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SUMMARY Racetrack memory is a new type of high-capacity memory
that stores data in magnetic nanowires called racetracks. Data is transferred
through the nanowires to the access port for reading and writing. However,
the data transfer process is imperfect and can lead to errors. Inspired
by racetrack memory array architecture, the authors propose a new channel
model in which missing data is filled with erasures at the end of the racetrack.
Channel capacity and symmetric information rate for the proposed channel,
a double-stack erasure-filled (DSEF) channel, are derived. Since the DSEF
channel is a quaternary-input septenary-output channel, constructing good
error-correcting codes is not trivial. We decompose the DSEF channel into
two binary-input ternary-output channels to overcome this difficulty. This
decomposition allowed us to construct an adequate error-correction scheme
using existing binary codes, which is a meaningful achievement in terms of
implementation.
key words: racetrack memory, deletion channel, symmetric information
rate, error correction, LDPC codes.

1. Introduction

Racetrack memory (also known as domain wall memory) is
expected to be the next generation of high-capacity mem-
ory [1]. In racetrack memory, data is stored in arrays of
magnetic nanowires (racetracks). Electric currents push the
data through the nanowires and past the access port that
serves as the interface for reading and writing data.

In contrast to hard disk drives, which move the
read/write head over the rotating disk, the data is transferred
through the magnetic nanowires to the head in racetrack
memory. The data transfer in the nanowires is not perfect
and may suffer from positional errors. Data symbols might
be shifted by multiple locations or might not be shifted at all.
These unique specifications of racetrack memory have led
to the creation of new error models known as deletion and
sticky-insertion errors [2, 3]. These errors change the data
length. Such kinds of errors are also called synchronization
errors, and a comprehensive survey on the capacity of syn-
chronization errors, including deletion and insertion errors,
is summarized in [4].

However, in general memory systems, the data length
is expected to remain unchanged because data is sampled a
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specified number of times at the access port during each read
operation. Assume the data length of racetrack memory is 𝐿
and all 𝐿 symbols are read during data access. If 𝐸 deletion
errors occur, the last 𝐸 symbols will become invalid or are
expected to form a random sequence of 0s and 1s. On the
other hand, if 𝐸 sticky-insertion errors occur, each of the 𝐸
erroneous symbols will be duplicated, resulting in the last
𝐸 symbols not being read. Thus, the channel model for
racetrack memory in a system where the read data length
remains unchanged will differ from the literature on this
topic. Therefore, it is appropriate to discuss a channel model
where the data length does not change for racetrack memory.

In this work, we propose an erasure-filled channel,
where missing data due to data-transfer failures on mag-
netic nanowires is filled with erasures. As previously men-
tioned, in practice, the end of the racetrack is filled with
invalid values corresponding to the number of deleted sym-
bols, making a model with random bits more realistic than
one with erasures, we adopted erasures for easier analysis
to deepen theoretical understanding. This approach enabled
us to analyze the symmetric information rate. This paper
focuses solely on deletion errors and does not consider in-
sertion errors. This limitation does not imply an optimistic
assumption, as the data transfer speed in racetrack memory
can be adjusted by the applied current pulse [5]. Adjusting
the data transfer speed makes it realistically possible to con-
figure racetrack memory where deletion errors dominate and
insertion errors do not occur. The results of this paper will
be beneficial for such devices.

Multiple racetracks are expected to be implemented in
parallel to achieve high capacity and high-speed access [6,7].
In such a racetrack memory array, writes and reads are per-
formed in units of the number of parallelized racetracks.
Therefore, the number of parallelized racetracks should be
equal to or a multiple of the encoding block size for error cor-
rection from a practical point of view [8]. Multiple deletion
and insertion channels, such as multiple racetrack memory
channels, can be categorized into two main models. One
model assumes that deletion and insertion errors occur si-
multaneously and in parallel within each racetrack [9–11].
The other is the case where errors occur independently in
each racetrack [3]. In multiple racetrack memory, errors are
expected to occur independently for each racetrack due to
variations in the physical characteristics of each racetrack,
so the latter model is considered more suitable as a channel
model for multiple racetrack memory. When deletion and
insertion errors occur in each racetrack, as in [3], the read-
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out data length for each racetrack is different. The channel
model discussed in this paper is similar to [3] in that the
errors occur independently for each racetrack, but the differ-
ence is that the erasure is filled in at the end to keep the data
length constant.

The data length in each nanowire of the racetrack mem-
ory is generally longer because higher data density can be
achieved by increasing the amount of data held in the race-
track. However, for simplicity of analysis, the case of length
two is discussed in this paper. To evaluate the quality of
this channel, we derive the channel capacity and symmetric
information rate for the proposed deletion and erasure-filled
channel of length two.

There is extensive research on constructing powerful
error-correcting codes for racetrack memory [12–14]. How-
ever, many of these coding schemes store the codeword in a
single track, which is not suitable for multi-racetrack mem-
ory where multiple tracks are written simultaneously. On
the other hand, there has been limited exploration of vertical
coding [1, 3], which stores each bit of the codeword across
multiple tracks. This paper contributes to the study of ver-
tical coding. Although constructing good error-correcting
codes for the proposed channel is not trivial, we construct
an adequate error-correction scheme using existing binary
codes through a decomposition of the proposed channel into
two binary-input ternary-output channels. This results in a
meaningful achievement in terms of implementation.

The rest of this paper is organized as follows. In Sec-
tion 2, we formally define multi-stack erasure-filled (MSEF)
channels and introduce their simplest channel as double-
stack erasure-filled (DSEF) channel. In Section 3, the chan-
nel capacity of the DSEF channel is discussed. Section 4
discusses the construction of error-correcting codes for the
DSEF channel. We especially decompose the DSEF channel
into two binary-input ternary-output channels to overcome
the difficulty of constructing good error-correcting codes.
The level-by-level error correction is also introduced. In
Section 5, the error-correction capability of the level-by-level
error correction is evaluated by using computer simulations.
Finally, Section 6 concludes the paper.

2. Channel Model

Data-transfer failures in racetrack memory cause data errors.
For example, if excessive data transfer occurs, data reading
at the access port is skipped, and subsequent data is read. If
there is insufficient data transfer, data is read in duplicate at
the access port [2]. Such data errors are often modeled as
deletion-insertion channels. In the delete-insertion channel,
the data length changes due to errors [15]. Meanwhile, the
data length in a typical memory system is expected to remain
unchanged. That is because data is sampled a certain number
of times at the access port during read operations.

Therefore, we propose the following channel. The input
alphabetX is the setF𝐿2 of a vertical vector of length 𝐿, where
𝐿 corresponds to the length of the data in each nanowire of
the racetrack memory. The output alphabet Y is a subset of

(F2 ∪ {?})𝐿 , where ? is the erasure symbol. The element
of Y has the form (𝑦1, 𝑦2, . . . , 𝑦𝑙 , ?, ?, . . . , ?) for some 𝑙 ≤ 𝐿
and 𝑦𝑖 ∈ F2. In this case, the first 𝑙 symbols are binary, and
the remaining 𝐿 − 𝑙 symbols are erasure symbols.

For the input 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝐿) ∈ X, each symbol
𝑥𝑖 is independently deleted with a fixed probability 𝛿. If
𝒙 is changed to 𝒚 = (𝑦1, 𝑦2, . . . , 𝑦𝑙) ∈ F𝑙2, the output is
(𝑦1, 𝑦2, . . . , 𝑦𝑙 , ?, ?, . . . , ?) ∈ Y. We call this channel a multi-
stack erasure-filled (MSEF) channel of 𝐿 levels with deletion
probability 𝛿. As a first step in analyzing the MSEF channels,
this paper discusses an MSEF channel of two levels called
a double-stack erasure-filled (DSEF) channel. Because the
DSEF channel is the simplest MSEF channel, it is useful for
understanding the MSEF channels.

Example 2.1: Consider sending a sequence (0, 1, 1, 0, 1, 0,
0, 1) through an MSEF channel of eight levels. At the dele-
tion step, let us assume the 2nd and 4th entries are deleted.
It may happen with the probability 𝛿2 (1 − 𝛿)6. The se-
quence is changed to (0, 1, 1, 0, 0, 1). Then channel outputs
(0, 1, 1, 0, 0, 1, ?, ?).

Note that the probability of the input (0, 1, 1, 0, 1, 0, 0, 1)
and the output (0, 1, 1, 0, 0, 1, ?, ?) is not 𝛿2 (1−𝛿)6. Because
other deletions can change the input to the same output,
e.g., the 3rd and 4th deletions. In fact, the probability is
5𝛿2 (1 − 𝛿)6.

Since multiple racetracks are expected to be imple-
mented in parallel to achieve high capacity and high-speed
access, we consider multi-track MSEF channels. Figure 1
illustrates a three-track MSEF channel of seven levels. Each
track in the row direction is an MSEF channel and contains
a sequence of data symbols 𝑥𝑖, 𝑗 . Deletions occur indepen-
dently in each track, marked as ‘𝐷’, resulting in a varying
number of deletions across different tracks. This indepen-
dent deletion process causes variability in the number of
deletions per track. Subsequently, the channel outputs the
remaining symbols, filling the gaps with erasure symbols ‘?’
at the end of the sequence in each track.

In general, in an 𝑛-track multi-racetrack memory, the
write unit is 𝑛 bits, meaning that each of the 𝑛 bits is input to
the corresponding track. If the length of each track is 𝐿, all
𝑛𝐿 slots will be stored by 𝐿 writes. On the other hand, data
reads are assumed to be performed in bulk. Specifically,
it is assumed that all 𝑛𝐿 bits are read out at once, rather
than reading only specific 𝑛 bits. This approach is taken
because shift errors in racetrack memory accumulate over
time. Therefore, to prevent the accumulation of shift errors
and maintain data reliability, all data is output at once when
a data readout occurs. This type of readout is known as
destructive readout [16]. If data needs to be retained, it
is rewritten afterward. In the multi-track MSEF channel
discussed in this paper, we also assume this kind of readout
method. In other words, the readout unit is 𝑛𝐿 bits, and new
data is written after reading all 𝑛𝐿 bits. It can be considered
that the accumulation of shift errors is refreshed every 𝑛𝐿
bits. Since the write unit is 𝑛 bits, 𝑛 is equal to or multiple of
the encoding block size for error correction. Thus, the coding
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x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7

x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7

Track 1

Track 2

Track 3

x1,1 D x1,3 x1,4 x1,5 x1,6 x1,7

x2,1 x2,2 D D D x2,6 x2,7

D x3,2 x3,3 D x3,5 x3,6 x3,7

Track 1

Track 2

Track 3

Deletion occurs.

x1,1 x1,3 x1,4 x1,5 x1,6 x1,7 ?

x2,1 x2,2 x2,6 x2,7 ? ? ?

x3,2 x3,3 x3,5 x3,6 x3,7 ? ?

Track 1

Track 2

Track 3

Channel outputs.

Fig.1: Three-track MSEF channels of seven levels.

scheme discussed in Section 5 is vertical coding [1]. This
scheme uses slots across multiple tracks to store a codeword,
i.e., each column (𝑥1, 𝑗 , 𝑥2, 𝑗 , 𝑥3, 𝑗 ) in Fig. 1 corresponds to a
codeword.

3. Double-Stack Erasure-Filled Channel

This section calculates the channel capacity of the DSEF
channel. Due to the destructive readout assumption men-
tioned in the previous section, memoryless inputs suffice to
achieve the channel capacity of the DSEF channel. The
channel capacity is obtained by calculating the maximum
mutual information between the input and the output of the
DSEF channel. The input alphabet consists of four elements
(0, 0), (0, 1), (1, 0), and (1, 1), while the output alphabet
consists of seven elements (0, 0), (0, 1), (1, 0), (1, 1), (0, ?),
(1, ?), and (?, ?). The transition matrix 𝑃𝑌 |𝑋 is described as
follows:

𝑃𝑌 |𝑋 =

©«

(1 − 𝛿)2 0 0 0
0 (1 − 𝛿)2 0 0
0 0 (1 − 𝛿)2 0
0 0 0 (1 − 𝛿)2

2𝛿(1 − 𝛿) 𝛿(1 − 𝛿) 𝛿(1 − 𝛿) 0
0 𝛿(1 − 𝛿) 𝛿(1 − 𝛿) 2𝛿(1 − 𝛿)
𝛿2 𝛿2 𝛿2 𝛿2

ª®®®®®®®®®¬
.

(1)

By denoting the event probabilities for input (0, 0), (0, 1),
(1, 0), and (1, 1) by 𝑝00, 𝑝01, 𝑝10, and 𝑝11 respectively. The
mutual information 𝐼 (𝑋;𝑌 ) is

Fig. 2: The channel capacity C and the symmetric informa-
tion rate 𝐼𝑆 .

𝐼 (𝑋;𝑌 )
= (1 − 𝛿)2 (−𝑝01 log2 𝑝01 − 𝑝10 log2 𝑝10)
+ (1 − 𝛿)2 (−𝑝00 log2 𝑝00 − 𝑝11 log2 𝑝11)
− 𝛿(1 − 𝛿) (1 + 𝑝00 − 𝑝11) log2 (1 + 𝑝00 − 𝑝11)
− 𝛿(1 − 𝛿) (1 − 𝑝00 + 𝑝11) log2 (1 − 𝑝00 + 𝑝11)
+ 2𝛿(1 − 𝛿) (𝑝00 + 𝑝11).

If 𝑝00 and 𝑝11 are fixed, the mutual information is maximized
under the case 𝑝01 = 𝑝10. If 𝑝01 and 𝑝10 are fixed, the
mutual information is maximized under the case 𝑝00 = 𝑝11.
By setting 𝑝00 = 𝑝11 = 𝑡/2 and 𝑝01 = 𝑝10 = (1− 𝑡)/2, where
0 ≤ 𝑡 ≤ 1, we obtain

𝐼 (𝑋;𝑌 ) = (1 − 𝛿)2 (1 + ℎ(𝑡)) + 2𝛿(1 − 𝛿)𝑡,

where ℎ() is the binary entropy function. It is maximized
when 𝑡0 = 22𝛿/(1−𝛿)/(22𝛿/(1−𝛿) + 1), except for 𝛿 = 1. For
𝛿 = 1, the mutual information is 0.

The mutual information is maximized under the non-
uniform distribution. This complicates the design of error-
correcting codes for this channel. We found that 𝑡0 ap-
proximates 1/2 if 𝛿 is small, i.e. the uniform distribution
𝑝00 = 𝑝01 = 𝑝10 = 𝑝11 = 1/4. The mutual information for
𝑝00 = 𝑝01 = 𝑝10 = 𝑝11 is called the symmetric information
rate 𝐼𝑆 . In this case,

𝐼𝑆 = 2(1 − 𝛿)2 + 𝛿(1 − 𝛿) = (1 − 𝛿)(2 − 𝛿). (2)

Figure 2 depicts the channel capacity C and the symmetric
information rate 𝐼𝑆 . It can be seen that there is no significant
gap between C and 𝐼𝑆 in high-rate regions†. Therefore, in
the following section, we evaluate the performance of error
correction methods based on the symmetric information rate
rather than the channel capacity.

4. Symmetric Information Rates Under Level-By-Level
Error Correction

This section discusses the construction of error-correcting
†Above 1.6 is generally assumed in storage systems.
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codes for the DSEF channel. The size of the input and out-
put alphabets for the DSEF channel are four and seven, re-
spectively. The authors are not aware of any error-correcting
codes under such alphabet sizes. We focus on one of the two
levels at a time. In other words, instead of considering the
DSEF channel for input (𝑥1, 𝑥2) and output (𝑦1, 𝑦2), consider
the DSEF channel as two channels, the first-level channel
Ch1 : 𝑥1 ↦→ 𝑦1 and the second-level channel Ch2 : 𝑥2 ↦→ 𝑦2.
In this way, the input alphabet of either channel will be {0, 1},
and the output alphabet will be {0, 1, ?}.

Consider an input data block of length 𝑛. Since each
symbol is a pair of bits, the input data block is regarded as
a 𝑛-by-2 matrix (𝑐𝑖, 𝑗 )1≤𝑖≤𝑛, 𝑗=1,2 over the binary alphabet.
The first and second columns of the input data block are
independently encoded codewords so they can be decoded
independently. This is the basis for the term level-by-level
error correction, as each level is decoded separately. The
first and second columns go through the first-level channel
Ch1 and the second-level channel Ch2, respectively. Let us
now study the symmetric information rates for the Ch1 and
Ch2.

4.1 The Second-Level Channel Ch2

Analyzing the symmetric information rate of the second-
level channel Ch2 is easier than that of the first-level channel
Ch1, so we first study the symmetric information rate of Ch2.
A transition matrix 𝑃𝑌2 |𝑋2 is obtained by

𝑃𝑌2 |𝑋2 (𝑌2 = 𝑦2 |𝑋2 = 𝑥2)
=
∑
𝑥1 ,𝑦1

𝑃𝑌 |𝑋 (𝑌 = (𝑦1, 𝑦2) |𝑋 = (𝑥1, 𝑥2))𝑃𝑋1 (𝑋1 = 𝑥1),

where 𝑃𝑌 |𝑋 is the transition matrix in (1) and 𝑃𝑋1 is the
probability distribution for the first-level input. Then the
transition matrix 𝑃𝑌2 |𝑋2 is given by

©«
(1 − 𝛿)2 0

0 (1 − 𝛿)2

2𝛿 − 𝛿2 2𝛿 − 𝛿2

ª®¬ .
Hence, Ch2 is an erasure channel with the erasure probability
2𝛿 − 𝛿2. The symmetric information rate of Ch2 is

𝐼2 = 1 − (2𝛿 − 𝛿2) = (1 − 𝛿)2. (3)

Since the second-level channel Ch2 is an erasure channel,
the symmetric information rate is identical to the channel
capacity. Therefore, for an input data block in matrix form
(𝑐𝑖, 𝑗 )1≤𝑖≤𝑛, 𝑗=1,2, the second column (𝑐𝑖,2)1≤𝑖≤𝑛 is expected
to be an erasure error-correcting codeword.

4.2 The First-Level Channel Ch1

Next, we study the symmetric information rate of the first-
level channel Ch1. Similar to Ch2, the transition matrix
𝑃𝑌1 |𝑋1 is obtained by

𝑃𝑌1 |𝑋1 (𝑌1 = 𝑦1 |𝑋1 = 𝑥1)

=
∑
𝑥2 ,𝑦2

𝑃𝑌 |𝑋 (𝑌 = (𝑦1, 𝑦2) |𝑋 = (𝑥1, 𝑥2))𝑃𝑋2 (𝑋2 = 𝑥2),

where 𝑃𝑌 |𝑋 is the transition matrix in (1) and 𝑃𝑋2 is the
probability distribution for the second-level input. The tran-
sition matrix 𝑃𝑌1 |𝑋1 depends on 𝑃𝑋2 . By setting 𝑃𝑋2 (𝑋2 =
0) = 𝑃𝑋2 (𝑋2 = 1) = 1/2 due to the symmetric information
assumption 𝑝00 = 𝑝01 = 𝑝10 = 𝑝11 = 1/4, then the transition
matrix 𝑃𝑌1 |𝑋1 is given by

©«
(1 − 𝛿)2 + 3

2𝛿(1 − 𝛿) 1
2𝛿(1 − 𝛿)

1
2𝛿(1 − 𝛿) (1 − 𝛿)2 + 3

2𝛿(1 − 𝛿)
𝛿2 𝛿2

ª®¬ ,
where the input alphabet is {0, 1} and the output alphabet is
{0, 1, ?}.

The first-level channel Ch1 is regarded as a binary sym-
metric erasure channel with the flip probability 1

2𝛿(1 − 𝛿)
and the erasure probability 𝛿2. In general, the symmet-
ric information rate, which is actually equal to the channel
capacity, of a binary symmetric erasure channel with the
flip probability 𝑓 and the erasure probability 𝑒 is given as
(1−𝑒)(1−ℎ( 𝑓

1−𝑒 )), where ℎ() is the binary entropy function.
Hence, the symmetric information rate 𝐼1 for the first-level
channel Ch1 is

𝐼1 = (1 − 𝛿2) (1 − ℎ( 𝛿

2 + 2𝛿
))

= (1 − 𝛿)(1 + 𝛿 − ℎ( 𝛿

2 + 2𝛿
)(1 + 𝛿)). (4)

4.3 The First-Level Channel Ch1 After Error Correction
for Ch2

Here, we study the symmetric information rate of the first-
level channel under the knowledge of error-correction result
for Ch2. First, guess the input pair (𝑥1, 𝑥2) for Ch1 and
Ch2, respectively from the output pair (𝑦1, 𝑦2). If the output
pair (𝑦1, 𝑦2) is one of (0, 0), (0, 1), (1, 0), (1, 1), it implies
that no deletion error happened. Hence we may conclude
(𝑥1, 𝑥2) = (𝑦1, 𝑦2). If the output pair (𝑦1, 𝑦2) is (?, ?) and
even if the error correction for Ch2 is successfully done, the
error-correction result does not increase the information for
𝑥1, i.e., it is regarded as an erasure over Ch1.

The remaining is the cases 𝑦1 is a binary symbol but
𝑦2 is the erasure symbol ?, i.e., (𝑦1, 𝑦2) = (0, ?) or (1, ?).
Assume the error-correcting result 𝑧 for Ch2 is different from
𝑦1. The input pair is determined as (𝑥1, 𝑥2) = (𝑦1, 𝑧) since
𝑥1 or 𝑥2 must be 𝑦1 but 𝑥2 = 𝑧 ≠ 𝑦1. Next, assume the
error-correcting result 𝑧 for Ch2 is equal to 𝑦1. The input
pair (𝑥1, 𝑥2) cannot be determined because both (0, 𝑧) and
(1, 𝑧) are possible for (𝑥1, 𝑥2).

We introduce symbols 𝔬 and 𝔩 in the case where the
input is determined to be 0 and 1, respectively, by using
the error-correction result for Ch2. The transition matrix
of the channel Ch1 is regarded as the following channel
Ch′

1 with the input alphabet {0, 1} and the output alphabet
{𝔬, 0, ?, 1, 𝔩}:
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©«

(1−𝛿) (2−𝛿)
2 0

𝛿(1 − 𝛿) 𝛿 (1−𝛿)
2

𝛿2 𝛿2

𝛿 (1−𝛿)
2 𝛿(1 − 𝛿)
0 (1−𝛿) (2−𝛿)

2

ª®®®®®®¬
.

By the routine calculation of entropies for input, output, and
joint distribution, the symmetric information rate for Ch′

1 is
given as

𝐼2→1 = (1 − 𝛿)(1 + 𝛿 − ( 3 log2 3
2

− 1)𝛿) (5)

∼ (1 − 𝛿) (1 + 𝛿 − 1.38𝛿).
Let us clarify the mapping procedure from the output

pair (𝑦1, 𝑦2) and the error-correction result 𝑧 for Ch2 to the
output 𝑤 of Ch′

1 as follows.
• If the output is (0, 0) or (0, 1), set 𝑤 = 𝔬 as a reliable

symbol.
• If the output is (1, 0) or (1, 1), set 𝑤 = 𝔩 as a reliable

symbol.
• If the output is (?, ?), set 𝑤 =? as a erasure symbol.
• If the output is (0, ?) and the estimated symbol 𝑧 for

Ch2 is 0, set 𝑤 = 0 as a doubtful symbol.
• If the output is (0, ?) and the estimated symbol 𝑧 for

Ch2 is 1, set 𝑤 = 𝔬 as a reliable symbol.
• If the output is (1, ?) and the estimated symbol 𝑧 for

Ch2 is 0, set 𝑤 = 𝔩 as a reliable symbol.
• If the output is (1, ?) and the estimated symbol 𝑧 for

Ch2 is 1, set 𝑤 = 1 as a doubtful symbol.

4.4 The Second-Level Channel Ch2 After Error Correction
for Ch1

Similar to the previous section, we study the symmetric infor-
mation rate of the second-level channel under the knowledge
of error-correction result for Ch1.

The cases for (𝑦1, 𝑦2) is one of (0, 0), (0, 1), (1, 0), (1, 1)
and (?, ?) are the same as in the previous section.

Let us consider the cases (𝑦1, 𝑦2) = (0, ?) or (1, ?).
Assume that the error-correcting result 𝑧 for Ch1 is different
from 𝑦1. The input is determined as (𝑥1, 𝑥2) = (𝑧, 𝑦1). Next,
assume that the error-correcting result 𝑧 for Ch1 is equal to 𝑦1.
The input cannot be determined since both (𝑥1, 𝑥2) = (𝑧, 0)
and (𝑧, 1) may happen, i.e., 𝑥1 = 𝑧 but the information for 𝑥2
is still ?.

As in the previous section, we introduce symbols 𝔬 and
𝔩 in the case where the input is determined to be 0 and 1,
respectively, by using the error-correction result for Ch1.

The transition matrix of the channel Ch2 is regarded as
the following channel Ch′

2 with the input alphabet {0, 1} and
the output alphabet {𝔬, 0, ?, 1, 𝔩}:

©«
(1 − 𝛿)2 + 1

2𝛿(1 − 𝛿) 0
0 0

𝛿2 + 3
2𝛿(1 − 𝛿) 𝛿2 + 3

2𝛿(1 − 𝛿)
0 0
0 (1 − 𝛿)2 + 1

2𝛿(1 − 𝛿)

ª®®®®®¬
.
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Fig. 3: Symmetric information rate (SIR) comparison. The
𝐼1 is the SIR of the first-level channel Ch1 in (4). The 𝐼2 is
the SIR of the second-level channel Ch2 in (3). The 𝐼2→1 is
the SIR of the Ch1 after error correction for Ch2 in (5). The
𝐼1→2 is the SIR of the Ch2 after error correction for Ch1 in
(6).

Hence the channel Ch′
2 is regarded as an erasure channel

with the erasure probability 𝛿2 + 3
2𝛿(1 − 𝛿).

The symmetric information rate, which is equal to the
channel capacity, for Ch′

2 is

𝐼1→2 = 1 − (𝛿2 + 3
2
𝛿(1 − 𝛿)) (6)

= (1 − 𝛿)(1 + 𝛿 − 1.5𝛿).

4.5 Symmetric Information Rate Comparison

We have obtained four symmetric information rates
𝐼1, 𝐼2, 𝐼1→2 and 𝐼2→1. Figure 3 shows these four symmet-
ric information rates for each deletion probability. In the
deletion-probability regions less than 0.455, 𝐼2 is higher
than 𝐼1. Regarding symmetric information rate after decod-
ing another level, 𝐼2→1 is higher than 𝐼1→2 for any deletion
probabilities.

Let us consider the combination of two symmetric in-
formation rates. For example, the sum of 𝐼1 and 𝐼2 means
the compound symmetric information rate of independently
decoding for two channels. On the other hand, the sum of 𝐼1
and 𝐼1→2 means the symmetric information rate by decoding
for the first-level channel first and the second-level channel
next. The other one is the sum of 𝐼2 and 𝐼2→1 that means the
symmetric information rate by decoding for the second-level
channel first and the first-level channel next.

• The sum of 𝐼1 and 𝐼2 is

𝐼1 + 𝐼2 = (1 − 𝛿) (2 − ℎ( 𝛿

2 + 2𝛿
)(1 + 𝛿)). (7)

• The sum of 𝐼1 and 𝐼1→2 is
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Fig.4: Compound information rates and the upper bound.
The upper bound represents the symmetric information rate
shown (SIR) in (2). It represents the theoretical maximum
of other compound information rates. The 𝐼1 + 𝐼2 represents
the sum of the respective SIRs when a received codeword in
each level is decoded independently. The 𝐼1 + 𝐼1→2 repre-
sents the SIR when a received codeword at the first level is
decoded, followed by the decoding of a received codeword
at the second using the results from the first. The 𝐼2 + 𝐼2→1
represents the SIR when a received codeword at the second
level is decoded, followed by the decoding of a received
codeword at the first using the results from the second. The
𝐼2 + 𝐼2→1 approaches the upper bound, especially when the
deletion probability is small.

𝐼1 + 𝐼1→2 = (1 − 𝛿) (2 − ℎ( 𝛿

2 + 2𝛿
) (1 + 𝛿) + 0.5𝛿).

(8)

• The sum of 𝐼2 and 𝐼2→1 is

𝐼2 + 𝐼2→1 = (1 − 𝛿) (2 − ( 3 log2 3
2

− 1)𝛿). (9)

Figure 4 depicts compound information rates shown in
(7), (8) and (9), and the upper bound, i.e., the symmetric
information rate for the double-stack erasure channel shown
in (2). The dashed line, representing the sum of 𝐼2+𝐼2→1, and
the gray line, representing the sum of 𝐼1 + 𝐼1→2, intersect at
the deletion probability of 𝛿 ∼ 0.5756. The sum of 𝐼2 + 𝐼2→1
approaches the upper bound. The difference between them
is

𝐼𝑆 − (𝐼2 + 𝐼2→1) = ( 3 log2 3
2

− 2)𝛿(1 − 𝛿)

∼ 0.38𝛿(1 − 𝛿),

and it is small under a small deletion probability 𝛿.

5. Demonstration of Level-By-Level Error Correction

This section demonstrates the error-correcting capability of

the level-by-level error correction. Since decoding the sec-
ond level first and then decoding the first level described in
the previous section achieves the highest compound infor-
mation rate, we demonstrate this method in our experiments.

Figure 5 illustrates the system model used for demon-
strating the level-by-level error correction in the multi-track
DSEF channel. Two codewords 𝒄1 = (𝑐1,1, 𝑐2,1, . . . , 𝑐𝑛,1) ∈
C1 and 𝒄2 = (𝑐1,2, 𝑐2,2, . . . , 𝑐𝑛,2) ∈ C2 are prepared for input
into the DSEF channel. The coding rates of C1 and C2 can be
identical, however as explained in Section 4, each level of the
DSEF channel has different symmetric information rates for
any given deletion probability. Therefore, the coding rates
of C1 and C2 should differ according to each level’s SIR.
Outputs from the DSEF channel are received as sequences
𝒚1 = (𝑦1,1, 𝑦2,1, . . . , 𝑦𝑛,1) and 𝒚2 = (𝑦1,2, 𝑦2,2, . . . , 𝑦𝑛,2) cor-
responding to the codewords 𝒄1 and 𝒄2, respectively. First,
the received sequence 𝒚2 is decoded by the L2 decoder,
which corrects erasures at the second level, producing an
estimated codeword 𝒄2 = (𝑐1,2, 𝑐2,2, . . . , 𝑐𝑛,2). Next, the
estimated codeword 𝒄2 from the L2 decoder is fed into the
L1 decoder, which corrects errors in 𝒚1 at the first level.
The L1 decoder calculates the likelihood of the channel out-
put 𝒚1 based on the transition matrix of the DSEF channel
discussed in Sect. 4.3 using the estimated codeword 𝒄2 and
the channel outputs 𝒚1 and 𝒚2. The log-likelihood ratio
𝐿𝐿𝑅(𝑦𝑖,1, 𝑦𝑖,2, 𝑐𝑖,2) of the channel output 𝑦𝑖,1 is calculated
by

𝐿𝐿𝑅(𝑦𝑖,1, 𝑦𝑖,2, 𝑐𝑖,2) =


0 if 𝑦𝑖,1 = ?
Ω(𝑦𝑖,1) if 𝛾(𝑦𝑖,1, 𝑦𝑖,2, 𝑐𝑖,2)
Λ(𝑦𝑖,1) otherwise,

where the condition 𝛾(𝑦𝑖,1, 𝑦𝑖,2, 𝑐𝑖,2) is defined as

𝛾(𝑦𝑖,1, 𝑦𝑖,2, 𝑐𝑖,2) =
𝑦𝑖,2 ≠ ? ∨ 𝑦𝑖,2 = ? ∧ 𝑐𝑖,2 ≠ ? ∧ 𝑦𝑖,1 ≠ ? ∧ 𝑦𝑖,1 ≠ 𝑐𝑖,2,

where ∨ and ∧ are logical OR and AND operators, respec-
tively. Functions Ω(𝑦𝑖,1) and Λ(𝑦𝑖,1) are defined as

Ω(𝑦𝑖,1) =
{
+∞ if 𝑦𝑖,1 = 0
−∞ otherwise,

and

Λ(𝑦𝑖,1) =
{

log(2) if 𝑦𝑖,1 = 0
− log(2) otherwise,

respectively. Interestingly, the log-likelihood ratio of the
channel output 𝒚1 here is independent of the deletion prob-
ability 𝛿. The L1 decoder then corrects the errors in 𝒚1,
resulting in the corrected output 𝒄1. This two-step level-by-
level decoding ensures robust error correction.

Low-density parity-check (LDPC) codes [17] are uti-
lized at each level in the DSEF channel since the sum-product
algorithm, a decoding method for LDPC codes, effectively
corrects erasures and bit-flip errors, even when they occur



UCHIKAWA and HAGIWARA: DOUBLE-STACK ERASURE-FILLED CHANNEL AND LEVEL-BY-LEVEL ERROR CORRECTION
7

simultaneously. Other codes, like polar codes, will proba-
bly also be applicable, but we believe the evaluation using
LDPC codes provides sufficient insights into their perfor-
mance for our level-by-level decoding. The LDPC codes
used in our experiments are regular quasi-cyclic LDPC (QC-
LDPC) codes [18] with column weight three. Three different
LDPC codes, 𝐶1, 𝐶2, and 𝐶3, with different code rates, are
used in our experiments.

Their parity-check matrices are 8 × 64, 10 × 64, and
18 × 64 arrays consisting of 128 × 128 cyclic-permutation
or zero matrices for 𝐶1, 𝐶2, and 𝐶3, respectively. Since all
LDPC codes are column weight three, each array column
consists of three circulant permutation matrices (CPMs) and
zero matrices. The shift values of the CPMs are determined
by progressive edge growth (PEG) [19] . CPMs are dis-
tributed uniformly so that the row weights of all parity-check
matrices are also uniform. The sizes of the parity-check ma-
trices generated in this way are 1024 × 8192, 1280 × 8192,
and 2304 × 8192 for 𝐶1, 𝐶2, and 𝐶3, respectively. The cod-
ing rates of 𝐶1, 𝐶2, and 𝐶3 are 0.875, 0.84375, and 0.71875,
respectively. The maximum number of iterations for the
sum-product algorithm is 50. Channel likelihood is calcu-
lated by using the transition matrices described in Sect. 4.

Figure 6 shows the experimental results. All decoding
curves except ‘𝐶1 L1’ begin to fall around the deletion prob-
ability of 0.065. Symmetric information rates at the deletion
probability of 0.065 are shown in Table 1. The difference
between 𝐼2→1 and 𝐼1 is 0.112. You can see that the coding-
rate difference between𝐶1 and𝐶3 is 0.15625. Therefore, we
roughly obtain information-rate gain by decoding the second
level first and then decoding the first level.

The performance of ‘𝐶3 L1’ is worse than both that
of ‘𝐶2 L2’ and that of ‘𝐶1 L1 after 𝐶2 L2’ in Fig. 6 below
the decoding-error probability of 10−1 even though the parity
length of𝐶3 is equal to the sum of the parity lengths of𝐶1 and
𝐶2. If the first-level decoding cannot be performed correctly,
the performance of decoding the first level first and then
decoding the second level cannot be achieved. Therefore,
it is not expected that the performance of decoding the first
level first and then decoding the second level is better.

Table 2 shows the deletion thresholds for code rates
of 𝐶1, 𝐶2, and 𝐶3. The deletion threshold for any given
symmetric information rate 𝐼 ′ is defined as the maximum
deletion probability 𝛿 such that the symmetric information
rate 𝐼 (𝛿) calculated from the deletion probability 𝛿 does
not fall below 𝐼 ′. The difference between the threshold of
𝐼2→1 = 0.875 and that of 𝐼1 = 0.875 is equal to 0.058. It
is observed that the distance between the decoding curve of
‘𝐶1 L1 after 𝐶2 L2’ and that of ‘𝐶1 L1’ is 0.05 in Fig. 6.
The deletion thresholds in Table 2 can be seen to be larger
than the deletion probabilities in Fig. 6. This indicates that
there is room for code optimization. The regular LDPC
codes used in this experiment are generally not the class of
codes that achieve the Shannon limit. It is conceivable that by
optimizing the structure of LDPC codes, codes that approach
the deletion threshold can be constructed. However, this is
beyond the scope of this paper and will be addressed in future

c1,1 c1,2

c2,1 c2,2

cn,1 cn,2

...
...

DSEF channel

DSEF channel

DSEF channel

...

y1,1 y1,2

y2,1 y2,2

yn,1 yn,2

...
...

ĉ1,1 ĉ1,2

ĉ2,1 ĉ2,2

ĉn,1 ĉn,2

...
...

L1 decoder

L2 decoder

Fig.5: System model of the demonstration involves decoding
the second level first, followed by decoding the first level.

Fig.6: Error-correcting capability of three different LDPC
codes 𝐶1, 𝐶2, and 𝐶3. The ‘𝐶1 L1 after 𝐶2 L2’ represents
the error-correcting capability of𝐶1 at the first level after the
decoding of 𝐶2 at the second level. The ‘𝐶2 L2’ represents
the error-correcting capability of 𝐶2 at the second level. The
‘𝐶3 L1’ represents the error-correcting capability of 𝐶3 at
the first level. The ‘𝐶1 L1’ represents the error-correcting
capability of 𝐶1 at the first level.

Table 1: Symmetric information rates at the deletion proba-
bility of 0.065.

𝐼2→1 𝐼2 𝐼1
0.912 0.874 0.800

Table 2: Deletion thresholds for code rates of 𝐶1, 𝐶2, and
𝐶3.

𝐼2→1 = 0.875 𝐼1 = 0.875 𝐼2 = 0.84375 𝐼1 = 0.71875
0.0931 0.0351 0.0814 0.104

work.

6. Conclusion

A multi-stack erasure-filled (MSEF) channel inspired by
racetrack memory with multiple racetracks was intro-
duced. Channel capacity, symmetric information rate, and
error-correcting capability for a double-stack erasure-filled
(DSEF) channel, an MSEF channel of two levels, were dis-
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cussed. As verified through Sections 4 and 5, good error-
correction performance was obtained by decomposing the
DSEF channel into two binary-input ternary-output chan-
nels and by decoding the second level first and then decod-
ing the first level. In contrast, the DSEF channel is initially
a quaternary-input septenary-output channel. In particular,
it can be argued that the error correction for the existing
channel was adequate, which is a meaningful achievement
in terms of implementation.

As future work, we aim to consider more realistic chan-
nels. Although we treated the filled symbols as erasures
to facilitate the analysis in this paper, the random-binary-
filled channel that fills a sequence of bit values will likely be
more realistic. We plan to examine this point in more detail
in future research and conduct analyses using the random-
binary-filled channel as well.
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