
able, are gaining a lot of attention. For example, National
Institute of Standards and technology (NIST) initiated a stan-
dardization process by calling for proposals of post-quantum
cryptosystems [2].

The McEliece public-key cryptosystem is based on the
difficulty of decoding a random linear code [3], and has
thoroughly been investigated [4]–[6]. The original version
†The authors are with Dept. of Computer Science, National
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††The author is with Japan Air Self-Defense Force
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with Goppa codes is considered to be still secure; however, its
public key size is undesirably large because this scheme uses
the whole generator matrix of a linear code as the public
key. This motivates us to construct variants with smaller
key sizes. A variant based on quasi-cyclic moderate-density
parity-check (QC-MDPC) codes was proposed [7] and has
been attracting attention. Thanks to the quasi-cyclicity of
a generator matrix in this scheme, one can represent it by
its first row, and thus the key size can be much smaller than
the original version. “Moderate-density” means that a row of
the parity-check matrix has more ones than quasi-cyclic low-
density parity-check (QC-LDPC) codes, but much less than
the length of the row. The QC-MDPC scheme is recognized
as a candidate of the NIST standardization.

Recently, an attack on the QC-MDPC scheme was pro-
posed in [8], aiming to reconstruct the secret key of the
QC-MDPC scheme from statistical information on decoding
errors. This attack is comprised of two parts. The first part
aims to acquire the distance spectrum, which is the set of
distances between any two ones in the secret key. Sending
certain messages to a legitimate receiver, and observing re-
ceiver’s reactions, an adversary can statistically obtain the
distance spectrum. The effectiveness of this part depends on
the decoding algorithm, and it has been demonstrated that the
bit-flipping (BF) decoding [7], [9]–[14], which is commonly
used to decode the QC-MDPC scheme, is vulnerable to this
[15]: If the legitimate receiver uses the BF decoding, the
attacker can easily obtain the distance spectrum. The second
part is to reconstruct the secret key from a given distance
spectrum. In the original proposal in [8], recursive search
was utilized in this part, and thus the key reconstruction was
time-consuming in general.

In this paper, we propose another method to accomplish
the second part with shorter reconstruction time than the re-
cursive search. Our method is based on the idea by Fabšič et
al. [16], which interprets the key reconstruction to a clique
problem in graph theory. They showed correspondence be-
tween a graph and a distance spectrum, and found that the
secret key to be found is represented by a clique (complete
subgraph) in the graph. They applied this observation to re-
construct the secret key in the QC-LDPC scheme, in which
searching for small cliques is sufficient. We modify their
method, and employ it to decode the QC-MDPC scheme.
Numerical experiments show that our method significantly
reduces the key reconstruction time compared with the orig-
inal recursive search proposed by Guo et al. We note that
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Paiva and Terada proposed another algorithm for the sec-
ond part of the key recovery [17]; however, this requires an
additional information on the secret key compared with ours.

The remaining of this paper is organized as follows.
In Sec. 2, we briefly review the QC-MDPC McEliece cryp-
tosystem. The key recovery attack proposed by Guo et al. is
explained in Sec. 3. In Sec. 4, we propose the new method for
the key reconstruction. Section 5 exhibits numerical results
while comparing our method to the original key recovery
algorithm with the recursive search. Section 6 is devoted to
conclusions.

2. QC-MDPC McEliece cryptosystems

We briefly review the QC-MDPC scheme [7]. This scheme
is characterized by a parity-check matrix 𝑯 ∈ F𝑟×𝑛2 and the
corresponding generator matrix 𝑮 ∈ F𝑘×𝑛2 , where 𝑘 is the
information bit length, 𝑛 the code length, and 𝑟 the codimen-
sion: 𝑟 = 𝑛−𝑘 . Let 𝑡 denote the number of correctable errors.
The secret key in the QC-MDPC scheme is the parity-check
matrix 𝑯 with the form,

𝑯 =
[
𝑯0 𝑯1 · · ·𝑯𝒏0−1

]
. (1)

Here, 𝑯𝒊 (0 ≤ 𝑖 ≤ 𝑛0 − 1) is a circulant matrix of size 𝑟 × 𝑟
and hence 𝑛 = 𝑛0𝑟, 𝑘 = (𝑛0 − 1)𝑟. We assume that each 𝑯𝒊

has the row weight (= the number of ones in a row) 𝑑𝑣, and
thus the row weight 𝑤 of the whole parity-check matrix 𝑯
is 𝑤 = 𝑑𝑣 × 𝑛0. In the QC-MDPC scheme, 𝑯 is taken to be
sparse and the weight 𝑤 scales in O(

√
𝑛 log 𝑛).

The public key is the generator matrix, which is ex-
pressed via 𝑯 as

𝑮 =


(
𝑯−1

𝒏0−1 · 𝑯0

)𝑇
𝑰𝒌

...(
𝑯−1

𝒏0−1 · 𝑯𝒏0−2

)𝑇

. (2)

Thanks to the cyclicity of
(
𝑯−1

𝒏0−1 · 𝑯𝒊

)𝑇
(0 ≤ 𝑖 ≤ 𝑛0 − 2),

it is sufficient to publish only the first row of these matrices.
Therefore, the size of the public key is considerably small
comparing with the original version of McEliece cryptosys-
tems using Goppa codes, whose public key is the whole
generator matrix.

A sender encrypts a message 𝒎 as

𝒄 = 𝒎𝑮 + 𝒆, (3)

where 𝒆 is a randomly generated error vector with length 𝑛
and the Hamming weight less than 𝑡: 𝑤(𝒆) ≤ 𝑡. A receiver
decrypts the ciphertext 𝒄 through the following steps.

(i) Operate 𝑯 on the ciphertext 𝒄 and obtain the syndrome
𝒔:

𝒔 := 𝒄𝑯𝑇 = 𝒎𝑮𝑯𝑇 + 𝒆𝑯𝑇 = 𝒆𝑯𝑇 .

(ii) Find 𝒆 from given 𝑯 and 𝒔. Due to the sparsity of

𝑯, one can efficiently solve this problem. Then, the
receiver finds 𝒆 and obtains 𝒄′ = 𝒎𝑮.

(iii) Operate 𝑮−1 on 𝒄′, and the receiver obtains 𝒎.

Let us explain why the decryption is difficult for an
eavesdropper. As 𝑯 is secret, the eavesdropper tries to de-
crypt the message using another parity-check matrix 𝑯:

𝑯 =
[
(𝑯−1

𝒏0−1 · 𝑯0) · · · (𝑯−1
𝒏0−1 · 𝑯𝒏0−2) | 𝑰𝒌

]
, (4)

which can be generated on the basis of the public key 𝑮.
The step (i) is performed similarly to that for the legiti-
mate receiver, and the eavesdropper obtains 𝒔 = 𝒆𝑯𝑇 . In
the step (ii), the eavesdropper must find 𝒆 from 𝒔 and 𝑯𝑇 ;
however, this is difficult to solve because 𝑯𝑇 is not sparse
in general. This problem, called the syndrome decoding
problem, is known to be NP-complete (more precisely, NP-
equivalent), which provides the foundation for the security
of the QC-MDPC scheme [18], [19].

The security of the QC-MDPC scheme is governed by
the parameters (𝑛, 𝑟, 𝑑𝑣). Table 1 presents the parameters at
several security levels proposed in [7]. Also, the parameters

Table 1 Security parameters for the QC-MDPC cryptosystem at 80, 128,
and 256-bit security levels.

security 𝑛0 𝑛 𝑟 𝑑𝑣 key size
80 2 9602 4801 45 4801
80 3 10779 3593 51 7186
80 4 12316 3079 55 9237
128 2 19714 9857 71 9857
128 3 22299 7433 81 14866
128 4 27212 6803 85 20409
256 2 65542 32771 137 32771
256 3 67593 22531 155 45062
256 4 81932 20483 161 61449

for Bit Flipping Key Encapsulation (BIKE) corresponding to
the 128-bit security level are shown in Table 2 [20]. BIKE is
a key encapsulation mechanism based on QC-MDPC codes.
This scheme has been submitted to the NIST standardization
and is considered as a promising candidate of this standard-
ization.

Table 2 BIKE parameters corresponding to the 128-bit security level.
security 𝑛0 𝑛 𝑟 𝑑𝑣 key size
Level 1 2 24646 12323 71 12323

3. Key recovery attack

Our task is to obtain the full secret key 𝑯. To this end, it is
sufficient to know 𝑯0 because the remaining part of 𝑯 can
efficiently be determined by utilizing the generator matrix
(public key) 𝑮 in (2). Furthermore, due to the cyclicity of
𝑯0, we only need to recover its first row 𝒉0. Hereinafter, we
identify 𝒉0 with the secret key itself.

Guo et al. proposed a reaction attack to recover 𝒉0,
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which consists of two parts [8]. First, an attacker sends cer-
tain messages many times to the receiver and observes the
decoding error rate (DER). The obtained statistical informa-
tion allows us to construct a distance spectrum for the secret
key 𝒉0, which is the set of distances between any two ones in
the key. Then, recursive search using the distance spectrum
recovers the key.

3.1 Distance spectrum

Consider a vector c = (𝑐0, · · · , 𝑐𝑟−1) ∈ F𝑟2 with 𝑤(𝒄) = 𝑑𝑣.
We define the distance between 𝑐𝑖 and 𝑐 𝑗 as follows:

𝑑 (𝑖, 𝑗) = min{|𝑖 − 𝑗 |, 𝑟 − |𝑖 − 𝑗 |}. (5)

Note that max𝑖, 𝑗 (𝑑 (𝑖, 𝑗)) = 𝑈 := ⌊𝑟/2⌋. Accordingly, the
distance multiplicities 𝜇𝒄 (𝑑) of 𝑑 in the vector 𝒄, and the
distance spectrum 𝐷 (𝒄), are defined as

𝜇𝒄 (𝑑) =
��{(𝑖, 𝑗) |𝑐𝑖 = 𝑐 𝑗 = 1 ∧ 𝑑 (𝑖, 𝑗) = 𝑑}

�� , (6)

𝐷 (𝒄) = {𝑑 |1 ≤ 𝑑 ≤ 𝑈 ∧ 𝜇𝒄 (𝑑) > 0}. (7)

For later convenience, we also define the set of positions of
ones in 𝒄:

𝑷(𝒄) =
{
𝑝0, 𝑝1, · · · 𝑝𝑑𝑣−1

}
, s.t.,

(𝒄) 𝑝𝑖 = 1 for 0 ≤ 𝑖 ≤ 𝑑𝑣 − 1.

Hereinafter, we identify 𝑷(𝒄) with 𝒄 itself unless it causes
confusion; for example, 𝐷 (𝑷(𝒄)) simply denotes 𝐷 (𝒄).
One can calculate the above quantities for an example
𝒄′ = (0100110) as follows:

𝐷 (𝒄′) ={1, 3},
𝜇𝑐′ (1) = 1, 𝜇𝑐′ (2) =0, 𝜇𝑐′ (3) = 2,

𝑷(𝒄′) = {1, 4, 5} .

An attacker obtains the distance spectrum 𝐷 (𝒉0)
through the following protocol. Hereinafter, we consider
the case of 𝑛0 = 2, in which the parity-check matrix is given
by

𝑯 = [𝑯0 𝑯1] . (8)

Let us define the set of error patterns𝛹𝑑 as

𝛹𝑑 = {(𝒂, 0) ∈ F𝑟2 × F𝑟2 | ∃ distinct 𝑠1, 𝑠2, · · · , 𝑠𝑡 , s.t.,
𝑷 (𝒂) = {𝑠1, 𝑠2, · · · , 𝑠𝑡 } , and
𝑠2𝑖 = (𝑠2𝑖−1 + 𝑑) mod 𝑟 for 𝑖 = 1, · · · , 𝑡/2}.

(9)

This set consists of words of length 2𝑟 with the first half
containing 𝑡/2 pairs of ones at distance 𝑑, and the second
half being the zero vector. For example, when 𝑑 = 2, 𝑡 = 4,
𝑟 = 10, there is a vector 𝒗 ∈𝛹𝑑:

𝒗 = 01010010100000000000.

The attacker sends 𝑀 messages with errors 𝒗 ∈ 𝛹𝑑 to the

receiver for each 𝑑. He counts the number of decoding
errors and calculates an empirical DER. It is known that
if 𝑑 is included in the distance spectrum 𝐷 (𝒉0), the DER
will be lower compared to when 𝑑 ∉ 𝐷 (𝒉0). Therefore,
after sending messages 𝑀 ×𝑈 times, the attacker can expect
which distances are included in 𝐷 (𝒉0).

The BF decoding and its variants are commonly uti-
lized to decode QC-MDPC codes [7], [9]–[14]. These are,
however, vulnerable to the above attack: when the receiver
uses the BF decoding, the DER strongly depends on whether
𝑑 ∈ 𝐷 (𝒉0) or not. To obtain the distance spectrum, we
apply the BF decoding to sent messages 𝒗 ∈𝛹𝑑 , and simply
calculate an empirical DER for each 𝑑 as

DER = 𝑓 /𝑀,

where 𝑓 is the number of decoding errors in 𝑀 trials. Figure
1 depicts the DER for the QC-MDPC scheme with the param-
eters (𝑛, 𝑟, 𝑑𝑣, 𝑡) = (9602, 4801, 45, 110) for 1 ≤ 𝑑 ≤ 600,
almost a quarter of𝑈. In this experiment, we set 𝑀 = 10000
for each 𝑑. As shown in Fig. 1, the DER decreases as the

Fig. 1 The DER for the QC-MDPC scheme with parameters
(𝑛, 𝑟 , 𝑑𝑣 , 𝑡 ) = (9602, 4801, 45, 110) . For each 𝑑, the multiplicities
𝜇 (𝑑) = 0, 1, 2, 3 of the secret key are represented by blue, red, green,
and yellow, respectively. We depict the threshold 𝑇 with the dashed line.

corresponding multiplicity increases. Exploiting this obser-
vation, we determine a threshold 𝑇 for the DER, which is
represented by the dashed line in Fig. 1, and decide that dis-
tances 𝑑 with the DER below 𝑇 are in the distance spectrum
of the secret key. The algorithm for determining the distance
spectrum using the obtained threshold 𝑇 is outlined below.

Algorithm 1 Compute the spectrum
Input: threshold 𝑇 , number of decoding trials 𝑀 per dis-

tance, upper distance 𝑈.
Output: 𝐷 (𝒉0).

1: 𝐷 (𝒉0) ← {}.
2: for all 𝑖 (1 ≤ 𝑖 ≤ 𝑈) do
3: 𝑓 ← 0.
4: for all 𝑗 (0 ≤ 𝑗 < 𝑀) do
5: take 𝒗 ∈𝛹𝑖 .
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6: Apply BF decoding to 𝒗.
7: if 𝑯𝒗𝑇 ≠ 0 then
8: 𝑓 ← 𝑓 + 1.
9: end if

10: end for
11: if 𝑓 /𝑀 ≤ 𝑇 then
12: 𝐷 (𝒉0) ← 𝐷 (𝒉0) ∪ {𝑖}.
13: end if
14: end for
15: return 𝐷 (𝒉0).

The above protocol typically requires the number of
messages 𝑀 ∼ 1/DER. Thus, when we try to achieve the 𝜆-
bit security level, the DER must be in the order of 2−𝜆. One
way to realize such a DER is sufficiently decreasing the error
weight 𝑡. Actually, BIKE adopts so small 𝑡 that the DER
will be in the order of 2−128. In near future, however, such
a small 𝑡 may provide vulnerabilities to other attacks, such
as information set decoding [21]. Thus, this simple way of
decreasing the error weight will be too naive to neutralize the
above reaction-based attack. Utilizing other methods than
the BF decoding and its variants, such as an ADMM-based
one [22], can be another way to reduce the DER.

It is also worth mentioning that the reaction-based at-
tack is not the only way to obtain the distance spectrum. For
example, Ref. [23] considers a timing attack that exploits a
correlation between distances in the secret key and the num-
ber of iterations required for decoding. Only taking measures
against the reaction-based attack may not be sufficient.

3.2 Reconstruction

The reconstruction of 𝒉0 from the distance spectrum was
also proposed in [8], which uses recursive search to find a
candidate of 𝒉0. Let us align the distance spectrum 𝐷 (𝒉0)
in increasing order:

𝐷 (𝒉0) = {𝑖0, 𝑖1, · · · }. (10)

We name a candidate of the secret key as 𝒉
′
0 with

𝑷(𝒉′
0) = (𝑝0, 𝑝1, · · · , 𝑝𝑑𝑣−1). (11)

We can fix 𝑝0 = 0 and 𝑝1 = 𝑖0 without loss of generality.
Note that what we will reproduce is not necessarily the secret
key itself. It can be a cyclic shift or a mirror image of the
key. See Sec. 4 for the details.

First, tentatively assign 𝑝1 + 𝑖0 to 𝑝2. Then, check
whether the distance between 𝑝0 and 𝑝2 exists in 𝐷 (𝒉0). If
it does, update 𝑝2 = 𝑝1 + 𝑖0. If not, assign 𝑝1 + 𝑖1 to 𝑝2.
Again, check whether the distance between 𝑝0 and 𝑝2 exists
in 𝐷 (𝒉0). Repeat this process until reaching 𝑝𝑑𝑣−1. This
reconstruction algorithm is summarized in Algorithm 2.

Algorithm 2 Key recovery using recursive search [8]
Input: 𝐷 (𝒉0 ) , 𝑝0 = 0, 𝑝1 = min (𝐷 (𝒉0) ) , 𝑙 = 2
Output: secret key 𝒉0
1: for all 𝑖 (𝑝𝑙−1 + 1 ≤ 𝑖 ≤ 𝑟 ) do
2: for all 𝑗 (0 ≤ 𝑗 ≤ 𝑙 − 1) do
3: if 𝑖 − 𝑝 𝑗 ∈ 𝐷 (𝒉0 ) then
4: 𝑝𝑙 ← 𝑖.
5: 𝑙 ← 𝑙 + 1.
6: else
7: goto line 20
8: end if
9: end for

10: if 𝑙 = 𝑑𝑣 then
11: if 𝐷 (𝒉′

0 ) = 𝐷 (𝒉0 ) then
12: return 𝒉0.
13: else
14: return
15: end if
16: end if
17: Recursive call with 𝐷 (𝒉0 ) , 𝑙
18: 𝑙 ← 𝑙 − 1.
19: 𝑝𝑙 ← 0.
20: return
21: end for
22: return Failure to recover secret key

As this algorithm involves recursion (STEP 17), the
reconstruction of 𝒉0 will take considerable time in general.
In what follows, we propose another method to decrease the
reconstruction time of 𝒉0.

4. Proposed methods

We interpret the key reconstruction from the distance spec-
trum into a clique problem, as suggested by Fabšič et al [16].
Let us introduce the clique problem. A graph 𝐺 is repre-
sented as 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices and 𝐸 is
the set of edges. In graph theory, a clique 𝐶 = (𝑉 ′, 𝐸 ′) in 𝐺
is a subgraph where every two vertices in 𝑉 ′ are connected
by an edge in 𝐸 ′. The size of a clique refers to the number of
vertices belonging to that clique. The clique problem is to
determine whether there is a clique of a given size in a given
graph.

We define a graph 𝐺 = (𝑉, 𝐸) whose vertices are ele-
ments of

𝑉 = 𝐷 (𝒉0) := {0} ∪ 𝐷 (𝒉0) ∪ (𝑟 − 𝐷 (𝒉0)), (12)

where 𝑟 − 𝐷 (𝒉0) is the set obtained by subtracting each
element of 𝐷 (𝒉0) from 𝑟 . The set of edges 𝐸 is constructed
by the following rule:

𝐸 := {(𝑢, 𝑣) | 𝑑 (𝑣, 𝑢) ∈ 𝐷 (𝒉0), 𝑣, 𝑢 ∈ 𝐷 (𝒉0)}. (13)

The set of vertices (12) corresponds to all possible positions
of ones when we fix 𝑝0 = 0. if we consider a cyclic shift
or a mirror image of the true key, which satisfies 𝑝0 = 0,
and represent it by the same symbol 𝒉0, 𝑷(𝒉0) is a subset of
𝐷 (𝒉0) by definition. Moreover, a distance between any two
elements in 𝑷(𝒉0) is in the distance spectrum, i.e.,
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𝑑 (𝑝𝑖 , 𝑝 𝑗 ) ∈ 𝐷 (𝒉0), ∀𝑝𝑖, 𝑗 ∈ 𝑷(𝒉0).

Summarizing, the positions of ones of the secret key is rep-
resented in 𝐺 by vertices in 𝐷 (𝒉0), any two of which are
connected by a edge in 𝐸 . In other words, the secret key is
a 𝑑𝑣-clique in 𝐺. Thus, our task is regarded as search for a
𝑑𝑣-clique (clique of size 𝑑𝑣) corresponding to the secret key,
which is known to be NP-hard. Fabšič et al. applied this
observation to reconstruct the secret key in the QC-LDPC
scheme. In their case, searching for a clique with a much
smaller size than 𝑑𝑣 is sufficient: due to sparsity of secret
keys in QC-LDPC codes, such a small clique almost uniquely
determines a 𝑑𝑣-clique that contains the small one.

When considering the QC-MDPC scheme, we need to
find a larger clique than in the case of the QC-LDPC scheme.
To accomplish this, we employ breadth-first search. The
specific algorithm is summarized in Algorithm 3.

Algorithm 3 Proposed algorithm
Input: 𝐷 (𝒉0), 𝑝0 = 0, 𝑝1 = min(𝐷(𝒉0)), 𝑟 = |𝒉0 |
Output: set of secret key candidates 𝓱0

1: 𝓱0 ← {}.
2: 𝐷 (𝒉0) = {𝑝0} ∪ 𝐷 (𝒉0) ∪ (𝑟 − 𝐷 (𝒉0)).
3: 𝑆0 ← {𝑝0, 𝑝1}.
4: 𝑆

′
0 ← { 𝑗 ∈ 𝐷 (𝒉0) \ 𝑆0 | 𝑑 ( 𝑗 , 𝑝1) ∈ 𝐷 (𝒉0)}.

5: 𝑁 ← 1, 𝑡 ← 2.
6: 𝒮 = {𝑆0, 𝑆1, · · · , 𝑆𝑁−1}.
7: 𝒮

′
= {𝑆′0, 𝑆

′
1, · · · , 𝑆

′
𝑁−1}.

8: while 𝑡 < 𝑑𝑣 do
9: 𝒮̃← {}, 𝒮̃′ ← {}.

10: for all 𝑖 (0 ≤ 𝑖 < 𝑁) do
11: 𝑆

′
𝑖 = {𝑎0, 𝑎1, · · · }.

12: for all 𝑙 (0 ≤ 𝑙 <
��𝑆′𝑖 ��) do

13: 𝑆𝑖,𝑙 ← 𝑆𝑖 ∪ {𝑎𝑙}.
14: 𝑆′𝑖,𝑙 ← {𝑞 ∈ 𝑆′𝑖 \ {𝑎𝑙} | 𝑞 > 𝑎𝑙 , 𝑑 (𝑞, 𝑎𝑙) ∈

𝐷 (𝒉0)}.
15: 𝐵𝑖,𝑙 ← 𝑆𝑖,𝑙 ∪ 𝑆′𝑖,𝑙 .
16: if

��𝐵𝑖,𝑙

�� = 𝑑𝑣 and 𝐷 (𝒉0) = 𝐷 (𝐵𝑖,𝑙) then
17: append 𝐵𝑖,𝑙 to 𝓱0.
18: end if
19: if

��𝐵𝑖,𝑙

�� > 𝑑𝑣 then
20: append 𝑆𝑖,𝑙 to 𝒮̃, and 𝑆′𝑖,𝑙 to 𝒮̃′.
21: end if
22: end for
23: end for
24: {𝒮,𝒮

′ } ← {𝒮̃, 𝒮̃
′ }.

25: 𝑁 ← |𝒮| , 𝑡 ← 𝑡 + 1.
26: end while
27: for all 𝑖 (0 ≤ 𝑖 < |𝑁 |) do
28: if 𝐷 (𝒉0) = 𝐷 (𝑆𝑖) then
29: append 𝑆𝑖 to 𝓱0.
30: end if
31: end for
32: return 𝓱0

We provide a formal explanation for the algorithm in
terms of the graph 𝐺, whose vertices are the elements of

𝐷 (𝒉0). At the 𝑡-th step, we know the set of all 𝑡-cliques
𝒮(𝑡 ) = (𝑆 (𝑡 )0 , 𝑆 (𝑡 )1 , · · · ), where each 𝑆 (𝑡 )𝑖 represents a 𝑡-
clique. Accordingly, we have 𝒮′ (𝑡 ) = (𝑆′(𝑡 )0 , 𝑆

′ (𝑡 )
1 , · · · ), in

which 𝑆′(𝑡 )𝑖 is the set of the vertices connected to all elements
of the clique 𝑆 (𝑡 )𝑖 . Taking an element 𝑎𝑙 ∈ 𝑆′(𝑡 )𝑖 , we create
the (𝑡 + 1)-clique and its complementary set as

𝑆 (𝑡+1)𝑖,𝑙 := 𝑆 (𝑡 )𝑖 ∪ {𝑎𝑙},

𝑆′(𝑡+1)𝑖,𝑙 :={𝑞 ∈ 𝑆′(𝑡 )𝑖 \ {𝑎𝑙} | 𝑞 > 𝑎𝑙 , 𝑑 (𝑞, 𝑎𝑙) ∈ 𝐷 (𝒉0)}.
(14)

We then evaluate the size of their union,

𝐵 (𝑡+1)𝑖,𝑙 := 𝑆 (𝑡+1)𝑖,𝑙 ∪ 𝑆′(𝑡+1)𝑖,𝑙 .

If its size is less than 𝑑𝑣, this set never contains 𝑑𝑣 cliques,
or equivalently, candidates of the secret key. Hence, we
discard 𝐵 (𝑡+1)𝑖,𝑙 . If not, this union can contains candidates of
the key and thus we bring 𝑆 (𝑡+1)𝑖,𝑙 and 𝑆′(𝑡+1)𝑖,𝑙 to the (𝑡 + 1)-
th step while relabeling them by a new index 𝑖′ instead of
(𝑖, 𝑙). In particular, if its size equals to 𝑑𝑣, the union can be
a candidate of the key. We check whether 𝐵 (𝑡+1)𝑖,𝑙 meets the
condition 𝐷 (𝒉0) = 𝐷 (𝐵 (𝑡+1)𝑖,𝑙 ), and if it does, we append it
to 𝓱0, a set of secret key candidates. In the case of the QC-
LDPC scheme, e.g., with the parameter (𝑟, 𝑑𝑣) = (4096, 13),
a small 𝑡 ∼ 3, 4 is found to be sufficient [16]: the sparsity
of the secret key rapidly reduces the size of 𝑆′(𝑡 )𝑖 while 𝑡
increases. The number of steps required for the QC-MDPC
scheme is around 9 or 10 according to our experiment.

Let us show a simple example in which the secret key
is 𝒉0 = 011010010000, 𝑟 = 12, and 𝑑𝑣 = 4. The distance
spectrum 𝐷 (𝒉0) is given by

𝐷 (𝒉0) = {1, 2, 3, 5, 6}.

Our task is to enumerate secret key candidates 𝒉
′
0 with

𝑷(𝒉′
0) = (𝑝0, 𝑝1, 𝑝2, 𝑝3), (15)

from the above distance spectrum. We initialize 𝑝0 = 0 and
𝑝1 = min(𝐷 (𝒉0)) = 1. 𝐷 (𝒉0) in this example is

𝐷 (𝒉0) ={0} ∪ 𝐷 (𝒉0) ∪ (𝑟 − 𝐷 (𝒉0))
={0, 1, 2, 3, 5, 6, 7, 9, 10, 11}.

The associated graph 𝐺, in which each vertex corresponds
to an element in 𝐷 (𝒉0), is shown in Fig. 2. The set of edges
are determined by Eq. (13). We begin with 𝑆0 = {𝑝0, 𝑝1} =
{0, 1} and evaluate the compliment,

𝑆
′
0 = {2, 3, 6, 7, 10, 11}.

Following Eq. (14), we then construct 𝑆𝑖,𝑙 , and 𝑆′𝑖,𝑙 , that is,
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Fig. 2 Graph 𝐺 constructed from the distance spectrum. Each vertex
corresponds to an element of 𝐷 (𝒉0 ) while an edge is drawn when the
distance between the corresponding endpoints is in the spectrum.

𝑆0,0 = {0, 1, 2} , 𝑆′0,0 = {3, 7, 11},
𝑆0,1 = {0, 1, 3} , 𝑆′0,1 = {6, 10},
𝑆0,2 = {0, 1, 6} , 𝑆′0,2 = {7, 11},
𝑆0,3 = {0, 1, 7} , 𝑆′0,3 = {10},
𝑆0,4 = {0, 1, 10} , 𝑆′0,4 = {11},
𝑆0,5 = {0, 1, 11} , 𝑆′0,5 = { }.

One can see that when the indices (𝑖, 𝑙) are (0, 3) or (0, 4),
the size of their union 𝐵𝑖,𝑙 is 𝑑𝑣 = 4. We confirm whether
the distance spectrum of either set matches 𝐷 (𝒉0) (STEP
16), and found that,

𝐵0,3 = {0, 1, 7, 10} , (16)

meets the condition. Therefore, we append this into 𝓱0 as
a secret key candidate. Figure 3 shows the graph and the
clique corresponding to 𝐵0,3. As the size of the union 𝐵0,5

Fig. 3 Graph 𝐺 with the 4-clique corresponding to 𝐵0,3 = {0, 1, 7, 10}.
The clique is depicted in red.

is less than 4, 𝑆0,5 and 𝑆′0,5 are discarded. For the other
indices, that is, (𝑖, 𝑙) = (0, 0), (0, 1) and (0, 2), the size of
𝐵𝑖,𝑙 is greater than 4, and thus we add 𝑆𝑖,𝑙 and 𝑆′𝑖,𝑙 to 𝒮 and

𝒮′ respectively (STEP 20 and 24) as

𝒮 = {{0, 1, 2}, {0, 1, 3}, {0, 1, 6}} ,
𝒮′ = {{3, 7, 11}, {6, 10}, {7, 11}} ,

with renumbering the elements by a new index 𝑖 = 0, 1, 2.
The explicit forms of the elements are

𝑆0 = {0, 1, 2} , 𝑆′0 = {3, 7, 11},
𝑆1 = {0, 1, 3} , 𝑆′1 = {6, 10},
𝑆2 = {0, 1, 6} , 𝑆′2 = {7, 11}.

Proceed to the next step. Similarly to the previous step,
we obtain

𝑆0,0 = {0, 1, 2, 3} , 𝑆′0,0 = { },
𝑆0,1 = {0, 1, 2, 7} , 𝑆′0,1 = { },
𝑆0,2 = {0, 1, 2, 11} , 𝑆′0,2 = { },
𝑆1,0 = {0, 1, 3, 6} , 𝑆′1,0 = { },
𝑆1,1 = {0, 1, 3, 10} , 𝑆′1,1 = { },
𝑆2,0 = {0, 1, 6, 7} , 𝑆′2,0 = { },
𝑆2,1 = {0, 1, 6, 11} , 𝑆′2,1 = { }.

Now, the size of the cliques reaches 𝑑𝑣 = 4, and thus the
search is terminated. Checking whether each clique meets
the condition 𝐷 (𝒉0) = 𝐷 (𝑆𝑖,𝑙), we found that

𝑆1,0 = {0, 1, 3, 6}, (17)

is the only remaining candidate of the key, which is repre-
sented by the graph shown in Fig. 4.

Fig. 4 𝐺 with the 4-clique corresponding to 𝑆1,0 = {0, 1, 3, 6}. The
clique is depicted in red.

The bit sequences corresponding to Eqs. (16) and (17)
are denoted by 𝒉

′
0 and 𝒉̃

′
0, respectively, and they are explicitly

represented by

𝒉
′
0 = 110000010010, (18)

𝒉̃
′
0 = 110100100000. (19)
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Note that the latter candidate is the mirror image of the former
with respect to 𝑝1. Also, the true secret key 𝒉0 is obtained by
right-shifting the latter by 1 bit. In general, candidates after
the reconstruction is not 𝒉0 itself: the distance spectrum
𝐷 (𝒉0) is invariant under cyclic shift and mirroring, which
introduces ambiguity to the reconstruction results. In other
words, an obtained candidate is a row in 𝑯0 or its mirror
image, but not necessarily the first row. To reproduce the
true parity-check matrix, we generate 2𝑟 candidate matrices
through rotation and mirroring of the obtained candidates
and take a matrix that can successfully decrypt encoded
messages.

We should also mention that the uniqueness of can-
didates reconstructed from a distance spectrum is not
guaranteed in general. For example, when 𝐷 (𝒉0) =
{1, 2, 3, 4, 5, 6, 7, 8}, 𝑟 = 17, 𝑑𝑣 = 6, there are two non-
trivially different candidates:

𝒉′0 = 11011010100000000,
𝒉′0 = 11010110100000000,

(20)

where the latter is neither a circular shift nor a mirror image
of the former. The possibility of this ambiguity for realistic
situations is discussed in Sec. 5.

5. Numerical Experiments

We compare the reconstruction time of our algorithm with
the recursive search proposed by Guo et al. while varying the
block length 𝑟. Let the weight 𝑤 of the parity-check matrix
scale in 𝑂 (

√
𝑟 log 𝑟) [7]. We interpolate several parameters

(𝑟, 𝑑𝑣) between the ones for 80-bit and 128-bit security with
𝑛0 = 2 in Table 1. Assuming the dependence 𝑎

√
𝑟 log 𝑟 +𝑏 =

𝑤 with 𝑎, 𝑏 ∈ R, we obtain 𝑤 = 0.523
√
𝑟 log 𝑟 − 15.6.

Table 3 presents the reconstruction time of 𝒉0 with
varying (𝑟, 𝑑𝑣) according to the above dependence. The
execution time is limited to 7 days (approximately 600,000
seconds), and reconstruction trials for each parameter are
conducted 10 times with randomly generated secret keys.
The experimental results indicate that our method signif-
icantly reduces the reconstruction time comparing to the
recursive search. For 𝑟 ≥ 9000, the recursive search some-
times exceed the time limit, whereas the reconstruction by
our method does never exceed the limit for any parameters
in the experiment. The results were obtained using a 12th
Gen Intel(R) Core(TM) i9-12900KF.

The recursive search exhibits significant dispersion in
reconstruction times. This is attributed to the depth-first
search approach used in the algorithm: it is uncertain when
we reach the solution. Therefore, if the solution is found
quickly, the reconstruction is completed promptly, other-
wise, it may take considerable time. On the other hand,
the reconstruction using our method shows less dispersion
because it employs a breadth-first search approach.

As our method is breadth-fist search, the high time
performance is realized at the cost of its space complexity.
In our experiments, we save the sets of current cliques 𝒮(𝑡 )

Table 3 Reconstruction time (in seconds) of𝒉0 using the recursive search
(Algorithm 2) and our method (Algorithm 3). In each cell, the shortest,
average, and longest reconstruction times in 10 experiments are shown from
top to bottom. The maximum execution time is set to 7 days.

(𝑛, 𝑟 , 𝑑𝑣 ) recursive search our method
(Algorithm 2) (Algorithm 3)

(2000, 1000, 15)
0.082 0.081
0.084 0.084
0.087 0.088

(4000, 2000, 25)
0.275 0.297
0.299 0.305
0.316 0.312

(6000, 3000, 33)
0.596 0.635
1.03 0.675
1.75 0.717

(8000, 4000, 39)
1.11 1.11
3.59 1.19
7.51 1.29

(9602, 4801, 45)
3.26 1.78
837 1.93
7998 2.16

(10000, 5000, 47)
4.47 2.17
22.5 2.41
66.0 2.88

(12000, 6000, 51)
3.61 3.39
185 4.22
599 6.10

(14000, 7000, 57)
140 5.92
4125 11.1
21805 16.6

(16000, 8000, 63)
1625 22.8
73053 48.3
325364 111

(18000, 9000, 67)
1318 69.2

- 98.0
>7days 127

(19714, 9857, 71)
110813 106

- 177
>7days 247

and their compliments 𝒮′ (𝑡 ) in storage at 𝑡-th step of the
algorithm, and update them, whereas the recursive search
only stores a current key candidate in memory. The file size
for the largest parameter set (𝑛, 𝑟, 𝑑𝑣) = (19714, 9857, 71)
reaches the maximum ∼ 3 GiB at 𝑡 = 4 ∼ 6. Meanwhile,
actual memory consumption in our algorithm is comparable
with that in the recursive search ∼ 800 MiB, thanks to the
usage of storage.

We should also mention that the recursive search by
Guo et al. halts once a candidate of the secret key is found.
As aforementioned, the uniqueness of reconstructed key can-
didates (up to shift and mirror images) is not guaranteed in
general. If the ambiguity of candidates occurs for realistic
parameters, the recursive search must be exhaustive, and it
takes even more time than in Table 3. The reconstruction
time for exhaustive search is shown in Table 4. The secret
key is randomly picked out of those used in the experiment
of Table 3. The exhaustive search takes much more time than
the corresponding one-candidate search as expected. On the
other hand, our method is exhaustive search by definition
(see Algorithm 3), and thus it takes no additional time even
if there exist several non-trivially different candidates.
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Table 4 The reconstruction time (in seconds) for the exhaustive search
by Guo et al. The maximum execution time is set to 7 days.

(𝑛, 𝑟 , 𝑑𝑣 ) exhaustive search
(2000, 1000, 13) 0.082
(4000, 2000, 23) 0.876
(6000, 3000, 33) 742
(8000, 4000, 39) 44930
(9602, 4801, 45) >7days

We, however, expect that in realistic situations, such
ambiguity may not occur; in our experiments, we have never
observed non-trivially different solutions with a same dis-
tance spectrum. This may be thanks to sparsity of secret
keys in QC-MDPC codes. The secret key in Eq. (20) has a
high density of non-zero elements, that is, 𝑑𝑣 = 6 to 𝑟 = 17,
while in this paper, the parameters for 80-bit security with
𝑛0 = 2, have a low density, 𝑑𝑣 = 45 to 𝑟 = 4801. Although
one can guess that sparsity will strongly restrict the num-
ber of possible (non-trivially different) solutions, clarifying
uniqueness conditions is still an open problem.

The reconstruction time for the Level 1 BIKE param-
eters (Table 2) is shown in Table 5. The results for our
methods show that parity-check matrices with the BIKE pa-
rameters is easier to reconstruct than those in Table 3. This
will be due to the BIKE parameters being sparser than the
parameters in Table 3.

Table 5 Reconstruction time (in seconds) using the recursive search (Al-
gorithm 2) and our method (Algorithm 3) with the Level 1 BIKE parameters.
The shortest, average, and longest reconstruction times in 10 experiments
are shown from top to bottom.

(𝑛, 𝑟 , 𝑑𝑣 ) recursive search our method
(Algorithm 2) (Algorithm 3)

(24646, 12323, 71)
2290 17.1
53311 20.2
222390 24.6

6. Conclusion

In this paper, we have proposed a method to reconstruct a
secret key of the QC-MDPC McEliece cryptsystem. The
original algorithm proposed by Guo et al. uses recursive
search in key reconstruction from the distance spectrum [8].
We, instead, exploit breadth-first search to reconstruct the
key, motivated by the interpretation of the problem into a
clique problem, which is indicated in [16]. We found that
the key reconstruction time by our method is much shorter
than that by the recursive search. Moreover, the dispersion
in the reconstruction time is less in our method.

It is worth noting that our method can accomplish the
reconstruction within a realistic time scale even if the dis-
tance spectrum has several non-trivially different keys. This
is not the case for the recursive search: exhaustive recursive
search obviously takes much more time than one-candidate
search. As the reconstruction from a distance spectrum does
not necessarily have a unique solution, this property in our

method can be advantageous over the recursive search. How-
ever, we should also annotate that we have never observed
non-trivially different solutions with a same distance within
our experiments. We expect that sparsity of secret keys in
QC-MDPC codes will ensure the uniqueness with a high
probability, but this is still obscure. It will be important to
delve into this uniqueness problem.

We have focused in this paper on the time complexity
of key reconstruction (the second part of the attack) from
the distance spectrum. We here mention the time complex-
ity of acquisition of the distance spectrum (the first part of
the attack). According to our experiment for the parameters
(𝑛, 𝑟, 𝑑𝑣, 𝑡) = (9602, 4801, 45, 110) and 𝑀 = 1000000, the
first part approximately takes a month, which will be longer
than the second typically does. Hence, improving the time
complexity of the second part will have a restrictive impact
on effectiveness of the attack for now. It is, however, un-
clear that the relationship between their time complexities
holds even when we change the parameters or the decod-
ing algorithm. In particular, one can naively expect that
when 𝑛 increases, the complexity of the first part will grow
polynomially while that of the second will grow exponen-
tially. It is critical when the complexity of the second part
dominates, and therefore we leave the detailed discussion for
future work.

We also note that Paiva and Terada proposed to utilize
the distance spectrum of the remaining parts in the parity-
check matrix [17]. They showed that this additional infor-
mation accelerates the key reconstruction. Comparing our
method with theirs in realistic situations is also our future
work.
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