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PAPER Special Section on Information Theory and Its Applications

New Varieties of Hadamard-type Matrices over Finite Fields and
Their Properties∗

Iori KODAMA†, Nonmember and Tetsuya KOJIMA††a), Senior Member

SUMMARY Hadamard matrix is defined as a square matrix where any
components are −1 or +1, and where any pairs of rows are mutually orthog-
onal. On the other hand, Hadamard-type matrix on finite fields has been
proposed. This matrix is a similar one as a binary Hadamard matrix, but has
multi-valued components on finite fields. To be more specific, we consider
𝑛×𝑛matrices that have their elements on the given finite fields𝐺𝐹 (𝑝) , and
satisfy 𝐻𝐻𝑇 ≡ 𝑛𝐼 mod 𝑝, where 𝐼 is an identity matrix. Any additions
and multiplications should be executed under modulo 𝑝. In this paper, the
authors introduce some new Hadamard-type matrices found in computer
searches as well as their properties. Specifically, we define special types
of Hadamard-type matrices called cyclic Hadamard-type matrices on finite
fields, and propose the methods to generate them. In addition, it is shown
that the order of an arbitrary Hadamard-type matrix of odd order is limited
to quadratic residues of the given prime 𝑝. Some methods to extend the
order of Hadamard-type matrices are also discussed.
key words: Hadamard-type matrix, finite field, cyclic matrix, quadratic
residue

1. Introduction

Hadamard matrix is defined as a square matrix 𝐻 with
{−1, +1} entries where any pairs of two rows are mutually or-
thogonal [1]. In other words, 𝐻 satisfies 𝐻𝐻𝑇 = 𝑛𝐼, where 𝑇

implies the transposition of the matrix, 𝐼 stands for an identity
matrix, and 𝑛 is the order of the matrix. Hadamard matrices
can be applied into many fields such as coding theory, radio
communications, statistical estimation, compressed sensing,
and so on[2], [3]. In addition, they can be used to gener-
ate error correcting codes such as Walsh-Hadamard codes
or Reed-Muller codes, and also to generate spread spectrum
sequences like 𝑛-shift orthogonal sequences and complete
complementary codes (CCC)[4].

The authors have extended the concept of the original
binary Hadamard matrices into finite fields 𝐺𝐹 (𝑝), where 𝑝
is an odd prime[5]–[7]. To be more specific, such matrices
can be defined as the square matrices on 𝐺𝐹 (𝑝), where any
pairs of rows are mutually orthogonal. Any additions and
multiplications are executed under modulo 𝑝. We call such
a matrix Hadamard-type matrix on 𝐺𝐹 (𝑝), which can be
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written as H-type matrix in short.
In [5], the authors have classified H-type matrices into

three different types, and proposed the methods to generate
them. However, the norm of each row in the generated
matrices is not constant in many cases, which implies that
𝐻𝐻𝑇 . 𝑛𝐼 mod 𝑝. The only type satisfying 𝐻𝐻𝑇 ≡ 𝑛𝐼
mod 𝑝 is the one that is essentially identical to original binary
Hadamard matrix on {−1, +1}.

On the other hand, the authors have also proposed a
way to generate H-type matrices 𝐻 on 𝐺𝐹 (𝑝) for any odd
prime 𝑝, where the norm of every row is identical[6], [7]. In
other words, these matrices have almost same properties as
the original Hadamard matrices on {−1, +1}. The proposed
generation method employs the cyclic groups on𝐺𝐹 (𝑝), and
is based on the inner products of the conjugate vectors spe-
cially defined by the authors using the multiplicative inverses
on 𝐺𝐹 (𝑝). However, it has been pointed out that such inner
products do not satisfy the inner product axioms[6], [7].

In this study, we are only concerned with the H-type ma-
trices on 𝐺𝐹 (𝑝) that are not based on such inner products
and that satisfy 𝐻𝐻𝑇 ≡ 𝑛𝐼 mod 𝑝. In this paper, we in-
troduce some H-type matrices discovered by the brute-force
searches. These newly discovered matrices are different from
those generated in the previous studies[5], [7]. Especially,
we proposed the methods to generate special types of these
matrices called cyclic H-type matrices. In addition, it is
proved that the orders of any H-type matrices of odd order
on finite fields are limited to the quadratic residues of 𝑝. The
paper also includes the discussion on the way to extend the
order of H-type matrices.

2. Preliminaries

2.1 Notations

In this paper, the following notations are used otherwise
stated.

• 𝑝 : odd prime number

• 𝑇 : transposition of matrices
• 𝐼 : identity matrix
• 𝑂 : null matrix

•
(
𝑛

𝑝

)
: Legendre symbol

•
√
𝑛 : square root of an element 𝑛 on 𝐺𝐹 (𝑝)

• 𝐴 ⊗ 𝐵 : Kronecker product of the matrices 𝐴 and 𝐵
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• Z𝑚 : residue class ring modulo 𝑚

2.2 Hadamard-type Matrices on Finite Fields

As mentioned above, we are only concerned with the
Hadamard-type matrices satisfying 𝐻𝐻𝑇 ≡ 𝑛𝐼 mod 𝑝 on
finite fields. They should be generated without employing
the special inner products defined in [6], [7]. These matrices
are called as Hadamard-type matrices in narrow sense in [8],
and defined as follows.

Definition 1 (Hadamard-type Matrix): For any odd prime
𝑝, Hadamard-type matrix on 𝐺𝐹 (𝑝) of order 𝑛 is defined as
a square matrix of order 𝑛 on 𝐺𝐹 (𝑝), that is, an 𝑛× 𝑛 matrix
on {0, 1, . . . , 𝑝 − 1}, where any pairs of rows are mutually
orthogonal as well as the norm of each row is identical to
𝑛. In other words, a Hadamard-type matrix 𝐻 on 𝐺𝐹 (𝑝) of
order 𝑛 should satisfy

𝐻𝐻𝑇 ≡ 𝑛𝐼 mod 𝑝. (1)

In this paper, such a matrix is also called H-type matrix in
short.

It is assumed that any additions and multiplications on
𝐺𝐹 (𝑝) are executed under modulo 𝑝.

Remark 1: If the order 𝑛 of the matrix is a quadratic residue
of 𝑝, the identity matrix multiplied by

√
𝑛, that is,

𝐻 =
√
𝑛 · 𝐼 (2)

can be considered as a special case of H-type matrix. As
described in Sect.2.1,

√
𝑛 stands for a square root of 𝑛 on

𝐺𝐹 (𝑝), where 𝑛 must be a quadratic residue of the given
prime 𝑝. If 𝑛 is a quadratic non-residue,

√
𝑛 does not have

any values on 𝐺𝐹 (𝑝).

Example 1:

𝐻
def
=

[
1 1
1 4

]
(3)

is an H-type matrix on 𝐺𝐹 (5) of order 2 since 𝐻𝐻𝑇 ≡ 2𝐼
mod 5. This is trivial because 4 ≡ −1 mod 5, which implies
that the matrix 𝐻 is essentially same as a binary Hadamard
matrix:

𝐻′ def
=

[
1 1
1 −1

]
. (4)

In our previous studies, any ways to generate an H-type
matrix other than this type and the trivial cases such as
Eq.(2) have not been proposed unless a specially defined
inner product on finite fields[5]–[7] is employed.

For a given prime 𝑝, H-type matrices can be defined
in a prime finite field 𝐺𝐹 (𝑝) as well as in its extension
𝐺𝐹 (𝑝𝑚)[6], [7]. In the following, we consider only 𝐺𝐹 (𝑝)
for simplicity.

3. New Examples of H-type Matrices on Finite Fields

The authors have discovered some new varieties of H-type
matrices on finite fields by brute-force searches. Here are
some examples.

Example 2:

𝐻
def
=


1 1 1 1 1
1 2 1 8 10
1 1 7 4 9
1 8 4 6 3
1 10 9 3 10


(5)

is an H-type matrix of order 5 on 𝐺𝐹 (11) since 𝐻𝐻𝑇 ≡ 5𝐼
mod 11.

Example 3:

𝐻
def
=


1 1 1 1 1
1 5 9 9 9
1 9 5 9 9
1 9 9 5 9
1 9 9 9 5


(6)

is also an H-type matrix of order 5 on 𝐺𝐹 (11) since 𝐻𝐻𝑇 ≡
5𝐼 mod 11.

As stated above, the only type of H-type matrices known
in the previous studies[5]–[7] is the one that is essentially
identical to original binary Hadamard matrix on {−1, +1},
such as that shown in Example 1. On the other hand, the
matrices shown in Examples 2 and 3 have not been known
in the previous studies. Obviously, the methods to generate
them have been also unknown so far.

Note that the elements in the first row and the first
column of the matrices (5) and (6) are all ‘1’. Such matri-
ces are called as standard-form H-type matrices. We have
searched only standard-from H-type matrices in the brute-
force searches. There is no loss of generality in this limita-
tion. It is possible to generate various H-type matrices by
multiplying any diagonal matrices to standard-form H-type
matrices.

Also note that the 4×4 sub-matrix obtained by removing
the first row and the first column from the matrix 𝐻 shown
in Eq.(6) is a cyclic matrix. In the following section, we
propose the methods to generate such matrices.

4. Cyclic H-type Matrices

4.1 Standard-Form Cyclic H-type Matrices

The matrix given in Example 3 is a special case of H-type
matrices on finite fields. The definition of such type of
matrices can be given as follows.

Definition 2: (Standard-form Cyclic H-type Matrix) An H-
type matrix of the form:
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𝐻
def
=



1 1 1 · · · 1
1 𝑎 𝑏 · · · 𝑏
1 𝑏 𝑎 · · · 𝑏
...

...
...

. . .
...

1 𝑏 𝑏 · · · 𝑎


(7)

is defined as a standard-form cyclic H-type matrix on finite
fields.

Note that the orthogonality of an H-type matrix (7)
holds even if any two rows or columns are swapped. It
implies that any square matrices on 𝐺𝐹 (𝑝) satisfying the
following conditions have the same properties as a standard-
form cyclic H-type matrix:

• all the elements in the first row and the first column are
1,

• in the sub-matrix obtained by removing the first row
and the first column, any rows or columns have only
one ‘𝑎’, and

• the other elements are all ‘𝑏’,

where 𝑎 and 𝑏 are arbitrary elements on the given finite field.
In the following, we are only concerned with the matrices of
the form (7) without loss of generality.

The method to generate the standard-form cyclic H-type
matrices can be given by the following theorem.

Theorem 1: A standard-form cyclic H-type matrix of order
𝑛 on 𝐺𝐹 (𝑝) exists if and only if there are two different
elements 𝑎 and 𝑏 on 𝐺𝐹 (𝑝) satisfying the following two
conditions:

1 − 2𝑏 − (𝑛 − 1)𝑏2 ≡ 0 mod 𝑝, (8)

𝑎 ≡ −1 − (𝑛 − 2)𝑏 mod 𝑝. (9)

Proof. Under the assumption that any rows or columns can
be swapped, the necessary and sufficient conditions that an
H-type matrix 𝐻 can be written in the form of Eq.(7) are
given as follows:

1 + 𝑎 + (𝑛 − 2)𝑏 ≡ 0 mod 𝑝, (10)
1 + 2𝑎𝑏 + (𝑛 − 3)𝑏2 ≡ 0 mod 𝑝, (11)

1 + 𝑎2 + (𝑛 − 2)𝑏2 ≡ 𝑛 mod 𝑝, (12)

where Eqs.(10) and (11) implies the orthogonality between
the first row and any other rows and the orthogonality be-
tween any two different rows except for the first row, respec-
tively. On the other hand, Eq.(12) means that the norm of
each row except for the first row is 𝑛.

First, we show that Eqs.(8) and (9) hold for any standard-
form cyclic H-type matrices that satisfy Eqs.(10), (11) and
(12). It can be obviously shown that Eq.(9) holds by solving
Eq.(10) for 𝑎. On the other hand, by substituting Eq.(9) into
Eq.(11), we can obtain

1 + 2(−1 − (𝑛 − 2)𝑏)𝑏 + (𝑛 − 3)𝑏2 ≡ 0 mod 𝑝, (13)

which is identical to Eq.(8).

Next, we show Eqs.(10), (11) and (12) hold if we assume
two conditions (8) and (9). Firstly, Eq.(10) obviously holds
from Eq.(9). By substituting Eq.(9) into the 𝑙.ℎ.𝑠. of Eq.(11),
we get

1 + 2𝑎𝑏 + (𝑛 − 3)𝑏2

≡ 1 + 2(−1 − (𝑛 − 2)𝑏)𝑏 + (𝑛 − 3)𝑏2

≡ 1 − 2𝑏 − (𝑛 − 1)𝑏2 ≡ 0 mod 𝑝 (14)

from Eq.(8). To show that Eq.(12) holds, we put the 𝑙.ℎ.𝑠.
of Eq.(12) as

𝑍
def
= 1 + 𝑎2 + (𝑛 − 2)𝑏2. (15)

Then, by substituting Eq.(9) into 𝑍 − 𝑛, it can be shown that

𝑍 − 𝑛 ≡ −𝑛 + 1 + 𝑎2 + (𝑛 − 2)𝑏2

≡ −𝑛 + 1 + {−1 − (𝑛 − 2)𝑏}2 + (𝑛 − 2)𝑏2

≡ −𝑛 + 2 + 2(𝑛 − 2)𝑏 + (𝑛 − 2)2𝑏2

+(𝑛 − 2)𝑏2 mod 𝑝. (16)

If 𝑛 ≠ 2, by dividing the both sides of Eq.(16) by (𝑛− 2), we
have

𝑍 − 𝑛

𝑛 − 2
= −1 + 2𝑏 + (𝑛 − 2)𝑏2 + 𝑏2

= −1 + 2𝑏 + (𝑛 − 1)𝑏2 ≡ 0 mod 𝑝 (17)

according to Eq.(8). Therefore, we have 𝑍 ≡ 𝑛 mod 𝑝,
which is identical to Eq.(12). If 𝑛 = 2, we obtain 𝑎 ≡ −1
mod 𝑝 from Eq.(9). By substituting it into the 𝑙.ℎ.𝑠. of
Eq.(12), we have

1 + (−1)2 = 1 + 1 = 2 = 𝑛. (18)

Now we proved the theorem. □

Given a prime number 𝑝 and the order 𝑛 of the matrix,
two elements 𝑎 and 𝑏 can be evaluated by solving the set of
equations (8) and (9).

Example 4: Given 𝑝 = 11 and 𝑛 = 5, the set of two equa-
tions can be expressed as{

1 − 2𝑏 − 4𝑏2 ≡ 0 mod 11,
𝑎 ≡ −1 − 3𝑏 mod 11. (19)

The solutions of these equations can be obtained as (𝑎, 𝑏) ≡
(0, 7) and (5, 9) mod 11. If we take (𝑎, 𝑏) = (5, 9), we can
get the H-type matrix 𝐻 given in Eq.(6).

Any standard-form cyclic H-type matrices satisfy the
following theorem.

Theorem 2: For any standard-form cyclic H-type matrices,

(𝑎 − 𝑏)2 ≡ 𝑛 mod 𝑝. (20)

Proof. For any standard-form cyclic H-type matrices,
Eqs.(11) and (12) hold. By taking the differences of both
sides of these equations, we have
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𝑎2 − 2𝑎𝑏 + 𝑏2 ≡ 𝑛 mod 𝑝, (21)

which is identical to Eq.(20). □

Theorem 2 implies that the order of a standard-form
cyclic H-type matrix should be a quadratic residue of the
given 𝑝.

4.2 (Non-standard-form) Cyclic H-type Matrices

Similarly to Definition 2, it is possible to define non-
standard-form cyclic H-type matrices.

Definition 3: (Cyclic H-type Matrix) An H-type matrix of
the form:

𝐻
def
=


𝑎 𝑏 · · · 𝑏
𝑏 𝑎 · · · 𝑏
...

...
. . .

...
𝑏 𝑏 · · · 𝑎


(22)

is defined as a cyclic H-type matrix on finite fields.

Note that the orthogonality of rows and columns holds
even if any two rows or columns are swapped in the matrix
(22) in a similar way as standard-form cyclic H-type matri-
ces. It implies that any square matrices on 𝐺𝐹 (𝑝) satisfying
the following conditions have the same properties as a cyclic
H-type matrix:

• any rows or columns have only one ‘𝑎’, and
• the other elements are all ‘𝑏’.

The generation method of the cyclic H-type matrices
can be given by the following theorem.

Theorem 3: A cyclic H-type matrix of order 𝑛 on 𝐺𝐹 (𝑝)
exists if and only if there are two different elements 𝑎 and 𝑏
on 𝐺𝐹 (𝑝) satisfying the following two conditions:

𝑎 ≡ − (𝑛 − 2)
2

· 𝑏 mod 𝑝, (23)

𝑏2 ≡ 4
𝑛

mod 𝑝, (24)

where the order 𝑛 satisfies 𝑛 . 0 mod 𝑝.

Proof. In a similar way as the proof of Theorem 1, under the
assumption that any rows or columns can be swapped, the
necessary and sufficient conditions that an H-type matrix 𝐻
can be written in the form of Eq.(22) are given as follows:

2𝑎𝑏 + (𝑛 − 2)𝑏2 ≡ 0 mod 𝑝, (25)
𝑎2 + (𝑛 − 1)𝑏2 ≡ 𝑛 mod 𝑝, (26)

where Eq.(25) implies the orthogonality between any two
different rows, while Eq.(26) means that the norm of each
row is congruent to 𝑛 modulo 𝑝.

First, we show that Eqs.(23) and (24) hold for any
standard-form cyclic H-type matrices that satisfy Eqs.(25)
and (26). Note that it is impossible to obtain any pairs of so-
lutions where 𝑎 ≡ 0 or 𝑏 ≡ 0 mod 𝑝 are satisfied under the

two conditions (23) and (24). So we assume 𝑏 . 0 mod 𝑝
in the following. From Eq.(25), we can obtain

𝑎𝑏 ≡ − (𝑛 − 2)
2

𝑏2 mod 𝑝, (27)

which implies that Eq.(23) holds since 𝑏 . 0 mod 𝑝. On
the other hand, by substituting Eq.(23) into Eq.(26), we can
obtain(

−𝑛 − 2
2

· 𝑏
)2

+ (𝑛 − 1)𝑏2 ≡ 𝑛 mod 𝑝, (28)

which leads to{
(𝑛 − 2)2 + 4(𝑛 − 1)

}
𝑏2 ≡ 4𝑛 mod 𝑝. (29)

Therefore we can get

𝑛2𝑏2 ≡ 4𝑛 mod 𝑝, (30)

which is identical to Eq.(24) since 𝑛 . 0 mod 𝑝.
Next, we show Eqs.(25) and (26) hold if we assume two

conditions (23) and (24). By substituting Eq.(23) into the
𝑙.ℎ.𝑠. of Eq.(25), we get

2
(
−𝑛 − 2

2
· 𝑏

)
𝑏 + (𝑛 − 2)𝑏2

= −(𝑛 − 2)𝑏2 + (𝑛 − 2)𝑏2 ≡ 0 mod 𝑝, (31)

which is identical to Eq.(25). Similarly, by substituting
Eq.(23) into the 𝑙.ℎ.𝑠. of Eq.(26), we obtain(

− (𝑛 − 2)
2

· 𝑏
)2

+ (𝑛 − 1)𝑏2

=

{
(𝑛 − 2)2 + 4(𝑛 − 1)

}
𝑏2

4

=
𝑛2𝑏2

4
, (32)

which leads to Eq.(26) by applying Eq.(24).
Now we proved the theorem. □

Given a prime number 𝑝 and the order 𝑛 of the matrix,
two elements 𝑎 and 𝑏 can be evaluated by solving the set of
Eqs.(23) and (24).

Example 5: Given 𝑝 = 11 and 𝑛 = 5, the solutions of
Eqs.(23) and (24) can be obtained as (𝑎, 𝑏) ≡ (2, 6) and
(9, 5) mod 11. Therefore, the matrices

𝐻
def
=


2 6 6 6 6
6 2 6 6 6
6 6 2 6 6
6 6 6 2 6
6 6 6 6 2


(33)

and

𝐻′ def
=


9 5 5 5 5
5 9 5 5 5
5 5 9 5 5
5 5 5 9 5
5 5 5 5 9


(34)
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can be generated. It is easily confirmed that 𝐻𝐻𝑇 ≡ 5𝐼
mod 11 and 𝐻′𝐻′𝑇 ≡ 5𝐼 mod 11 are satisfied.

Note that Theorem 2 also holds for cyclic H-type ma-
trices. It implies that the order of cyclic H-type matrices
should be also a quadratic residue of the given 𝑝.

5. Orders of H-type Matrices

5.1 Orders of H-type Matrices of Odd Order

As shown in Theorem 2, the orders of cyclic H-type matrices
on𝐺𝐹 (𝑝) are limited to quadratic residues of the given prime
𝑝. In this section, we show that the orders of any H-type
matrices of odd order are limited to quadratic residues of 𝑝.

First, we introduce the following lemma on the deter-
minant of an H-type matrix.

Lemma 1: For any odd prime 𝑝 and any positive integer 𝑛
satisfying 𝑛 ≥ 2, any H-type matrices of order 𝑛 on 𝐺𝐹 (𝑝)
satisfy

(det𝐻)2 ≡ 𝑛𝑛 mod 𝑝. (35)

Proof. From the definition, any H-type matrices of order 𝑛
satisfies Eq.(1). Consider the determinants of the both sides
of Eq.(1). For the 𝑙.ℎ.𝑠. of Eq.(1), it can be shown that

det𝐻𝐻𝑇 = det𝐻 · det𝐻𝑇 = (det𝐻)2. (36)

On the other hand, for the 𝑟.ℎ.𝑠. of Eq.(1), we obtain

det(𝑛𝐼) = 𝑛𝑛. (37)

From these equations, the lemma can be proved. □

Here we have the following theorem on the order of an
H-type matrix of odd order.

Theorem 4: Consider an odd prime 𝑝 and a positive odd
integer 𝑛 satisfying 𝑛 ≥ 2 and 𝑛 . 0 mod 𝑝. Then, there
exists an H-type matrix of order 𝑛 on 𝐺𝐹 (𝑝) if and only if 𝑛
is a quadratic residue of 𝑝.

Proof. First, we show that if 𝑛 is a quadratic residue of 𝑝,
then an H-type matrix exists. This is trivial according to
Theorem 2 if we consider a cyclic H-type matrix of order 𝑛.

Next, we prove that if an H-type matrix of order 𝑛 exists,

𝑛 is a quadratic residue of 𝑝, that is,
(
𝑛

𝑝

)
= 1. We consider

the proof by contraposition. So we show that any H-type

matrices of order 𝑛 do not exist if
(
𝑛

𝑝

)
≠ 1. From the

assumption,
(
𝑛

𝑝

)
≠ 0. Therefore, we can only consider the

case of
(
𝑛

𝑝

)
= −1. Since 𝑛 is an odd integer, we have(

𝑛𝑛

𝑝

)
=

(
𝑛

𝑝

)𝑛
=

(
𝑛

𝑝

)
= −1, (38)

which implies that 𝑛𝑛 is a quadratic non-residue of 𝑝. On

the other hand, from Lemma 1, 𝑛𝑛 is congruent to (det𝐻)2

modulo 𝑝. This is contradiction since
(
𝑛𝑛

𝑝

)
= −1. There-

fore, we cannot consider such det𝐻 satisfying Lemma 1,
which implies that there are no H-type matrices 𝐻 satisfying
Lemma 1.

Now we proved the theorem. □

5.2 Extension of the Orders of H-type Matrices

It is possible to extend the orders of H-type matrices by some
simple calculations. In this section, we introduce some of
them.

5.2.1 Extension by Kronecker Products

As discussed in [5]–[7], it is possible to extend the order of
an H-type matrix by Kronecker products of H-type matrices.
Here is an example.

Example 6: Consider two H-type matrices of order 2 and
3 on 𝐺𝐹 (13) such that

𝐻′ def
=

[
1 1
1 12

]
, 𝐻′′ def

=


1 1 1
1 4 8
1 8 4

 .
From these matrices, we can generate an H-type matrix of
order 6 on 𝐺𝐹 (13) as

𝐻 = 𝐻′ ⊗ 𝐻′′

≡



1 1 1 1 1 1
1 4 8 1 4 8
1 8 4 1 8 4
1 1 1 12 12 12
1 4 8 12 9 5
1 8 4 12 5 9


mod 13, (39)

which satisfies 𝐻𝐻𝑇 ≡ 6𝐼 mod 13.

5.2.2 Block Diagonalization by Two H-type Matrices

It is possible to extend the order of H-type matrices on
𝐺𝐹 (𝑝) as follows:

𝐻𝑛 =


√

𝑛

𝑘
𝐻𝑘 𝑂

𝑂

√
𝑛

𝑚
𝐻𝑚

 , (40)

where 𝐻𝑛 is an H-type matrix of order 𝑛 and 𝑛 = 𝑚 + 𝑘 . In

this case,
(
𝑘

𝑝

)
=

(
𝑚

𝑝

)
=

(
𝑛

𝑝

)
= 1 have to be satisfied. Note

that the fraction such as
𝑛

𝑘
has an integer value on 𝐺𝐹 (𝑝). If

its value is a quadratic residue of 𝑝,
√

𝑛

𝑘
also has an integer

value on 𝐺𝐹 (𝑝).
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Example 7: Consider three quadratic residues 𝑘 = 2,𝑚 = 5
and 𝑛 = 7 on 𝐺𝐹 (31) satisfying 𝑛 = 𝑘 + 𝑚. Based on a
standard-form cyclic H-type matrices of order 2 and 5 on
𝐺𝐹 (31):

𝐻2
def
=

[
1 1
1 30

]
(41)

and

𝐻5
def
=


1 1 1 1 1
1 3 9 9 9
1 9 3 9 9
1 9 9 3 9
1 9 9 9 3


, (42)

we can generate an H-type matrix of order 7 on 𝐺𝐹 (31) as

𝐻7 =


√

7
2
𝐻2 𝑂

𝑂

√
7
5
𝐻5

 ≡
[

9𝐻2 𝑂
𝑂 12𝐻5

]

=



9 9 0 0 0 0 0
9 22 0 0 0 0 0
0 0 12 12 12 12 12
0 0 12 5 15 15 15
0 0 12 15 5 15 15
0 0 12 15 15 5 15
0 0 12 15 15 15 5


mod 31,

(43)

which satisfies 𝐻7𝐻
𝑇
7 ≡ 7𝐼 mod 31.

As mentioned in Remark 1, an identity matrix can be
regarded as a special case of an H-type matrix. Therefore,
by employing 𝐻𝑘

def
=

√
𝑘 𝐼𝑘 in Eq.(40), it is also possible

to extend the order of an H-type matrix by employing an
identity matrix such as

𝐻𝑛 =


√
𝑛𝐼𝑛−𝑚 𝑂

𝑂

√
𝑛

𝑚
𝐻𝑚

 , (44)

where 𝐻𝑛 is an H-type matrix of order 𝑛 and 𝐼𝑛−𝑚 is the iden-

tity matrix of order 𝑘 = (𝑛−𝑚). In this case,
(
𝑚

𝑝

)
=

(
𝑛

𝑝

)
= 1

have to be satisfied.

Example 8: Consider two quadratic residues 𝑚 = 3 and
𝑛 = 5 on 𝐺𝐹 (11). Based on a standard-form cyclic H-type
matrix of order 𝑚 = 3 on 𝐺𝐹 (11):

𝐻3
def
=


1 1 1
1 2 8
1 8 2

 , (45)

we can generate an H-type matrix of order 5 on 𝐺𝐹 (11) as

𝐻5 =


√

5𝐼5−3 𝑂

0
√

5
3
𝐻3

 ≡
[

4𝐼2 𝑂
𝑂 3𝐻3

]

≡


4 0 0 0 0
0 4 0 0 0
0 0 3 3 3
0 0 3 6 2
0 0 3 2 6


mod 11, (46)

which satisfies 𝐻5𝐻
𝑇
5 = 5𝐼 mod 11.

Remark 2: In the previous studies[5]–[7], H-type matrices
are defined as a square matrix with ‘non-zero’ entries, where
any two rows are mutually orthogonal. This is partly because
the generation methods of H-type matrices proposed in these
studies are based on cyclic groups on 𝐺𝐹 (𝑝).

However, H-type matrices with zero elements can be
obtained such as 𝐻7 in Example 7 and 𝐻5 in Example 8.
Another example can be obtained according to Example 4.
In Example 4, the solutions (𝑎, 𝑏) = (0, 7) and (5, 9) are
obtained. If we take (𝑎, 𝑏) = (0, 7) instead of (5, 9), we
have another H-type matrix on 𝐺𝐹 (11):

𝐻 =


1 1 1 1 1
1 0 7 7 7
1 7 0 7 7
1 7 7 0 7
1 7 7 7 0


, (47)

which includes zero elements.
Zero elements can be employed in standard-form cyclic

H-type matrices since there is no need to consider any cyclic
groups in order to generate these matrices. On the other
hand, there are no non-standard-form cyclic H-type matrices
with zero entries because it is impossible to obtain any pairs
of solutions where 𝑎 ≡ 0 or 𝑏 ≡ 0 mod 𝑝 are satisfied under
the two conditions (23) and (24) as mentioned in the proof
of Theorem 3.

Remark 3: There are only three different elements includ-
ing ‘1’ in any standard-form cyclic H-type matrices. Also,
there are only two different elements in any non-standard-
form cyclic H-type matrices.

As shown in the above examples, it is possible to in-
crease the number of different elements if the order of the
matrix is extended by any of the above methods. Specifically,
the matrices 𝐻, 𝐻7 and 𝐻5 in Examples 6, 7 and 8 have six,
six and five elements including 0 and 1, respectively.

Note that given a prime 𝑝, even the order of the extended
H-type matrices in Examples 7 and 8 are quadratic residues
of 𝑝. It implies that order of the H-type matrices extended
from any H-type matrices of odd orders on𝐺𝐹 (𝑝) by each of
the above methods is a product of arbitrary quadratic residues
of 𝑝.

6. Some Miscellaneous Remarks

6.1 H-type Matrices of Even Order

As described in Theorem 4, the order of an H-type matrix of
odd order is limited to a quadratic residue of the given prime
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𝑝. Here we discuss H-type matrices of even order.
Even in this case, it is possible to extend the order of

H-type matrices by applying Kronecker products according
to the way described in Sect. 5.2.1. We have the following
properties on H-type matrices of even order.

Corollary 1: Suppose that for any odd prime 𝑝, an
even integer 𝑛 satisfies 𝑛 . 0 mod 𝑝 and 𝑛 =
2𝑚𝑞𝛼1

1 𝑞𝛼2
2 · · · 𝑞𝛼𝑘

𝑘 , where 𝑞1, 𝑞2, . . . , 𝑞𝑘 are different odd
primes and 𝑘, 𝑚, 𝛼1, 𝛼2, . . . , 𝛼𝑘 are positive integers.
Then an H-type matrix of order 𝑛 on 𝐺𝐹 (𝑝) exists if(
𝑞1

𝑝

)
=

(
𝑞2

𝑝

)
= · · · =

(
𝑞𝑘
𝑝

)
= 1.

Proof. As described in Theorem 4, an H-type matrix of odd
order exists for each of the different odd quadratic residues
𝑞1, 𝑞2, . . . , 𝑞𝑘 under the given prime 𝑝. The order of an
extended H-type matrix by Kronecker products of such ma-
trices of odd order is a product of the corresponding quadratic
residues of 𝑝. In addition, it is possible to extend the order
of any H-type matrices by 2𝑚 times by applying Kronecker
product 𝑚 times. □

Note that the inverse of Corollary 1 does not hold in
general. In other words, an H-type matrix on𝐺𝐹 (𝑝) possibly
has the order including a quadratic non-residue of 𝑝 in its
prime factors. Here is an example.

Example 9: For a quadratic non-residue 6 of 𝑝 = 7, there
is an H-type matrix of order 6 on 𝐺𝐹 (7):

𝐻 =



1 1 1 1 1 1
1 1 1 2 4 5
1 1 4 2 5 1
1 2 2 6 4 6
1 4 5 4 4 3
1 5 1 6 3 5


, (48)

which satisfies 𝐻𝐻𝑇 ≡ 6𝐼 mod 7. Note that the order 6
includes another quadratic non-residue 3 of 𝑝 = 7 in its
prime factor.

6.2 H-type Matrices on Residue Class Ring

In the previous studies[5]–[7], we are only concerned with
H-type matrices on ‘finite fields.’ In this section, we discuss
whether H-type matrices can be obtained not only on finite
fields, but also on residue class rings based on non-primes.

Consider the following example for standard-form
cyclic H-type matrices.

Example 10: Consider 𝑚 = 6 as a non-prime. Assume that
𝑚 = 6 and 𝑛 = 4. In other words, we consider whether we
can generate any cyclic H-type matrices of order 4 on Z6. In
this case, from Eqs.(8) and (9), the set of two equations can
be expressed as

1 − 2𝑏 − 3𝑏2 ≡ 0 mod 6 (49)

and

𝑎 ≡ −1 − 2𝑏 mod 6. (50)

From Eq.(49), we have

3𝑏2 + 4𝑏 + 1 = (3𝑏 + 1)(𝑏 + 1) ≡ 0 mod 6. (51)

However, the element ‘3’ does not have any multiplicative
inverse onZ6. It means that we have only one integer solution
for 𝑏 on Z6 in this case, that is, 𝑏 ≡ 5 mod 6. When 𝑏 ≡ 5
mod 6, the solution for 𝑎 can be obtained as 𝑎 ≡ 1 mod 6
from Eq.(50). As a result, a standard-form cyclic H-type
matrix can be obtained as:

𝐻 =


1 1 1 1
1 1 5 5
1 5 1 5
1 5 5 1

 , (52)

which satisfies 𝐻𝐻𝑇 ≡ 4𝐼 mod 6. In this case, we have
only one solution on Z6.

Next, let us consider examples for non-standard-form
cyclic H-type matrices.

Example 11: Consider the same case as the previous ex-
ample, that is, the case where 𝑚 = 6 and 𝑛 = 4. For Eqs.(23)
and (24), we have a couple of solutions (𝑎, 𝑏) ≡ (5, 1), (1, 5)
mod 6 onZ6. As a result, we have two different cyclic H-type
matrices on residue class ring Z6, that is,

𝐻 =


1 5 5 5
5 1 5 5
5 5 1 5
5 5 5 1

 (53)

and

𝐻′ =


5 1 1 1
1 5 1 1
1 1 5 1
1 1 1 5

 , (54)

which satisfies 𝐻𝐻𝑇 ≡ 4𝐼 mod 6 as well as 𝐻′𝐻′𝑇 ≡ 4𝐼
mod 6. Note that, in this case, the relation 𝐻′ ≡ 5·𝐻 mod 6
is satisfied.

In general, Eq.(24) has a solution 𝑏 ≡ ±1 mod 𝑚 on
Z𝑚 at least if 𝑛 = 4. In this case, 𝑎 can also be obtained on
Z𝑚 from Eq.(23). Therefore, cyclic H-type matrices of order
4 on Z𝑚 can be obtained.

Here is another example for 𝑛 ≠ 4.

Example 12: Consider the case where 𝑚 = 8 and 𝑛 = 6,
that is, cyclic H-type matrices of order 6 on Z8. In this
case, from Eqs.(23) and (24), the set of two equations can be
expressed as{

𝑎 ≡ −2𝑏 mod 8,

𝑏2 ≡ 2
3

mod 8. (55)

Note that there are not any integer solutions for 𝑏 on Z8.



8
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Therefore, we can conclude that there are no cyclic H-type
matrices of order 6 on Z8.

From these examples, it is shown that cyclic H-type
matrices cannot be always generated on residue class rings.

6.3 Generation of Involutory Matrices

Involutory matrix 𝐴 is defined as a square matrix that is
identical to its own inverse 𝐴−1. Therefore, an involutory
matrix 𝐴 satisfies 𝐴2 = 𝐼. For example, an identity matrix 𝐼
or any permutation matrices are involutory matrices.

It is easy to show that an involutory matrix can be
generated by a standard-form or a non-standard-form cyclic
H-type matrix.

Corollary 2: Given an H-type matrix𝐻 given in the form of

Eqs.(7) or (22), the matrix 𝑀
def
=

1
(𝑎 − 𝑏)𝐻 is an involutory

matrix.

Proof. Note that a cyclic H-type matrix is symmetric. Ac-
cording to Theorem 2, it is trivial that 𝐻𝐻𝑇 = 𝐻2 ≡ 𝑛𝐼 ≡
(𝑎 − 𝑏)2𝐼 mod 𝑝. □

Example 13:

𝐻
def
=


1 1 1
1 8 4
1 4 8

 (56)

is a standard-form cyclic H-type matrix of order 3 on
𝐺𝐹 (13). Note that (𝑎, 𝑏) = (8, 4). Then,

𝑀 =
1

𝑎 − 𝑏
· 𝐻 =

1
4
· 𝐻

≡ 10 · 𝐻 ≡


10 10 10
10 2 1
10 1 2

 mod 13 (57)

is an involutory matrix, which satisfies 𝑀2 ≡ 𝐼 mod 13.

In general, any block-diagonal matrices obtained from
involutory matrices are also involutory matrices. Here is an
example.

Example 14: Based on the involutory matrix 𝑀 obtained
as Eq.(57) in Example 13, a block-diagonal matrix:

𝑀 ′ =



10 10 10

𝑂10 2 1
10 1 2

𝑂
10 10 10
10 2 1
10 1 2


(58)

can be constructed, which satisfies 𝑀 ′2 = 𝐼 mod 13.

Even if the matrix 𝐻 is not a cyclic H-type matrix, it is
possible to generate an involutory matrix.

Corollary 3: Given a symmetric H-type matrix 𝐻 of odd

Table 1 The Number of H-type matrices for some given 𝑝 and 𝑛.
Prime 𝑝 Order 𝑛 Number of H-type matrices

3 4 12
11 3 86
13 3 138

order, the matrix 𝑀
def
=

1
√
𝑛
𝐻 is an involutory matrix.

Proof. If an H-type matrix 𝐻 of order 𝑛 on 𝐺𝐹 (𝑝) is
symmetric, 𝐻𝐻𝑇 = 𝐻2 ≡ 𝑛𝐼 mod 𝑝. It is always possible

to generate 𝑀
def
=

1
√
𝑛
𝐻, which obviously satisfies 𝑀2 ≡ 𝐼

mod 𝑝 since the order 𝑛 of 𝐻 is a quadratic residue of 𝑝
according to Theorem 4. □

Example 15: The matrix 𝐻 given as Eq.(5) in Example 2
is not cyclic, but a symmetric H-type matrix of order 5 on
𝐺𝐹 (11). Note that the order 5 of 𝐻 is a quadratic residue of
𝑝 = 11. Then the matrix

𝑀 =
1
√
𝑛
· 𝐻

=
1
√

5
· 𝐻

≡ 1
4
· 𝐻

≡ 3 · 𝐻 ≡


3 3 3 3 3
3 6 3 2 8
3 3 10 1 5
3 2 1 7 9
3 8 5 9 8


mod 11 (59)

is an involutory matrix, which satisfies 𝑀2 ≡ 𝐼 mod 11.

6.4 The Number of H-type Matrices on Finite Fields

On H-type matrices on finite fields, one question may nat-
urally arise: How many H-type matrices exist for the given
prime 𝑝 and the order 𝑛? Table 1 shows the number of
H-type matrices for some combinations of the parameters 𝑝
and 𝑛, which has been counted by computer searches. Dupli-
cates due to swapping of rows and columns are not counted
in Table 1.

This table implies that there exist quite less number of
H-type matrices compared to all possible square matrices
of the given order on finite fields. However, it can be seen
that there are many more options for H-type matrices on
finite fields in comparison with the case of the conventional
binary Hadamard matrices. Note that for standard-form or
non-standard-form cyclic H-type matrices, there are only two
options at most for the given prime 𝑝 and the order 𝑛. In
addition, it is still unknown how to generate many of these
H-type matrices except for the cyclic H-type matrices, the
identity matrices and the obvious cases shown in Example 1,
which is essentially identical to binary Hadamard matrices.
It is one of the very important open problems to find the way
to generate such H-type matrices on finite fields.
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7. Summary

In this paper, we introduce some new varieties of H-type
matrices on finite fields and its properties. Specifically, the
new results shown in this paper are as follows.

• Some new kinds of H-type matrices can be found by
brute-force searches.

• We define cyclic H-type matrices, give ways to generate
them, and show that their orders are limited to quadratic
residues of the given prime.

• It is shown that the order of an arbitrary H-type matrix
of odd order is limited to a quadratic residue of the
given prime.

• Some methods to extend the orders of H-type matrices
are given.

• It is shown that we can generate an H-type matrix of
even order by extending H-type matrices of odd order.
However, the orders of H-type matrices of even order
are not always quadratic residues of the given prime.

• It is shown that an H-type matrix based on a non-prime
on residue class ring cannot be always generated.

• It is shown that an involutory matrix can be generated
by using a cyclic H-type matrix or a symmetric H-type
matrix of odd order.

• We count all possible H-type matrices for some com-
binations of the given prime 𝑝 and the order 𝑛 through
computer searches.

In our brute-force searches, we have found many exam-
ples of H-type matrices other than cyclic H-type matrices
or symmetric H-type matrices. It is interesting to give the
methods to generate such “irregular” H-type matrices in our
future study. The necessary and sufficient conditions for the
existence of H-type matrices of even order is still unknown.
This is another interesting topic to tackle in the future.
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