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Detection Probability of Poor Responses in Questionnaires with
Quality Control Questions∗

Tota SUKO† and Manabu KOBAYASHI††, Members

SUMMARY In the realm of web-based surveys, ensuring the quality
of responses is a crucial yet challenging task. This study addresses the
issue of detecting poor responses, particularly focusing on the phenomenon
of ’satisficing’ - a situation where respondents provide minimal effort re-
sponses. Traditional methods such as the Instructional Manipulation Check
(IMC) and Directed Question Scale (DQS) have been commonly employed
to tackle this issue. However, their effectiveness is often limited due to
various constraints. This paper introduces a theoretical framework and a
generalized model for the design of questionnaires. This framework aims
to improve the detection of poor responses, thus enhancing the reliabil-
ity and validity of survey data. Through numerical experiments, the paper
demonstrates the applicability and effectiveness of the proposed model. The
study’s approach is based on a thorough analysis of response patterns and
the integration of quality control questions within the survey structure. The
findings of this research have significant implications for the field of survey
methodology, providing a more robust and systematic way of ensuring data
integrity in web-based surveys.
key words: Satisficing in Surveys, Quality Control Questions, Instructional
Manipulation Check, Directed Question Scale

1. Introduction

In an era where data-driven decision-making has become a
cornerstone across various sectors, surveys have emerged as
pivotal tools for gathering insights and opinions. The tran-
sition from traditional paper-based methods to web-based
surveys has revolutionized the way organizations, from aca-
demic researchers to market analysts, collect data. This dig-
ital shift, while offering unprecedented reach and efficiency,
has introduced new challenges in ensuring data integrity and
representativeness.

Web-based surveys, despite their popularity, are sus-
ceptible to a range of biases that compromise data reliability.
Among these, the phenomenon of “satisficing”[1] – a term
coined to describe the behavior where respondents provide
satisfactory but suboptimal answers – has become increas-
ingly prevalent. This behavior is more than just a minor
inconvenience; it poses a significant threat to the quality
of data collected. Satisficing manifests in various forms,
from respondents skimming through questions without due
attention to providing arbitrary answers to speed through the
survey. Such responses not only dilute the accuracy of the

†The author is with the Faculty of Social Sciences, Waseda
University, Tokyo, 169–8050 Japan.

††The author is with the Center for Data Science, Waseda Uni-
versity, Tokyo, 169–8050 Japan.

∗This paper was partially presented at SITA2023[12].

survey results but can also lead to misleading conclusions,
particularly in scenarios where precise data is crucial for
policy-making or business strategies.

Traditionally, to detect poor responses caused by Satis-
ficing, methods involving the embedding of special questions
known as quality control questions have been considered.
These quality control questions include methods such as the
Instructional Manipulation Check (IMC)[2], the Directed
Question Scale (DQS)[3], and Consistency Check Questions
(CCQs). The IMC is a method that includes specific instruc-
tions in the question to ensure the respondent is reading the
question correctly. For example, it might instruct, “Please
always choose option 1 for this question.” The DQS includes
specific instructions among the choices. For instance, in a
Likert scale item, it might include instructions like, “Select
the far left option for this item.” CCQs are used to verify that
a participant’s responses are consistent throughout the sur-
vey. This might involve asking similar questions in different
formats several times. A lot of research has been conducted
on the extent to which actual surveys are improved by us-
ing these quality control questions [3]–[11]. However, these
methods do not guarantee the detection of all poor responses.
Also, the theoretical basis for the detection capabilities of
quality control questions has not yet been fully elucidated.

Therefore, our research aims to establish a theoretical
framework for questionnaire design to detect poor responses.
We propose a generalized model for this purpose, derive the-
oretical probabilities of detecting poor responses, and pro-
vide guidelines for effective survey design through numerical
experiments. This approach seeks to enhance the reliabil-
ity of web-based surveys by addressing the critical issue of
response quality.

2. Definition of Questionnaire Design Model

2.1 Design of Questions

In this paper, we define questions related to the informa-
tion desired in a survey as “information questions”. Ad-
ditionally, we define dummy questions added for detect-
ing poor responses as “quality control questions”. We as-
sume both information and quality control questions have
a multiple-choice format with 𝐷 options, represented by
{0, 1, . . . , 𝐷 − 1}. 𝐿 quality control questions are con-
catenated to 𝐾 information questions. The response se-
quence of an arbitrary respondent to the information ques-
tions is denoted as 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝐾 ). Similarly, the re-
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Table 1 QCQ Function
𝑥𝑘 𝑓𝑙 (𝑥𝑘 )
0 ℎ𝑙,0
1 ℎ𝑙,1
· · · · · ·
𝐷 − 1 ℎ𝑙,𝐷−1

sponse sequence to the quality control questions is denoted
as 𝒄 = (𝑐1, 𝑐2, . . . , 𝑐𝐿).

The 𝑙-th quality control question is defined as a question
for which the response is uniquely determined according to
the function 𝑓𝑙 (�̃�) for any response �̃� = (𝑥1, 𝑥2, . . . , 𝑥𝐾 )
from a suitable respondent who is not a poor responder.
This function 𝑓𝑙 (�̃�) is referred to as the “quality control
question (QCQ) function”, and its determination constitutes
the method for designing quality control questions. In the
following, we focus on a class of QCQ functions where the
response to the 𝑙-th quality control question depends solely
on a specific 𝑘-th response. Therefore we represent the QCQ
function as 𝑓𝑙 (�̃�𝑘).

We present a general representation of the input and
output of a certain QCQ function in Table 1. That is,
𝑓𝑙 (𝑥𝑘) = ℎ𝑙,𝑥𝑘 . There are 𝐷𝐷 patterns of QCQ func-
tions. For 𝐷 = 3, there exist 27 patterns as shown in
Table 2. For example, the QCQ function of pattern p1
( 𝑓𝑙 (0) = 0, 𝑓𝑙 (1) = 0, 𝑓𝑙 (2) = 0) represents a quality con-
trol question that always results in a 0, regardless of the
content of the information questions. This type of qual-
ity control question can be considered as used in IMC or
DQS. Another example, the QCQ function of pattern p16
( 𝑓𝑙 (0) = 1, 𝑓𝑙 (1) = 2, 𝑓𝑙 (2) = 0), represents a quality control
question that queries similar content to the information ques-
tions but with a different order of options. The set of these
QCQ functions, when combined as 𝐿 functions, is defined
as F = { 𝑓1, 𝑓2, . . . , 𝑓𝐿}.

We detect poor responses by using defined quality con-
trol questions. For a respondent’s response sequences 𝒙, 𝒄
and the set of quality control questions F , a response is iden-
tified as poor if there exists a pair of 𝑥𝑘 and 𝑐𝑙 that satisfies
the following condition:

𝑓𝑙 (𝑥𝑘) ≠ 𝑐𝑙 , 𝑙 = 1, 2, . . . , 𝐿. (1)

In other words, if the predicted response to a quality con-
trol question 𝑓𝑙 (𝑥𝑘) differs from the actual response 𝑐𝑙 , the
response is considered poor. An example of detecting poor
responses is shown in Fig.1.

2.2 Poor Response Model

Different patterns of response methods by poor responders
can be considered. We model the scenario where respon-
dents answer probabilistically without thoroughly reading
the questions. Therefore, it is assumed that a poor responder
selects the options for each question independently, with a
constant probability, regardless of the question content. This
probability is referred to as the “response probability” and is
defined as follows.

Fig. 1 Example of detecting poor responses

Pr{𝑥𝑘 = 𝑖} = 𝜃𝑖 ,
𝑖 = 0, 1, . . . , 𝐷 − 1, 𝑘 = 1, 2, . . . , 𝐾. (2)

Pr{𝑐𝑙 = 𝑖} = 𝜃𝑖
𝑖 = 0, 1, . . . , 𝐷 − 1, 𝑙 = 1, 2, . . . , 𝐿. (3)

𝐷−1∑
𝑖=0

𝜃𝑖 = 1. (4)

𝜽 = (𝜃0, 𝜃1, . . . , 𝜃𝐷−1). (5)

Furthermore, let us represent the probability density
function of a poor respondent with a response probability
of 𝜽 as 𝑝(𝜽). It is assumed that all poor respondents are
independently assigned a response probability 𝜽 following
𝑝(𝜽).

As a concrete example of 𝑝(𝜽), consider a Dirichlet
distribution with parameters𝜶 = (𝛼0, 𝛼1, . . . , 𝛼𝐷−1), as rep-
resented by the following equation:

𝑝(𝜽) =
Γ(∑𝐷−1

𝑖=0 𝛼𝑖)
Γ(𝛼0) . . . Γ(𝛼𝐷−1)

𝜃𝛼0−1
0 𝜃𝛼1−1

1 . . . 𝜃𝛼𝐷−1−1
𝐷−1 ,

(6)

where Γ(·) is Gammma function. In cases where 𝑝(𝜽) fol-
lows a Dirichlet distribution, we will refer to this as “poor
respondents following the Dirichlet distribution model”.

3. Average Poor Response Detection Probability

3.1 Definition of Average Poor Response Detection Prob-
ability

Let 𝑅(𝜽 , F ) denote the probability that a response from a
poor respondent with response probability 𝜽 is detected as a
poor response. 𝑅(𝜽 , F ) is defined as follows:

𝑅(𝜽 , F ) = 𝑃𝑟{𝒙, 𝒄 | 𝑓𝑙 (𝑥𝑘) ≠ 𝑐𝑙 , ∃ 𝑓𝑙 ∈ F }. (7)

𝑅(𝜽 , F ) represents the probability that a response from an
individual poor respondent is detected as poor through the



SUKO and KOBAYASHI: DETECTION PROBABILITY OF POOR RESPONSES IN QUESTIONNAIRES WITH QUALITY CONTROL QUESTIONS
3

Table 2 All Patterns of QCQ Functions for 𝐷 = 3
𝑓𝑙 (𝑥𝑘 )

𝑥𝑘 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
1 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

quality control questionsF . When analyzing questionnaires,
considering the inclusion of faulty responses from multiple
respondents, it becomes more interesting to know what pro-
portion of poor responses can be detected among all faulty
respondents.

Therefore, the average poor response detection proba-
bility 𝑄(F ) is defined by the following equation:

𝑄(F ) = 𝐸 [𝑅(𝜽 , F )],

=
∫
𝜽
𝑅(𝜽 , F )𝑝(𝜽)𝑑𝜽 . (8)

𝑄(F ) does not represent the probability of detecting a re-
sponse as poor among all survey respondents. Instead, it
represents the probability of detecting a response as poor
among all poor respondents.

3.2 Average Poor Response Detection Probability for a
General Poor Response Model

The average poor response detection probability can be de-
termined by the following theorem:

Theorem 1. Let us assume the 𝑙-th QCQ function is rep-
resented as in Table 1, and all QCQ functions use different
information questions as their arguments. When the prob-
ability of a poor respondent appearing with response prob-
ability 𝜽 follows 𝑝(𝜽), the average poor response detection
probability can be calculated by the following equation:

𝑄(F ) = 1 −
𝐿∏
𝑙=1

𝐷−1∑
𝑑=0

𝐸 [𝜃𝑑𝜃ℎ𝑙,𝑑 ], (9)

where, 𝐸 [𝜃𝑑𝜃ℎ𝑙,𝑑 ]is defined by the following equation:

𝐸 [𝜃𝑑𝜃ℎ𝑙,𝑑 ] =
∫

𝜃𝑑𝜃ℎ𝑙,𝑑 𝑝(𝜽)𝑑𝜽 . (10)

Proof. Firstly, define the probability of detecting a poor re-
sponse using the 𝑙-th quality control question as 𝑅𝑙 (𝜽 , 𝑓𝑙),
which is defined below:

𝑅𝑙 (𝜽 , 𝑓𝑙) = 𝑃𝑟{𝒙, 𝒄 | 𝑓𝑙 (𝑥𝑘) ≠ 𝑐𝑙}. (11)

For all QCQ functions 𝑓𝑙 included in F , when different 𝑥𝑘
are used as arguments, the following holds:

𝑅(𝜽 , F ) = 1 −
𝐿∏
𝑙=1

(1 − 𝑅𝑙 (𝜽 , 𝑓𝑙)). (12)

Here, 𝑄(F ) can be expanded as follows:

𝑄(F ) = 𝐸 [𝑅(𝜽 , F )],

= 𝐸 [1 −
𝐿∏
𝑙=1

(1 − 𝑅𝑙 (𝜽 , 𝑓𝑙))],

= 1 − 𝐸 [
𝐿∏
𝑙=1

(1 − 𝑅𝑙 (𝜽 , 𝑓𝑙))],

= 1 −
𝐿∏
𝑙=1

𝐸 [1 − 𝑅𝑙 (𝜽 , 𝑓𝑙)],

= 1 −
𝐿∏
𝑙=1

(1 − 𝐸 [𝑅𝑙 (𝜽 , 𝑓𝑙)]). (13)

Furthermore, when a certain 𝑙-th quality control question
uses the QCQ function from Table 1, 𝑅𝑙 (𝜽 , 𝑓𝑙) can be deter-
mined as follows:

𝑅𝑙 (𝜽 , 𝑓𝑙) = 1 − {𝜃0𝜃ℎ𝑙,0 + 𝜃1𝜃ℎ𝑙,1 + . . . + 𝜃𝐷−1𝜃ℎ𝑙,𝑑−1 }.
(14)

Therefore, taking the expected values of both sides, the fol-
lowing equation holds:

𝐸 [𝑅𝑙 (𝜽 , 𝑓𝑙)] = 𝐸 [1 −
𝐷−1∑
𝑑=0

𝜃𝑑𝜃ℎ𝑙,𝑑 ],

= 1 −
𝐷−1∑
𝑑=0

𝐸 [𝜃𝑑𝜃ℎ𝑙,𝑑 ] . (15)

Hence, by substituting equation (15) into equation (13), the
theorem holds. □

3.3 Average Detection Probability of Poor Responses in
the Dirichlet Distribution Model

As previously mentioned, the average detection probability
of poor responses is determined by equation (9). However,
in a general 𝑝(𝜽), it is not always possible to analytically
determine 𝐸 [𝜃𝑑𝜃ℎ𝑑 ]. Therefore, we calculate the value of
𝐸 [𝜃𝑑𝜃ℎ𝑑 ] for the case where the poor responders follow a
Dirichlet distribution model.

Theorem 2. When the poor responses follow a Dirichlet dis-
tribution model, the average poor response detection proba-
bility can be calculated by the following equation:

𝑄(F ) = 1 −
∏𝐿
𝑙=1

∑𝐷−1
𝑑=0 𝛼𝑑 (𝛼ℎ𝑙,𝑑 + 𝐼𝑑 (ℎ𝑙,𝑑))

(∑𝐷−1
𝑖=0 𝛼𝑖)𝐿 (

∑𝐷−1
𝑖=0 𝛼𝑖 + 1)𝐿

, (16)

where, 𝐼𝑑 (𝑎)is defined by the following equation:
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𝐼𝑑 (𝑎) =
{

1 , 𝑑 = 𝑎,

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(17)

Proof. From the definition of the Dirichlet distribution, the
following equation holds:

𝐸 [𝜃𝑑𝜃ℎ𝑑 ]

=
Γ(∑𝐷−1

𝑖=0 𝛼𝑖)
Γ(𝛼0) · · · Γ(𝛼𝐷−1)

×
∫

𝜃𝑑𝜃ℎ𝑑 𝜃
𝛼0−1
0 𝜃𝛼1−1

1 . . . 𝜃𝛼𝐷−1−1
𝐷−1 𝑑𝜽 . (18)

Now, when ℎ𝑑 = 𝑑, the following equation holds:∫
𝜃𝑑𝜃ℎ𝑑 𝜃

𝛼0−1
0 𝜃𝛼1−1

1 · · · 𝜃𝛼𝐷−1−1
𝐷−1 𝑑𝜽

=
∫

𝜃𝛼𝑑+1
𝑑

∏
𝑗≠𝑑

𝜃
𝛼𝑗−1
𝑗 𝑑𝜽 ,

=
Γ(𝛼𝑑 + 2)∏ 𝑗≠𝑑 Γ(𝛼 𝑗 )

Γ(∑𝐷−1
𝑖=0 𝛼𝑖 + 2)

,

=
𝛼𝑑 (𝛼𝑑 + 1)Γ(𝛼0) . . . Γ(𝛼𝐷−1)

(∑𝐷−1
𝑖=0 𝛼𝑖) (

∑𝐷−1
𝑖=0 𝛼𝑖 + 1)Γ(∑𝐷−1

𝑖=0 𝛼𝑖)
. (19)

Therefore, the following holds:

𝐸 [𝜃𝑑𝜃ℎ𝑑 ] =
𝛼𝑑 (𝛼𝑑 + 1)

(∑𝐷−1
𝑖=0 𝛼𝑖)(

∑𝐷−1
𝑖=0 𝛼𝑖 + 1)

. (20)

Moreover, when ℎ𝑑 ≠ 𝑑, the following equation holds:∫
𝜃𝑑𝜃ℎ𝑑 𝜃

𝛼0−1
0 𝜃𝛼1−1

1 . . . 𝜃𝛼𝐷−1−1
𝐷−1 𝑑𝜽

=
∫

𝜃𝛼𝑑𝑑 𝜃
𝛼ℎ𝑑
ℎ𝑑

∏
𝑗≠𝑑,ℎ𝑑

𝜃
𝛼𝑗−1
𝑗 𝑑𝜽 ,

=
Γ(𝛼𝑑 + 1)Γ(𝛼ℎ𝑑 + 1)∏ 𝑗≠𝑑,ℎ𝑑 Γ(𝛼 𝑗 )

Γ(∑𝐷−1
𝑖=0 𝛼𝑖 + 2)

,

=
𝛼𝑑𝛼ℎ𝑑Γ(𝛼0) . . . Γ(𝛼𝐷−1)

(∑𝐷−1
𝑖=0 𝛼𝑖) (

∑𝐷−1
𝑖=0 𝛼𝑖 + 1)Γ(∑𝐷−1

𝑖=0 𝛼𝑖)
. (21)

Therefore, the following holds:

𝐸 [𝜃𝑑𝜃ℎ𝑑 ] =
𝛼𝑑𝛼ℎ𝑑

(∑𝐷−1
𝑖=0 𝛼𝑖) (

∑𝐷−1
𝑖=0 𝛼𝑖 + 1)

. (22)

The theorem is obtained by substituting equations (20) and
(22) into equation (9). □

Consequently, if the response probability 𝜽 of the poor
responders follows the Dirichlet distribution, the average
detection probability of poor respondents 𝑄(F ) can be de-
termined from the parameters of the Dirichlet distribution
𝜶 and the QCQ functions. By using this average detection
probability, efficient QCQ functions can be selected, allow-
ing surveys to be designed to detect poor responses.

4. Numerical Analysis

To specifically determine the average detection probability

of poor responses when they follow the Dirichlet distribution
model, we vary the parameters of the Dirichlet distribution
𝜶 and calculate the value of 𝑄(F ) for each QCQ function.

For a Dirichlet distribution with 𝐷 = 3, the parame-
ters 𝜶 = (1, 1, 1) represent a uniform distribution. In other
words, we consider a scenario where the response probability
of a certain poor respondent is probabilistically determined
from a uniform distribution. Additionally, when each param-
eter in 𝜶 is greater than 1, the Dirichlet distribution becomes
unimodal, and the larger the parameter values, the more the
distribution concentrates around a single point. Particularly,
when 𝛼0 = 𝛼1 = 𝛼2, the distribution becomes unimodal
centered around 𝜃0 = 1/3, 𝜃1 = 1/3, 𝜃2 = 1/3. Therefore,
when 𝛼0 = 𝛼1 = 𝛼2 = 100, the Dirichlet distribution forms
a sharp peak around 𝜃0 = 1/3, 𝜃1 = 1/3, 𝜃2 = 1/3. This
implies that in this case, each faulty respondent is approxi-
mately equally likely to give a poor response with probabil-
ities 𝜃0 = 1/3, 𝜃1 = 1/3, 𝜃2 = 1/3.

5. Discussion

As can be seen from Table 3, the average detection probabil-
ity of poor responses varies with different patterns of quality
control questions based on the parameters 𝜶. If the distri-
bution of response probabilities of the poor responders is
known in advance, efficient quality control question design
is possible using the average detection probabilities derived
in this study.

However, in general, the distribution of response prob-
abilities of poor responders is unknown. For example, as
shown in Section 2, p1 is a QCQ function that represents
IMC or DQS. In this case, as shown in Table 3, it can be
seen that there is a large variation in the detection proba-
bility depending on the value of 𝜶. Especially when there
are many poor responders who are more likely to answer
the first question, such as in cases where 𝜶 = (10, 1, 1) or
𝜶 = (100, 1, 1), the detection probability becomes extremely
small. Therefore, while IMC and DQS are useful for certain
𝜶 values, their performance can become very low depending
on 𝜶.

In cases where the distribution of response probabili-
ties of the poor responders is unknown, selection of quality
control question patterns based on the minimax criterion can
be considered. That is, for each QCQ function, we choose
the one with the highest average detection probability under
the worst-case scenario of 𝜶. The values representing the
smallest average detection probabilities for each quality con-
trol question pattern against the experimented 𝜶 are shown
in the far right column of Table 3. From this, it is evident
that the quality control question patterns p16 and p20 show
the largest average detection probabilities against the most
disadvantageous 𝜶. Patterns p16 and p20 rearrange the re-
sponses so that they do not overlap with the positions of the
responses and options in the original information question
𝑥𝑘 = (0, 1, 2). For example, when there is a tendency for
many respondents to select the first option more frequently,
such as in the case of 𝜶 = (100, 1, 1), if the first option is
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Table 3 Detection Probability of Poor Responses
𝛼0 0.5 0.5 0.5 1 10 1 1 10 10 1 10 100 1 1 100 100 1 100
𝛼1 0.5 0.5 1 1 1 10 1 10 1 10 10 1 100 1 100 1 100 100
𝛼2 0.5 1 1 1 1 1 10 1 10 10 10 1 1 100 1 100 100 100 min
p1 0.667 0.750 0.800 0.667 0.167 0.917 0.917 0.524 0.524 0.952 0.667 0.020 0.990 0.990 0.502 0.502 0.995 0.667 0.020
p2 0.667 0.750 0.743 0.667 0.224 0.859 0.917 0.524 0.719 0.758 0.667 0.029 0.981 0.990 0.502 0.746 0.751 0.667 0.029
p3 0.533 0.500 0.629 0.583 0.218 0.910 0.276 0.541 0.502 0.736 0.656 0.029 0.990 0.038 0.505 0.500 0.749 0.666 0.029
p4 0.533 0.667 0.629 0.583 0.218 0.276 0.910 0.502 0.541 0.736 0.656 0.029 0.038 0.990 0.500 0.505 0.749 0.666 0.029
p5 0.533 0.667 0.571 0.583 0.276 0.218 0.910 0.502 0.736 0.541 0.656 0.038 0.029 0.990 0.500 0.749 0.505 0.666 0.029
p6 0.400 0.417 0.457 0.500 0.269 0.269 0.269 0.519 0.519 0.519 0.645 0.038 0.038 0.038 0.502 0.502 0.502 0.664 0.038
p7 0.667 0.708 0.743 0.667 0.224 0.917 0.859 0.719 0.524 0.758 0.667 0.029 0.990 0.981 0.746 0.502 0.751 0.667 0.029
p8 0.667 0.708 0.686 0.667 0.282 0.859 0.859 0.719 0.719 0.563 0.667 0.038 0.981 0.981 0.746 0.746 0.507 0.667 0.038
p9 0.533 0.458 0.571 0.583 0.276 0.910 0.218 0.736 0.502 0.541 0.656 0.038 0.990 0.029 0.749 0.500 0.505 0.666 0.029
p10 0.800 0.833 0.829 0.750 0.808 0.865 0.923 0.545 0.740 0.935 0.677 0.971 0.981 0.990 0.505 0.749 0.993 0.668 0.505
p11 0.800 0.833 0.771 0.750 0.865 0.808 0.923 0.545 0.935 0.740 0.677 0.981 0.971 0.990 0.505 0.993 0.749 0.668 0.505
p12 0.667 0.583 0.657 0.667 0.859 0.859 0.282 0.563 0.719 0.719 0.667 0.981 0.981 0.038 0.507 0.746 0.746 0.667 0.038
p13 0.667 0.750 0.657 0.667 0.859 0.224 0.917 0.524 0.758 0.719 0.667 0.981 0.029 0.990 0.502 0.751 0.746 0.667 0.029
p14 0.667 0.750 0.600 0.667 0.917 0.167 0.917 0.524 0.952 0.524 0.667 0.990 0.020 0.990 0.502 0.995 0.502 0.667 0.020
p15 0.533 0.500 0.486 0.583 0.910 0.218 0.276 0.541 0.736 0.502 0.656 0.990 0.029 0.038 0.505 0.749 0.500 0.666 0.029
p16 0.800 0.792 0.771 0.750 0.865 0.865 0.865 0.740 0.740 0.740 0.677 0.981 0.981 0.981 0.749 0.749 0.749 0.668 0.668
p17 0.800 0.792 0.714 0.750 0.923 0.808 0.865 0.740 0.935 0.545 0.677 0.990 0.971 0.981 0.749 0.993 0.505 0.668 0.505
p18 0.667 0.542 0.600 0.667 0.917 0.859 0.224 0.758 0.719 0.524 0.667 0.990 0.981 0.029 0.751 0.746 0.502 0.667 0.029
p19 0.800 0.792 0.829 0.750 0.808 0.923 0.865 0.740 0.545 0.935 0.677 0.971 0.990 0.981 0.749 0.505 0.993 0.668 0.505
p20 0.800 0.792 0.771 0.750 0.865 0.865 0.865 0.740 0.740 0.740 0.677 0.981 0.981 0.981 0.749 0.749 0.749 0.668 0.668
p21 0.667 0.542 0.657 0.667 0.859 0.917 0.224 0.758 0.524 0.719 0.667 0.981 0.990 0.029 0.751 0.502 0.746 0.667 0.029
p22 0.667 0.708 0.657 0.667 0.859 0.282 0.859 0.719 0.563 0.719 0.667 0.981 0.038 0.981 0.746 0.507 0.746 0.667 0.038
p23 0.667 0.708 0.600 0.667 0.917 0.224 0.859 0.719 0.758 0.524 0.667 0.990 0.029 0.981 0.746 0.751 0.502 0.667 0.029
p24 0.533 0.458 0.486 0.583 0.910 0.276 0.218 0.736 0.541 0.502 0.656 0.990 0.038 0.029 0.749 0.505 0.500 0.666 0.029
p25 0.800 0.750 0.771 0.750 0.865 0.923 0.808 0.935 0.545 0.740 0.677 0.981 0.990 0.971 0.993 0.505 0.749 0.668 0.505
p26 0.800 0.750 0.714 0.750 0.923 0.865 0.808 0.935 0.740 0.545 0.677 0.990 0.981 0.971 0.993 0.749 0.505 0.668 0.505
p27 0.667 0.500 0.600 0.667 0.917 0.917 0.167 0.952 0.524 0.524 0.667 0.990 0.990 0.020 0.995 0.502 0.502 0.667 0.020

the same ”0” as in 𝑥𝑘 , like in p8, detection misses are more
likely to occur. In contrast, p16 and p20 do not have the
same response in the same position as 𝑥𝑘 , which reduces de-
tection misses. A specific construction method could be, for
instance, posing a question with the same content as the 𝑘-th
information question but altering the order of the options
presented.

Furthermore, the above calculations are based on the
scenario of having only one quality control question. If,
as mentioned earlier, we add quality control questions like
p16, p20 for different information questions against the worst
𝜶, it is understood from equation (13) that the detection
probability increases, as shown in Fig. 2. When designing a
survey, if it is possible to estimate the tolerable rate of poor
responses, the necessary number of quality control questions
can be designed accordingly.

Now, in order to focus on the parameter 𝜶 of the Dirich-
let distribution, we will denote the second term on the right-
hand side of Eq. (16) as 𝑈𝜶 (F ). That is, we define it as
follows:

𝑈𝜶 (F ) =
∏𝐿
𝑙=1

∑𝐷−1
𝑑=0 𝛼𝑑 (𝛼ℎ𝑙,𝑑 + 𝐼𝑑 (ℎ𝑙,𝑑))

(∑𝐷−1
𝑖=0 𝛼𝑖)𝐿 (

∑𝐷−1
𝑖=0 𝛼𝑖 + 1)𝐿

. (23)

Also, we rewrite 𝑄(F ) in Eq. (16) as 𝑄𝜶 (F ). Therefore,
𝑄𝜶 (F ) = 1−𝑈𝜶 (F ). We denote the infimum of𝑄𝜶 (F ) over
𝜶 ≥ 0 as 𝑄inf (F ). That is, we define 𝑄inf (F ) as follows:

𝑄inf (F ) = inf
𝜶≥0

𝑄𝜶 (F ) = 1 − sup
𝜶≥0

𝑈𝜶 (F ). (24)
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Fig. 2 Average Detection Probability of Poor Responses When Increasing
the Number of quality control questions 𝐿

From this definition, it is clear that the following inequal-
ity holds for any value of the parameter 𝜶 of the Dirichlet
distribution:

𝑄𝜶 (F ) ≥ 𝑄inf (F ). (25)

The following lemma holds for the upper bound of 𝑄inf (F ).

Lemma 1. For any F , the following inequality holds:

𝑄inf (F ) ≤ 1 − 1
𝐷𝐿

. (26)

Proof. For the proof, we assume𝜶 that satisfies 𝛼𝑑 = 𝐶
𝐷 , 𝑑 =

0, 1, . . . , 𝐷−1, for a constant𝐶 > 0. Note that Eq. (25) holds
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for such specific 𝐶 and 𝜶. Now, for such 𝜶 and any F , the
following equation holds:

𝑈𝜶 (F ) =
∏𝐿
𝑙=1

∑𝐷−1
𝑑=0

𝐶
𝐷 ( 𝐶𝐷 + 𝐼𝑑 (ℎ𝑙,𝑑))

(∑𝐷−1
𝑖=0

𝐶
𝐷 )𝐿 (

∑𝐷−1
𝑖=0

𝐶
𝐷 + 1)𝐿

(27)

=

∏𝐿
𝑙=1

(
𝐶
𝐷 + 1

𝐷

∑𝐷−1
𝑖=0 𝐼𝑑 (ℎ𝑙,𝑑)

)
(𝐶 + 1)𝐿 . (28)

Dividing the numerator and denominator by 𝐶𝐿 and taking
the limit as 𝐶 → ∞, we obtain:

lim
𝐶→∞

𝑈𝜶 (F ) = 1
𝐷𝐿

. (29)

Thus, the lemma holds. □

Next, we consider evaluating the lower bound of
𝑄inf (F ). We define 𝑛𝑑, 𝑗 as the number of functions among
the 𝐿 functions 𝑓1, 𝑓2, . . . , 𝑓𝐿 of F that map the response 𝑑
of the information question to the response 𝑗 of the QCQ.
That is, 𝑛𝑑, 𝑗 is the number of 𝑙 that satisfies 𝑓𝑙 (𝑑) = 𝑗 . From
the definition, since ℎ𝑙,𝑑 = 𝑓𝑙 (𝑑), this can be written as:

𝑛𝑑, 𝑗 =
𝐿∑
𝑙=1

𝐼 𝑗 (ℎ𝑙,𝑑). (30)

Lemma 2. Let 𝐴(𝐶) be the maximum value of the objective
function in the following optimization problem for 𝐶 > 0:

𝐴(𝐶) =max
𝜶

{
𝐷−1∑
𝑑=0

𝐷−1∑
𝑑′=0

𝑛𝑑,𝑑′𝛼𝑑𝛼𝑑′ +
𝐷−1∑
𝑑=0

𝑛𝑑,𝑑𝛼𝑑

}
,

s.t.
𝐷−1∑
𝑑=0

𝛼𝑑 = 𝐶, 𝜶 ≥ 0. (31)

Then, the following inequality holds:

𝑄inf (F ) ≥ 1 −
{
sup
𝐶

𝐴(𝐶)
𝐿𝐶 (𝐶 + 1)

}𝐿
. (32)

Proof. From the definition of𝑄inf (F ), we only need to con-
sider sup𝜶≥0𝑈𝜶 (F ). From the inequality of arithmetic and
geometric means, it is clear that the following inequality
holds:

{𝑈𝜶 (F )} 1
𝐿 ≤

∑𝐿
𝑙=1

∑𝐷−1
𝑑=0 𝛼𝑑 (𝛼ℎ𝑙,𝑑 + 𝐼𝑑 (ℎ𝑙,𝑑))

𝐿 (∑𝐷−1
𝑖=0 𝛼𝑖) (

∑𝐷−1
𝑖=0 𝛼𝑖 + 1)

. (33)

Therefore, it follows that

sup
𝜶≥0

𝑈𝜶 (F ) ≤
{

sup
𝜶≥0

∑𝐿
𝑙=1

∑𝐷−1
𝑑=0 𝛼𝑑 (𝛼ℎ𝑙,𝑑 + 𝐼𝑑 (ℎ𝑙,𝑑))

𝐿 (∑𝐷−1
𝑖=0 𝛼𝑖)(

∑𝐷−1
𝑖=0 𝛼𝑖 + 1)

}𝐿
.

(34)

Next, from the definition of 𝑛𝑑, 𝑗 , for any 𝑑, the following
equation holds:

𝐿∑
𝑙=1

𝛼𝑑 (𝛼ℎ𝑙,𝑑 + 𝐼𝑑 (ℎ𝑙,𝑑)) =
𝐷−1∑
𝑑′=0

𝑛𝑑,𝑑′𝛼𝑑𝛼𝑑′ + 𝑛𝑑,𝑑𝛼𝑑 .

(35)

Here, if we set
∑𝐷−1
𝑑=0 𝛼𝑑 = 𝐶 for 𝐶 > 0, the denominator

of the fraction in Eq. (34) becomes the constant 𝐿𝐶 (𝐶 +
1). Under this condition, if we maximize the numerator of
Eq. (34) with respect to 𝜶 using the relation of Eq. (35), it
becomes 𝐴(𝐶), and the lemma holds. □

Now, given a specific F , we consider finding 𝐴(𝐶). If
we denote the Lagrangian for Eq. (31) as 𝐿g, it can be written
using the Lagrange multipliers 𝛿0, 𝛿1, . . . , 𝛿𝐷−1 ≥ 0, 𝜆 as
follows:

𝐿g

=
𝐷−1∑
𝑑=0

𝐷−1∑
𝑑′=0

𝑛𝑑,𝑑′𝛼𝑑𝛼𝑑′ +
𝐷−1∑
𝑑=0

𝑛𝑑,𝑑𝛼𝑑

+
𝐷−1∑
𝑑=0

𝛿𝑑𝛼𝑑 − 𝜆
(
𝐷−1∑
𝑑=0

𝛼𝑑 − 𝐶
)
. (36)

Here, from the conditions of stationary points,
∑𝐷−1
𝑖=0 𝛼𝑖 = 𝐶

and the following equations hold for any 𝑑:

𝜕𝐿g

𝜕𝛼𝑑
=
𝐷−1∑
𝑑′=0

(𝑛𝑑,𝑑′ + 𝑛𝑑′ ,𝑑)𝛼𝑑′ + 𝑛𝑑,𝑑𝛼𝑑 + 𝛿𝑑 − 𝜆 = 0,

(37)
𝛿𝑑𝛼𝑑 = 0.

(38)

Using these relations, we can find 𝐴(𝐶).

Example. Here, we explicitly calculate the right-hand side
of Eq. (32) and 𝑄inf (F ) for several patterns of F in the case
of 𝐷 = 3.

[Case 1] F where 𝑓𝑙 for all 𝑙 is set to p16 in Table 2
In this case, for any 𝑙 = 1, 2, . . . , 𝐿, ℎ𝑙,0 = 1, ℎ𝑙,1 = 2

and ℎ𝑙,2 = 0. Therefore, 𝑛0,1 = 𝑛1,2 = 𝑛2,0 = 𝐿, and
𝑛𝑑,𝑑′ = 0 for other patterns of 𝑑, 𝑑′. Therefore, for any
𝑑 = 0, 1, 2, Eq. (37) becomes:

𝜕𝐿g

𝜕𝛼𝑑
= 𝐿𝛼𝑑+1 mod 3 + 𝐿𝛼𝑑+2 mod 3 + 𝛿𝑑 − 𝜆 = 0. (39)

From these equations†, we find that 𝐴(𝐶) = 𝐿𝐶2/3 when
𝛼0 = 𝛼1 = 𝛼2 = 𝐶/3. Substituting this relation into the
right-hand side of Eq. (32), we obtain:

1 −
{
sup
𝐶

𝐴(𝐶)
𝐿𝐶 (𝐶 + 1)

}𝐿
= 1 − 1

3𝐿
. (40)

Therefore, from Lemmas 1 and 2, we have 𝑄inf (F ) = 1 −
†Note that for each 𝑑 = 0, 1, 2, both the case of 𝛼𝑑 > 0 and the

case of 𝛼𝑑 = 0 need to be considered.
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1/3𝐿 .

[Case 2] F with 𝐿/2 each of p10 and p26 in Table 2 when
𝐿 is even

The order of the functions does not affect 𝑄inf (F ), so
for 𝑙 = 1, 2, . . . , 𝐿/2, we take 𝑓𝑙 of p10 with ℎ𝑙,0 = 1, ℎ𝑙,1 =
0, ℎ𝑙,2 = 0, and for 𝑙 = 𝐿/2 + 1, 𝐿/2 + 2, . . . , 𝐿, we take
𝑓𝑙 of p26 with ℎ𝑙,0 = 2, ℎ𝑙,1 = 2, ℎ𝑙,2 = 1. Therefore,
𝑛0,1 = 𝑛1,0 = 𝑛2,0 = 𝑛0,2 = 𝑛1,2 = 𝑛2,1 = 𝐿/2, and 𝑛𝑑,𝑑′ = 0
for other patterns of 𝑑, 𝑑′. In this case, Eq. (37) becomes
the same as Eq. (39), we find that 𝐴(𝐶) = 𝐿𝐶2/3 when
𝛼0 = 𝛼1 = 𝛼2 = 𝐶/3, as in Case 1. Therefore, 𝑄inf (F ) =
1 − 1/3𝐿 .

[Case 3] F with 𝐿/3 each of p8, p12 and p22 in Table 2
when 𝐿 is a multiple of 3

In this case, since p8, p12, and p22 assign the response
of the information questions to different one of QCQs, re-
spectively, 𝑛𝑑,𝑑′ = 𝐿/3 for all combinations of 𝑑, 𝑑′. Sub-
stituting these and the conditions

∑𝐷−1
𝑑=0 𝛼𝑑 = 𝐶 and Eq. (38)

into Eq. (36), we obtain:

𝐿g =
𝐿

3

(
𝐷−1∑
𝑑=0

𝛼𝑑

) (
𝐷−1∑
𝑑′=0

𝛼𝑑′

)
+ 𝐿

3

(
𝐷−1∑
𝑑=0

𝛼𝑑

)
=
𝐿𝐶 (𝐶 + 1)

3
. (41)

Therefore, since 𝐴(𝐶) = 𝐿𝐶 (𝐶 + 1)/3, from Lemmas 1 and
2, we find that 𝑄inf (F ) = 1 − 1/3𝐿 .

In the above three cases, since 𝑄inf (F ) coincides with
the right-hand side value of Eq. (26), 1 − 1/𝐷𝐿 , we see
that these are the best cases in the sense that 𝑄inf (F ) is
maximized. On the other hand, we show below that there
exist cases that are not necessarily the best.

[Case 4] F with 𝐿/2 each of p5 and p24 in Table 2 when 𝐿
is even

In this case, 𝑛0,0 = 𝑛0,1 = 𝑛2,1 = 𝑛2,2 = 𝐿/2, 𝑛1,1 = 𝐿,
and 𝑛𝑑,𝑑′ = 0 for other patterns of 𝑑, 𝑑′. From the conditions
of stationary points, we find that 𝐴(𝐶) = 𝐿𝐶 (𝐶 + 1) when
𝛼0 = 𝛼2 = 0 and𝛼1 = 𝐶. Substituting this into the right-hand
side of Eq. (32), we obtain 𝑄inf (F ) ≥ 0. Now, substituting
𝛼0 = 𝛼2 = 0 and 𝛼1 = 𝐶 into Eq. (23), we get 𝑈𝜶 (F ) = 1.
That is, we see that 𝑄inf (F ) = 0 strictly holds in this case.

[Case 5] F with 𝐿/3 each of p3, p5 and p24 in Table 2 when
𝐿 is a multiple of 3

In this case, 𝑛0,0 = 𝑛1,1 = 𝑛2,2 = 2𝐿/3, 𝑛0,2 = 𝑛1,0 =
𝑛2,1 = 𝐿/3, and 𝑛𝑑,𝑑′ = 0 for other patterns of 𝑑, 𝑑′. Then,
we obtain 𝐴(𝐶) = 𝐿𝐶 (𝐶 + 2)/3 when 𝛼0 = 𝛼1 = 𝛼2 = 𝐶/3.
Substituting this into the right-hand side of Eq. (32), we get
𝑄inf (F ) ≥ 1 − (2/3)𝐿 . Now, substituting 𝛼0 = 𝛼1 = 𝛼2 =
𝐶/3 into Eq. (23) and taking the limit 𝐶 → 0, we obtain
𝑈𝜶 (F ) → (2/3)𝐿 . That is, we see that𝑄inf (F ) = 1−(2/3)𝐿
strictly holds in this case.

As in Cases 4 and 5, there exist cases where 𝑄inf (F ) <
1 − 1/𝐷𝐿 . As we have seen in several examples for 𝐷 = 3,
we understand that 𝑄inf (F ) differs depending on the choice
of F . For more general 𝐷 and F , the calculation becomes
cumbersome due to the increased number of case-by-case
analyses at the boundary of the constraints†, but it can be
computed in the same way as in this example.

6. Conclusion

In this study, we have examined a framework for detecting
poor responses in survey research by incorporating quality
control questions. We defined a generalized survey design
model that extends traditional methods such as IMC and
DQS, and derived the average detection probability of poor
responses under a presumed poor response model. Addi-
tionally, we provided guidelines for the addition of quality
control questions through numerical experiments.

Future challenges include investigating whether the
Dirichlet distribution model, which is the poor response
model, accurately represents the response behavior of ac-
tual poor responders.
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