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PAPER Special Section on Information Theory and Its Applications

A Variational Characterization of 𝑯-Mutual Information and its
Application to Computing 𝑯-Capacity

Akira KAMATSUKA†a), Member, Koki KAZAMA†b), Nonmember, and Takahiro YOSHIDA††c), Senior Member

SUMMARY 𝐻-mutual information (𝐻-MI) is a wide class of infor-
mation leakage measures, where 𝐻 = (𝜂, 𝐹 ) is a pair of monotonically
increasing function 𝜂 and a concave function 𝐹, which is a generalization
of Shannon entropy. 𝐻-MI is defined as the difference between the gen-
eralized entropy 𝐻 and its conditional version, including Shannon mutual
information (MI), Arimoto MI of order 𝛼, 𝑔-leakage, and expected value
of sample information. This study presents a variational characterization
of 𝐻-MI via statistical decision theory. Based on the characterization, we
propose an alternating optimization algorithm for computing 𝐻-capacity.
key words: 𝐻-mutual information, Arimoto–Blahut algorithm, statistical
decision theory, value of information

1. Introduction

Shannon mutual information (MI) 𝐼 (𝑋;𝑌 ) [1] is a typical
quantity that quantifies the amount of information a random
variable 𝑌 contains about a random variable 𝑋 . Several
ways to generalize the Shannon MI are available in liter-
ature. A well-known generalization of Shannon MI is a
class of 𝛼-mutual information (𝛼-MI) 𝐼 ( ·)𝛼 (𝑋;𝑌 ) [2], where
𝛼 ∈ (0, 1) ∪ (1,∞) is a tunable parameter. The 𝛼-MI class
includes Sibson MI 𝐼S

𝛼 (𝑋;𝑌 ) [3], Arimoto MI 𝐼A
𝛼 (𝑋;𝑌 ) [4],

and Csiszár MI 𝐼C
𝛼 (𝑋;𝑌 ) [5]. These MIs share common

properties such as non-negativity and data-processing in-
equality (DPI).

In problems on information security, Shannon MI
can be interpreted as a measure of information leakage,
i.e., a measure of how much information observed data 𝑌
leak about secret data 𝑋 . Recently, various operationally
meaningful leakage measures were proposed for privacy-
guaranteed data-publishing problems. For example, Calmon
and Fawaz introduced the average cost gain [6] and Issa et
al. introduced the maximal leakage. Extending the maxi-
mal leakage, Liao et al. introduced 𝛼-leakage and maximal
𝛼-leakage [7]. Alvim et al. proposed 𝑔-leakage [8–10], a
rich class of information leakage measures; 𝑔-leakage was
extended to maximal 𝑔-leakage by Kurri et al. [11]. Note
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that these information leakage measures are based on the
adversary’s decision-making on 𝑋 from the observed data 𝑌
and a gain (utility) or loss (cost) function.

Research on quantifying leaked information from the
observed data𝑌 based on a decision-making problem can be
traced back to the 1960s. In a pioneering work by Raiffa and
Schlaifer on quantifying the value of information (VoI) [12],
the expected value of sample information (EVSI) was for-
mulated in a statistical decision-theoretic framework. EVSI
was defined as the largest increase in maximal Bayes ex-
pected gain (or the largest reduction of minimal Bayes risk)
compared to those without using 𝑌 . Thus, information leak-
age measures in the information disclosure problem can be
interpreted as variants of EVSI.

Recently, Américo et al. proposed a wide class of
information leakage measures, referred to as 𝐻-mutual in-
formation (𝐻-MI) 𝐼𝐻 (𝑋;𝑌 ) [13, 14]. Here, 𝐻 = (𝜂, 𝐹) is a
pair of a continuous real-valued function 𝐹 : ΔX → R and a
continuous and strictly increasing function 𝜂 : 𝐹 (ΔX) → R,
where ΔX is a probability simplex on a finite set X and
𝐹 (ΔX) is the image of 𝐹. When 𝜂 is an identity map and
𝐹 (𝑝𝑋) := −∑

𝑥 𝑝𝑋 (𝑥) log 𝑝𝑋 (𝑥), 𝐻 = (𝜂, 𝐹) represents the
Shannon entropy 𝑆(𝑋). Thus 𝐻 = (𝜂, 𝐹) can be regarded as
a generalized entropy. 𝐻-MI is defined as the difference be-
tween the generalized entropy 𝐻 = (𝜂, 𝐹) and its conditional
version 𝐻 (𝑋 |𝑌 ), which includes Shannon MI, Arimoto MI
of order 𝛼, 𝑔-leakage, and EVSI. In [13, 14], Américo et al.
provided the necessary and sufficient conditions (referred
to as core-concavity (CCV) condition) for 𝐼𝐻 (𝑋;𝑌 ) to sat-
isfy non-negativity and DPI when the conditional entropy
𝐻 (𝑋 |𝑌 ) satisfies the 𝜂-averaging (EAVG) condition.

In this study, we present a variational characterization
of 𝐻-MI that satisfies DPI via statistical decision theory.
Our variational characterization transforms 𝐻-MI into the
following optimization problem:

𝐼𝐻 (𝑋;𝑌 ) = max
𝑞𝑋|𝑌
F𝐻 (𝑝𝑋, 𝑞𝑋 |𝑌 ), (1)

where 𝑝𝑋 ∈ ΔX is a distribution on 𝑋 and 𝑞𝑋 |𝑌 = {𝑞𝑋 |𝑌 (· |
𝑦)}𝑦∈Y is a set of conditional distributions of 𝑋 , given
𝑌 = 𝑦. This variational characterization allows us to de-
rive an alternating optimization algorithm (also known as
Arimoto–Blahut algorithm [15], [16]) for computing 𝐻-
capacity 𝐶𝐻 := max𝑝𝑋 𝐼𝐻 (𝑋;𝑌 ), such as the channel ca-
pacity 𝐶 := max𝑝𝑋 𝐼 (𝑋;𝑌 ) and Arimoto capacity 𝐶A

𝛼 :=
max𝑝𝑋 𝐼A

𝛼 (𝑋;𝑌 ) † [4, 17], [18].
†It is worth mentioning that Liao et al. reported the operational
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1.1 Main Contributions

The main contributions of this study are as follows:

• We provide a variational characterization of 𝐻-MI
(Theorem 2) using the fact that every concave func-
tion 𝐹 has a statistical decision-theoretic variational
characterization [19, Section 3.5.4].

• On the basis of variational characterization, we
build an alternating optimization algorithm for cal-
culating 𝐻-capacity 𝐶𝐻 := max𝑝𝑋 𝐼𝐻 (𝑋;𝑌 ) =
max𝑝𝑋 max𝑞𝑋|𝑌 F𝐻 (𝑝𝑋, 𝑞𝑋 |𝑌 ) (Algorithm 1) (see Sec-
tion 4). Moreover, we show that the algorithms for
computing Arimoto capacity 𝐶A

𝛼 derived from our ap-
proach coincide with the previous algorithms reported
in [17], [18].

1.2 Organization of the Paper

The remainder of this paper is organized as follows. We
review the statistical decision theory and 𝐻-MI in Section 2.
In Section 3, we present the variational characterization of
𝐻-MI. In Section 4, we derive an alternating optimization
algorithm for computing𝐻-capacity𝐶𝐻 := max𝑝𝑋 𝐼𝐻 (𝑋;𝑌 )
based on the characterization.

2. Preliminaries

2.1 Notations

Let 𝑋,𝑌 be random variables on finite alphabets X
and Y, drawn according to a joint distribution 𝑝𝑋,𝑌 =
𝑝𝑋𝑝𝑌 |𝑋. Let 𝑝𝑌 be a marginal distribution of 𝑌 and
𝑝𝑋 |𝑌 (·|𝑦) := 𝑝𝑋 ( ·) 𝑝𝑌 |𝑋 (𝑦 | · )∑

𝑥 𝑝𝑋 (𝑥 ) 𝑝𝑌 |𝑋 (𝑦 |𝑥 ) be a posterior distribu-
tion on 𝑋 given 𝑌 = 𝑦, respectively. The set of all
distributions 𝑝𝑋 is denoted as ΔX . We often iden-
tify ΔX with (𝑚 − 1)-dimensional probability simplex{
(𝑝1, . . . , 𝑝𝑚) ∈ [0, 1]𝑚

�� ∑𝑚
𝑖=1 𝑝𝑖 = 1

}
, where 𝑚 := |X|.

Given a function 𝑓 : X → R, we use E𝑋 [ 𝑓 (𝑋)] :=∑
𝑥 𝑓 (𝑥)𝑝𝑋 (𝑥) and E𝑋 [ 𝑓 (𝑋) |𝑌 = 𝑦] :=

∑
𝑥 𝑓 (𝑥)𝑝𝑋 |𝑌 (𝑥 |𝑦)

to denote expectation on 𝑓 (𝑋) and conditional expectation
on 𝑓 (𝑋) given 𝑌 = 𝑦, respectively. We also use E𝑝𝑋

𝑋 [ 𝑓 (𝑋)]
to emphasize that we are taking expectations 𝑝𝑋. We use
𝑆(𝑋), 𝑆(𝑋 |𝑌 ), 𝐼 (𝑋;𝑌 ) := 𝑆(𝑋) − 𝑆(𝑋 |𝑌 )†, and 𝐷 (𝑝 | |𝑞) to
denote Shannon entropy, conditional entropy, Shannon MI,
and relative entropy, respectively. Let A be an action space
(decision space) and 𝛿 : Y → A be a decision rule for a de-
cision maker (DM). Let 𝐴 := 𝛿(𝑌 ) be an action (decision) of
the DM. We use ℓ(𝑥, 𝑎) and 𝑔(𝑥, 𝑎) to denote the loss (cost)
function and gain (utility) function of the DM, respectively.

meaning of Arimoto capacity and Sibson capacity in the privacy-
guaranteed data-publishing problems [7, Thm 2]; these capacities
are essentially equivalent to the maximal 𝛼-leakage.
†Note that, throughout this paper, the notations 𝐻 (𝑋) and

𝐻 (𝑋 |𝑌 ) are used to denote generalized forms of entropy and con-
ditional entropy introduced in Definitions 2 and 4.

Throughout this paper, we use log to denote the natural log-
arithm and ∥𝑝𝑋 ∥ 𝑝 := (∑𝑥 𝑝𝑋 (𝑥) 𝑝)

1
𝑝 represents the 𝑝-norm

of 𝑝𝑋 ∈ ΔX .
We initially review statistical decision theory [20] and

𝐻-MI [13, 14].

2.2 Statistical Decision Theory and Scoring Rules

In this subsection, we review statistical decision theory. In
particular, we review a problem of deciding the optimal prob-
ability mass function (pmf) considering a loss or a gain
function (referred to as a scoring rule), which is historically
known as a probability forecasting problem.

Suppose that a DM makes action 𝐴 ∈ A from observed
data 𝑌 ∈ Y using a decision rule 𝛿 : Y → A . We as-
sume that the DM uses the decision rule 𝛿∗ that minimizes
Bayes risk 𝑟 (𝛿) := E𝑋,𝑌 [ℓ(𝑋, 𝛿(𝑌 ))] (or maximizes Bayes
expected gain 𝐺 (𝛿) := E𝑋,𝑌 [𝑔(𝑋, 𝛿(𝑌 ))]). Figure 1 shows
the system model for this problem.

𝑋 𝑝𝑌 |𝑋 𝑌 𝛿 𝐴

Fig. 1 System model of the statistical decision theory

Proposition 1 ( [20, Result 1], [21, Thm 2.7]): The mini-
mal Bayes risk is given by

min
𝛿

𝑟 (𝛿) = 𝑟 (𝛿*) (2)

= E𝑌

[
min
𝑎∈A

E𝑋 [ℓ(𝑋, 𝑎) | 𝑌 ]
]

(3)

=
∑
𝑦

𝑝𝑌 (𝑦)
[
min
𝑎∈A

∑
𝑥

ℓ(𝑥, 𝑎)𝑝𝑋 |𝑌 (𝑥 | 𝑦)
]
,

(4)

with the optimal decision rule 𝛿* : Y → A given by

𝛿* (𝑦) := argmin
𝑎∈A

E𝑋 [ℓ(𝑋, 𝑎) | 𝑌 = 𝑦] . (5)

Similarly, the maximal Bayes expected gain and the optimal
decision rule 𝛿* : Y → A are given by

max
𝛿

𝐺 (𝛿) = 𝐺 (𝛿∗) (6)

= E𝑌

[
max
𝑎∈A

E𝑋 [𝑔(𝑋, 𝑎) | 𝑌 ]
]
, (7)

𝛿* (𝑦) := argmax
𝑎∈A

E𝑋 [𝑔(𝑋, 𝑎) | 𝑌 = 𝑦] . (8)

Remark 1: Let ℓ(𝑥, 𝑎) be a loss function. Let us define a
gain function 𝑔(𝑥, 𝑎) := 𝑐ℓ(𝑥, 𝑎) + 𝑑, where 𝑐 < 0 and 𝑑 are
constants. One can easily see that if 𝛿∗ minimize Bayes risk
𝑟 (𝛿) := E𝑋,𝑌 [ℓ(𝑋, 𝛿(𝑌 ))] then the rule 𝛿∗ also maximizes
the Bayes expected gain 𝐺 (𝛿) := E𝑋,𝑌 [𝑔(𝑋, 𝛿(𝑌 ))]. The
reverse is also true.
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Example 1: Let 𝑋̂ be an estimator of 𝑋 . Suppose that a
DM conducts a point estimation on 𝑋 , i.e., 𝐴 = 𝑋̂ ∈ X
considering 0-1 loss ℓ0-1 (𝑥, 𝑥) = 1l{𝑥=𝑥̂} , where 1l{ ·} is an
indicator function. Then the minimal Bayes risk and the
optimal decision rule 𝛿∗ are given as follows:

min
𝛿

𝑟 (𝛿) = 1 − E𝑌
[
max
𝑥

𝑝𝑋 |𝑌 (𝑥 | 𝑌 )
]
, (9)

𝛿∗ (𝑦) = argmax
𝑥

𝑝𝑋 |𝑌 (𝑥 | 𝑦). （MAP estimation）

(10)

Example 2: Suppose that a DM decides the optimal pmf
𝑞 ∈ A = ΔX considering log-score 𝑔log (𝑥, 𝑞) := log 𝑞(𝑥)
[22]. Then, the maximal Bayes expected gain and the optimal
decision rule are given as

min
𝛿

𝑟 (𝛿) = 𝑆(𝑋 | 𝑌 ), (11)

𝛿∗ (𝑦) = 𝑝𝑋 |𝑌 (· | 𝑦), (12)

where 𝑆(𝑋 |𝑌 ) = −∑
𝑦 𝑝𝑌 (𝑦)

∑
𝑥 𝑝𝑋 |𝑌 (𝑥 |𝑦) log 𝑝𝑋 |𝑌 (𝑥 |𝑦) is

the conditional entropy.

Remark 2: Historically, the problem of deciding the opti-
mal pmf 𝑞 ∈ ΔX considering a loss ℓ(𝑥, 𝑞) or a gain 𝑔(𝑥, 𝑞)
is called a probability forecasting problem [23], [24]. In the
problem, the loss or gain function is called the scoring rule.

Remark 3: Note that finding the optimal decision rule
𝛿 : Y → ΔX that minimizes 𝑟 (𝛿) (resp. maximizes
𝐺 (𝛿)) is equivalent to finding the optimal set of condi-
tional distributions 𝑞𝑋 |𝑌 = {𝑞𝑋 |𝑌 (· | 𝑦)}𝑦∈Y that mini-
mizes 𝑟 (𝑞𝑋 |𝑌 ) := E𝑋,𝑌

[
ℓ(𝑋, 𝑞𝑋 |𝑌 (𝑋 | 𝑌 ))

]
(resp. maxi-

mizes 𝐺 (𝑞𝑋 |𝑌 ) := E𝑋,𝑌

[
𝑔(𝑋, 𝑞𝑋 |𝑌 (𝑋 | 𝑌 ))

]
). Thus we call

𝑟 (𝑞𝑋 |𝑌 ) (resp. 𝐺 (𝑞𝑋 |𝑌 )) as Bayes risk (resp. Bayes expected
gain) for 𝑞𝑋 |𝑌 and denote the optimal set of conditional dis-
tribution as 𝑞∗

𝑋 |𝑌 .

Example 3: Besides the log-score 𝑔log (𝑥, 𝑞) in Example 2,
there exist other scoring rules that give the same optimal set
of conditional distribution 𝑞∗

𝑋 |𝑌 . Some examples are shown
below:

• 𝑔PS (𝑥, 𝑞) := 1
𝛼−1

(
𝑞 (𝑥 )
∥𝑞 ∥𝛼

)𝛼−1
(the pseudo-spherical

score [25])
• 𝑔Power(𝑥, 𝑞) := 𝛼

𝛼−1 · 𝑞(𝑥)𝛼−1 − ∥𝑞∥𝛼𝛼 (the power score
[26] (also known as Tsallis score [24]))

†

Note that the log-score 𝑔log (𝑥, 𝑞), pseudo-spherical
score 𝑔PS (𝑥, 𝑞), and power score 𝑔Power (𝑥, 𝑞) are all proper
scoring rules (PSR) defined as follows.

Definition 1: The scoring rule 𝑔(𝑥, 𝑞) is proper if for all
𝑞 ∈ ΔX ,

†The pseudo-spherical score and the power score are originally
defined for 𝛼 > 1. We multiply the original definitions by 1

𝛼−1 so
that we can define them for 𝛼 ∈ (0, 1) ∪ (1,∞).

E𝑝𝑋
𝑋 [𝑔(𝑋, 𝑝𝑋)] ≥ E𝑝𝑋

𝑋 [𝑔(𝑋, 𝑞)] . (13)

If the equality holds if and only if 𝑞 = 𝑝𝑋, then the scoring
rule 𝑔(𝑥, 𝑞) is called strictly proper††.

Example 4: Recently, Liao et al. proposed 𝛼-loss
ℓ𝛼 (𝑥, 𝑞) := 𝛼

𝛼−1

(
1 − 𝑞(𝑥) 𝛼−1

𝛼

)
[7, Def 3] in the privacy-

guaranteed data-publishing context. In [7, Lemma 1], they
proved that

argmin
𝑞

E𝑝𝑋
𝑋 [ℓ𝛼 (𝑋, 𝑞)] = 𝑝𝑋𝛼 , (14)

where 𝑝𝑋𝛼 is the 𝛼-tilted distribution of 𝑝𝑋 (also known as
scaled distribution [2] and escort distribution [27]) defined
as follows:

𝑝𝑋𝛼 (𝑥) :=
𝑝𝑋 (𝑥)𝛼∑
𝑥 𝑝𝑋 (𝑥)𝛼

. (15)

Thus, 𝛼-loss ℓ𝛼 (𝑥, 𝑞) can be regard as a scoring rule that is
not proper.

Table 1 summarizes examples of scoring rules de-
scribed above, their optimal values, and the optimal set of
conditional distributions 𝑞∗

𝑋 |𝑌 .

2.3 𝐻-Mutual information (𝐻-MI) [13, 14]

In this subsection, we review 𝐻-MI and show that 𝐻-MI
includes well-known information leakage measures.

Definition 2 ( [13, Def. 11]): Let 𝑝𝑋 be a pmf of 𝑋 ,
𝐹 : ΔX → R and 𝜂 : 𝐹 (ΔX) → R be continuous functions,
and 𝜂 be strictly increasing. Given 𝐻 = (𝜂, 𝐹), the uncondi-
tional form of entropy is defined as follows:

𝐻 (𝑋) := 𝜂(𝐹 (𝑝𝑋)). (16)

Definition 3 (CCV [13, Def. 12]): 𝐻 = (𝜂, 𝐹) is core-
concave (CCV) if 𝐹 is concave. We say that 𝐻 (𝑋) is core-
concave entropy if 𝐻 = (𝜂, 𝐹) is CCV.

Definition 4 (EAVG [13, Def. 13]): ††† Given a joint dis-
tribution 𝑝𝑋,𝑌 = 𝑝𝑋𝑝𝑌 |𝑋 and 𝐻 = (𝜂, 𝐹), a functional
𝐻 (𝑝𝑋, 𝑝𝑌 |𝑋) satisfies 𝜂-averaging (EAVG) if it is repre-
sented as follows:

𝐻 (𝑝𝑋, 𝑝𝑌 |𝑋) = 𝜂
(
E𝑝𝑌
𝑌

[
𝐹 (𝑝𝑋 |𝑌 (· | 𝑌 ))

] )
(17)

= 𝜂

(∑
𝑦

𝑝𝑌 (𝑦)𝐹 (𝑝𝑋 |𝑌 (· | 𝑦))
)
, (18)

where 𝑝𝑋 |𝑌 (𝑥 |𝑦) := 𝑝𝑋 (𝑥 ) 𝑝𝑌 |𝑋 (𝑦 |𝑥 )∑
𝑥 𝑝𝑋 (𝑥 ) 𝑝𝑌 |𝑋 (𝑦 |𝑥 ) is the posterior distri-

bution of 𝑋 given 𝑌 = 𝑦 and 𝑝𝑌 (𝑦) :=
∑

𝑥 𝑝𝑋 (𝑥)𝑝𝑌 |𝑋 (𝑦 |𝑥)
is the marginal distribution of 𝑌 . We say that 𝐻 (𝑝𝑋, 𝑝𝑌 |𝑋)
is conditional entropy of 𝐻 = (𝜂, 𝐹) and it is denoted by
𝐻 (𝑋 |𝑌 ).

††Similarly, we can define a (strictly) proper loss ℓ(𝑥, 𝑞).
†††We slightly modified the definition of EAVG.
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Table 1 Typical scoring rules for deciding 𝑞 ∈ ΔX and the optimal decision rules

ℓ (𝑥, 𝑞) ,
𝑔(𝑥, 𝑞)

argmin𝑞 E𝑋 [ℓ (𝑋, 𝑞) ]
= argmax𝑞 E𝑋 [𝑔(𝑋, 𝑞) ]

min𝑞 E𝑋 [ℓ (𝑋, 𝑞) ],
max𝑞 E𝑋 [𝑔(𝑋, 𝑞) ]

argmin𝑞𝑋|𝑌 E𝑋,𝑌

[
ℓ (𝑋, 𝑞𝑋|𝑌 ( · |𝑌 ) )

]
= argmax𝑞𝑋|𝑌 E𝑋,𝑌

[
𝑔(𝑋, 𝑞𝑋|𝑌 ( · |𝑌 ) )

] min𝑞𝑋|𝑌 E𝑋,𝑌

[
ℓ (𝑋, 𝑞𝑋|𝑌 ( · |𝑌 ) )

]
,

max𝑞𝑋|𝑌 E𝑋,𝑌

[
𝑔(𝑋, 𝑞𝑋|𝑌 ( · |𝑌 ) )

]
− log 𝑞 (𝑥 ) (log-loss),

log 𝑞 (𝑥 ) (log-score [22]) 𝑝𝑋
𝑆 (𝑋) ,
−𝑆 (𝑋) 𝑝𝑋|𝑌 ( · |𝑦) , 𝑦 ∈ Y

𝑆 (𝑋 |𝑌 ) ,
−𝑆 (𝑋 |𝑌 )

1
𝛼−1

(
1 −

(
𝑞 (𝑥)
∥𝑞∥𝛼

)𝛼−1
)
,

1
𝛼−1 ·

(
𝑞 (𝑥)
∥𝑞∥𝛼

)𝛼−1

(pseudo-spherical score [25])

𝑝𝑋

1
𝛼−1 (1 − ∥ 𝑝𝑋 ∥𝛼 )

(Harvda–Tsallis entropy),
1

𝛼−1 · ∥ 𝑝𝑋 ∥𝛼
𝑝𝑋|𝑌 ( · |𝑦) , 𝑦 ∈ Y

1
𝛼−1

(
1 − E𝑌

[

𝑝𝑋|𝑌 ( · |𝑌 )

𝛼] )
,

1
𝛼−1 · E𝑌

[

𝑝𝑋|𝑌 ( · |𝑌 )

𝛼]
𝛼

𝛼−1

(
1 − 𝑞 (𝑥 )𝛼−1

)
+ ∥𝑞∥𝛼𝛼,

𝛼
𝛼−1 · 𝑞 (𝑥 )𝛼−1 − ∥𝑞∥𝛼𝛼

(power score [26],
Tsallis score [24])

𝑝𝑋
1

𝛼−1 (1 − ∥ 𝑝𝑋 ∥
𝛼
𝛼 ) ,

1
𝛼−1 · ∥ 𝑝𝑋 ∥

𝛼
𝛼

𝑝𝑋|𝑌 ( · |𝑦) , 𝑦 ∈ Y
1

𝛼−1

(
1 − E𝑌

[

𝑝𝑋|𝑌 ( · |𝑌 )

𝛼𝛼] )
,

1
𝛼−1 · E𝑌

[

𝑝𝑋|𝑌 ( · |𝑌 )

𝛼𝛼]
𝛼

𝛼−1

(
1 − 𝑞 (𝑥 ) 𝛼−1

𝛼

)
(𝛼-loss [7]),

𝛼
𝛼−1 · 𝑞 (𝑥 )

𝛼−1
𝛼 (𝛼-score)

𝑝𝑋𝛼

𝛼
𝛼−1 (1 − ∥ 𝑝𝑋 ∥𝛼 ) ,

𝛼
𝛼−1 · ∥ 𝑝𝑋 ∥𝛼

𝑝𝑋𝛼 |𝑌 ( · |𝑦) , 𝑦 ∈ Y
𝛼

𝛼−1

(
1 − E𝑌

[

𝑝𝑋|𝑌 ( · | 𝑌 )

𝛼] )
,

𝛼
𝛼−1 · E𝑌

[

𝑝𝑋|𝑌 ( · |𝑌 )

𝛼]

Theorem 1 ( [14, Thm. 2] and [13, Thm. 4]): Given 𝐻 =
(𝜂, 𝐹), 𝐻-MI is defined as

𝐼𝐻 (𝑋;𝑌 ) := 𝐻 (𝑋) − 𝐻 (𝑋 | 𝑌 ), (19)

where 𝐻 (𝑋 |𝑌 ) satisfies EAVG. Then, the following are
equivalent†:

(CCV) 𝐻 = (𝜂, 𝐹) is core-concave.
(Non-negativity) 𝐼𝐻 (𝑋;𝑌 ) ≥ 0.
(DPI) If 𝑋 − 𝑌 − 𝑍 forms a Markov chain, then

𝐼𝐻 (𝑋; 𝑍) ≤ 𝐼𝐻 (𝑋;𝑌 ). (20)

Table 2 lists examples of 𝐻-MI, 𝐻 = (𝜂, 𝐹), and
𝐻 (𝑋 |𝑌 ) described below that satisfy the conditions in The-
orem 1 (For more examples, see [13, 14], [28, Table I]).

Example 5: Let 𝛼 ∈ (0, 1) ∪ (1,∞). Shannon MI
𝐼 (𝑋;𝑌 ) := 𝑆(𝑋) − 𝑆(𝑋 |𝑌 ) and Arimoto MI 𝐼A

𝛼 (𝑋;𝑌 ) :=
𝐻𝛼 (𝑋) − 𝐻A

𝛼 (𝑋 | 𝑌 ) are examples of 𝐻-MI, where

𝐻𝛼 (𝑋) :=
𝛼

1 − 𝛼 log ∥𝑝𝑋 ∥𝛼 =
1

1 − 𝛼 log ∥𝑝𝑋 ∥𝛼𝛼

(21)

= − log ∥𝑝𝑋 ∥
𝛼

𝛼−1
𝛼 , (22)

𝐻A
𝛼 (𝑋 | 𝑌 ) :=

𝛼

1 − 𝛼 log
∑
𝑦

𝑝𝑌 (𝑦)
∑
𝑥



𝑝𝑋 |𝑌 (· | 𝑦)

𝛼
(23)

are the Rènyi entropy of order 𝛼 and the Arimoto conditional
entropy of order 𝛼 [4], respectively.

As shown in Example 5, the Rènyi entropy 𝐻𝛼 (𝑋)
can be represented in at least three different ways. The
corresponding 𝐻 = (𝜂, 𝐹) for these expressions are shown
in Table 2. Thus, we can define novel MIs as follows:

Definition 5 (Hayashi MI, Fehr–Berens MI): Hayashi MI
of order 𝛼 ∈ (0, 1) ∪ (1,∞) and Fehr–Berens MI of order
𝛼 > 1 are defined as follows:
†Note that the original statement of the theorem is stated in

terms of conditional entropy 𝐻 (𝑋 |𝑌 ) instead of 𝐻-MI 𝐼𝐻 (𝑋;𝑌 ).

𝐼H
𝛼 (𝑋;𝑌 ) := 𝐻𝛼 (𝑋) − 𝐻H

𝛼 (𝑋 | 𝑌 ), (24)
𝐼FB
𝛼 (𝑋;𝑌 ) := 𝐻𝛼 (𝑋) − 𝐻FB

𝛼 (𝑋 | 𝑌 ), (25)

where

𝐻H
𝛼 (𝑋;𝑌 ) :=

1
1 − 𝛼 log

∑
𝑦

𝑝𝑌 (𝑦)
∑
𝑥



𝑝𝑋 |𝑌 (·|𝑦)

𝛼𝛼 ,
(26)

𝐻FB
𝛼 (𝑋;𝑌 ) := − log

∑
𝑦

𝑝𝑌 (𝑦)


𝑝𝑋 |𝑌 (·|𝑦)

 𝛼

𝛼−1
𝛼

(27)

are the Hayashi conditional entropy of order 𝛼 [29, Section
II.A] and the Fehr–Berens conditional entropy of order𝛼 [30,
Section III.E, 5)], respectively.

Since 𝐻A
𝛼 (𝑋 |𝑌 ) ≥ 𝐻H

𝛼 (𝑋 |𝑌 ) [31, Prop 1], it follows
that Hayashi MI is greater than or equal to Arimoto MI.

Proposition 2: Let 𝛼 ∈ (0, 1) ∪ (1,∞).

𝐼A
𝛼 (𝑋;𝑌 ) ≤ 𝐼H

𝛼 (𝑋;𝑌 ). (28)

The amount of information that the observed data 𝑌
contain about 𝑋 can also be quantified using the framework
of a decision-making problem. In the 1960s, the EVSI was
proposed by Raiffa and Schaifer [12]. Recently, equivalents
or variants of the EVSI have been proposed in the context of
privacy-guaranteed data-publishing problems. For example,
Calmon and Fawaz proposed average (cost) gain [6] and
Alvim et al. proposed 𝑔-leakage [8–10].

Definition 6: Let 𝑔(𝑥, 𝑎) be a gain function. The EVSI
[12], also known as average gain [6] and additive 𝑔-leakage
[8–10], is defined as the largest increase in the maximal
Bayes expected gain compared to those without using𝑌 , i.e.,

EVSI𝑔 (𝑋;𝑌 ) := max
𝛿

𝐺 (𝛿) −max
𝑎

E𝑋 [𝑔(𝑋, 𝑎)] (29)

= −max
𝑎

E𝑋 [𝑔(𝑋, 𝑎)] − E𝑌
[
−max

𝑎
E𝑋 [𝑔(𝑋, 𝑎) | 𝑌 ]

]
,

(30)

where the equality in (30) follows from Proposition 1. The
EVSI can also be defined using a loss function ℓ(𝑥, 𝑎) as the
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Table 2 Examples of 𝐻-mutual information (𝐻-MI)

Name of 𝐻-MI 𝐻 (𝑋) 𝜂 (𝑡 ) 𝐹 (𝑝𝑋 ) 𝐻 (𝑋 |𝑌 )

Shannon MI
𝐼 (𝑋;𝑌 ) [1] −∑

𝑥 𝑝𝑋 (𝑥 ) log 𝑝𝑋 (𝑥 ) 𝑡 −∑
𝑥 𝑝𝑋 (𝑥 ) log 𝑝𝑋 (𝑥 ) −

∑
𝑦 𝑝𝑌 (𝑦)

∑
𝑥 𝑝𝑋|𝑌 (𝑥 |𝑦) log 𝑝𝑋|𝑌 (𝑥 |𝑦)

Arimoto MI
𝐼A
𝛼 (𝑋;𝑌 ) [4]

𝛼
1−𝛼 log ∥ 𝑝𝑋 ∥𝛼

{
𝛼

1−𝛼 log 𝑡 , 0 < 𝛼 < 1,
𝛼

1−𝛼 log(−𝑡 ) , 𝛼 > 1

{
∥ 𝑝𝑋 ∥𝛼 , 0 < 𝛼 < 1,
− ∥ 𝑝𝑋 ∥𝛼 , 𝛼 > 1

𝛼
1−𝛼 log

∑
𝑦 𝑝𝑌 (𝑦)

∑
𝑥



𝑝𝑋|𝑌 ( · |𝑦)

𝛼
Hayashi MI
𝐼H
𝛼 (𝑋;𝑌 )

1
1−𝛼 log ∥ 𝑝𝑋 ∥𝛼𝛼

{
1

1−𝛼 log 𝑡 , 0 < 𝛼 < 1,
1

1−𝛼 log(−𝑡 ) , 𝛼 > 1

{
∥ 𝑝𝑋 ∥𝛼𝛼 , 0 < 𝛼 < 1,
− ∥ 𝑝𝑋 ∥𝛼𝛼 , 𝛼 > 1

1
1−𝛼 log

∑
𝑦 𝑝𝑌 (𝑦)

∑
𝑥



𝑝𝑋|𝑌 ( · |𝑦)

𝛼𝛼
Fehr–Berens MI
𝐼FB
𝛼 (𝑋;𝑌 ) , 𝛼 > 1 − log ∥ 𝑝𝑋 ∥

𝛼
𝛼−1
𝛼 − log(−𝑡 ) − ∥ 𝑝𝑋 ∥

𝛼
𝛼−1
𝛼 − log

∑
𝑦 𝑝𝑌 (𝑦)



𝑝𝑋|𝑌 ( · |𝑦)

 𝛼
𝛼−1
𝛼

EVSI( ·) (𝑋;𝑌 )
[12], [6], [8–10]

min𝑞 E𝑋 [ℓ (𝑋, 𝑞) ],
−max𝑞 E𝑋 [𝑔(𝑋, 𝑞) ]

𝑡
min𝑞 E𝑋 [ℓ (𝑋, 𝑞) ],
−max𝑞 E𝑋 [𝑔(𝑋, 𝑞) ]

∑
𝑦 𝑝𝑌 (𝑦) min𝑞 E𝑋 [ℓ (𝑋, 𝑞) | 𝑌 = 𝑦],

−∑
𝑦 𝑝𝑌 (𝑦) max𝑞 E𝑋 [𝑔(𝑋, 𝑞) | 𝑌 = 𝑦]

largest reduction of the minimal Bayes risk compared with
those without using 𝑌 , i.e.,

EVSIℓ (𝑋;𝑌 ) := min
𝑎

E𝑋 [ℓ(𝑋, 𝑎)] −min
𝛿

𝑟 (𝛿) (31)

= max
𝑎

E𝑋 [ℓ(𝑋, 𝑎)] − E𝑌
[
min
𝑎

E𝑋 [ℓ(𝑋, 𝑎) | 𝑌 ]
]
.

(32)

Example 6: Suppose that a DM decides a pmf 𝑞 ∈ ΔX
considering log-loss ℓlog (𝑥, 𝑞) := − log 𝑞(𝑥) or log-score
𝑔log (𝑥, 𝑞) := log 𝑞(𝑥). From Example 2, we obtain

EVSIℓlog (𝑋;𝑌 ) = EVSI𝑔log (𝑋;𝑌 ) = 𝐼 (𝑋;𝑌 ). (33)

Instead of examining the differences between 𝐺 (𝛿) and
E𝑋 [𝑔(𝑋, 𝑎)], one can quantify information leakage by ex-
amining their ratio. Alvim et al. proposed multiplicative
𝑔-leakage [8–10] as follows:

Definition 7 (multiplicative 𝑔-leakage): † Let 𝑔(𝑥, 𝑎) be a
non-negative or non-positive gain function and 𝑐(𝑔) be a
function of 𝑔 such that its sign is equal to sign(𝑔)††. Then the
multiplicative 𝑔-leakage is defined as the largest multiplica-
tive increase of the maximal Bayes expected gain compared
to those of without 𝑌 , i.e.,

MEVSI𝑔 (𝑋;𝑌 ) := 𝑐(𝑔) log
max𝛿 𝐺 (𝛿)

max𝑎 E𝑋 [𝑔(𝑋, 𝑎)]
(34)

= 𝑐(𝑔) log
E𝑌 [max𝑎 E𝑋 [𝑔(𝑋, 𝑎) | 𝑌 ]]

max𝑎 E𝑋 [𝑔(𝑋, 𝑎)]
. (35)

Similarly, we can define MEVSIℓ (𝑋;𝑌 ) using a loss function
ℓ(𝑥, 𝑎).

Example 7: Suppose that a DM decides a pmf 𝑞 ∈ ΔX
considering pseudo-spherical score 𝑔PS (𝑥, 𝑞) := 1

𝛼−1 ·(
𝑞 (𝑥 )
∥𝑞∥𝛼

)𝛼−1
or 𝑔𝛼 (𝑥, 𝑞) := 𝛼

𝛼−1 · 𝑞(𝑥)
𝛼−1
𝛼 (referred to as 𝛼-

score). Define 𝑐(𝑔PS) = 𝑐(𝑔𝛼) := 𝛼
𝛼−1 . From Table 1, we

obtain
†We slightly modified the definition of the multiplicative 𝑔-

leakage so that we can define it using non-positive gain function
𝑔(𝑥, 𝑎) by multiplying 𝑐(𝑔).
††sign(𝑔) := 1, if 𝑔(𝑥, 𝑎) ≥ 0,∀(𝑥, 𝑎), −1; otherwise.

MEVSI𝑔PS (𝑋;𝑌 ) = MEVSI𝑔𝛼 (𝑋;𝑌 )
= 𝐼A

𝛼 (𝑋;𝑌 ). (Arimoto MI) (36)

Example 8: Suppose that a DM decides a pmf 𝑞 ∈ ΔX
considering a power score 𝑔Power(𝑥, 𝑞) := 𝛼

𝛼−1 · 𝑞(𝑥)𝛼−1 −
∥𝑞∥𝛼𝛼. Define 𝑐(𝑔Power) := 1

𝛼−1 . From Table 1, we obtain

MEVSI𝑔Power (𝑋;𝑌 ) = 𝐼H
𝛼 (𝑋;𝑌 ). (Hayashi MI)

(37)

Note that we can easily show that 𝐹 (𝑝𝑋) :=
−E𝑝𝑋

𝑋 [𝑔(𝑋, 𝑎)] and 𝐹 (𝑝𝑋) := E𝑝𝑋
𝑋 [ℓ(𝑋, 𝑎)] are con-

cave with respect to 𝑝𝑋 and that 𝐻 (𝑋 |𝑌 ) :=
E𝑌 [−max𝑎 E𝑋 [𝑔(𝑋, 𝑎) | 𝑌 ]] and 𝐻 (𝑋 |𝑌 ) :=
E𝑌 [min𝑎 E𝑋 [ℓ(𝑋, 𝑎) | 𝑌 ]] satisfy the EAVG condition
given in Definition 4 (see also [14, Sec V.F]). Thus, we
obtain the following result.

Proposition 3 ( [14, Sec V.F]): EVSI( ·) (𝑋;𝑌 ) and MEVSI( ·)
are members of 𝐻-MI.

Conversely, can we represent 𝐻-MI 𝐼𝐻 (𝑋;𝑌 ) by a
decision-theoretic quantity? In the next section, we will
show that this is possible. Furthermore, we derive a varia-
tional characterization of 𝐻-MI using this representation.

3. Variational Characterization of 𝑯-MI

In this section, we provide a variational characterization of
𝐻-MI 𝐼𝐻 (𝑋;𝑌 ) using the fact that every continuous con-
cave function 𝐹 has a statistical decision-theoretic variational
characterization [19, Section 3.5.4].

Grünwald and Dawid showed that every concave func-
tion 𝐹 : ΔX → R has the following variational characteriza-
tion.

Proposition 4 ( [19, Section 3.5.4]): LetX = {𝑥1, 𝑥2, . . . , 𝑥𝑚}
and 𝐹 : ΔX → R be a continuous concave functions. Sup-
pose that a DM decide a pmf 𝑞 ∈ ΔX ⊆ [0, 1]𝑚 considering
the following proper loss function ℓ𝐹 (𝑥, 𝑞) defined as

ℓ𝐹 (𝑥, 𝑞) := 𝐹 (𝑞) + 𝑧⊤ (1l𝑥 − 𝑞), (38)

where

• 1l𝑥 is the 𝑚-dimensional vector having 1l𝑥𝑗 = 1 if 𝑗 = 𝑥,
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0; otherwise,
• 𝑧 ∈ 𝜕𝐹 (𝑞) ⊆ R𝑚 is a subgradient in subdifferential of
𝐹 (𝑞)†.

Then, the following holds:

𝐹 (𝑝𝑋) = min
𝑞

E𝑝𝑋
𝑋 [ℓ𝐹 (𝑋, 𝑞)] , (39)

where the minimum is achieved at 𝑞 = 𝑝𝑋.

Example 9: Some examples of the proper loss function
ℓ𝐹 (𝑥, 𝑞) in Proposition 4 are listed below:

• If 𝐹 (𝑝𝑋) = −∑
𝑥 𝑝𝑋 (𝑥) log 𝑝𝑋 (𝑥), then ℓ𝐹 (𝑥, 𝑞) =

ℓlog (𝑥, 𝑞) = −𝑔log (𝑥, 𝑞) = − log 𝑞(𝑥).
• If 𝐹 (𝑝𝑋) = ∥𝑝𝑋 ∥𝛼 , 0 < 𝛼 < 1, then ℓ𝐹 (𝑥, 𝑞) =(

𝑞 (𝑥 )
∥𝑞∥𝛼

)𝛼−1
= (𝛼 − 1)𝑔PS (𝑥, 𝑞). If 𝐹 (𝑝𝑋) =

− ∥𝑝𝑋 ∥𝛼 , 𝛼 > 1, then ℓ𝐹 (𝑥, 𝑞) = (1 − 𝛼)𝑔PS (𝑥, 𝑞).
• If 𝐹 (𝑝𝑋) = ∥𝑝𝑋 ∥𝛼𝛼 , 0 < 𝛼 < 1, then ℓ𝐹 (𝑥, 𝑞) =
𝛼𝑞(𝑥)𝛼−1 − (𝛼 − 1) ∥𝑞∥𝛼𝛼 = (𝛼 − 1)𝑔Power(𝑥, 𝑞). If
𝐹 (𝑝𝑋) = − ∥𝑝𝑋 ∥𝛼𝛼 , 𝛼 > 1, then ℓ𝐹 (𝑥, 𝑞) = (1 −
𝛼)𝑔Power (𝑥, 𝑞).

• If 𝐹 (𝑝𝑋) = − ∥𝑝𝑋 ∥
𝛼

𝛼−1
𝛼 , 𝛼 > 1, then ℓ𝐹 (𝑥, 𝑞) =

∥𝑞∥𝛼−1
𝛼 − 𝛼

𝛼−1 (∥𝑞∥
𝛼
𝛼 − 𝑞(𝑥)𝛼−1).

Using Proposition 4, we obtain the following variational
characterization of 𝐻-MI.

Theorem 2 (Variational characterization of 𝐻-MI): Suppose
that 𝐻 = (𝜂, 𝐹) satisfies the CCV condition and 𝐻 (𝑋 | 𝑌 )
satisfies the EAVG condition, respectively. Then, there exists
a functional F𝐻 (𝑝𝑋, 𝑞𝑋 |𝑌 ) such that

𝐼𝐻 (𝑋;𝑌 ) = max
𝑞𝑋|𝑌
F𝐻 (𝑝𝑋, 𝑞𝑋 |𝑌 ). (40)

Proof. From Proposition 4, there exists a proper loss func-
tion ℓ𝐹 (𝑥, 𝑞) such that 𝐹 (𝑝𝑋) = min𝑞 E𝑝𝑋

𝑋 [ℓ𝐹 (𝑋, 𝑞)].
Since 𝐻 (𝑋 |𝑌 ) satisfies EAVG, it can be written as

𝐻 (𝑋 | 𝑌 ) = 𝜂
(
E𝑌

[
𝐹 (𝑝𝑋 |𝑌 (· | 𝑌 ))

] )
(41)

= 𝜂

(
E𝑌

[
min
𝑞

E
𝑝𝑋|𝑌 ( · |𝑌 )
𝑋 [ℓ𝐹 (𝑋, 𝑞)]

] )
(42)

= 𝜂

(
E𝑌

[
min
𝑞

E𝑋 [ℓ𝐹 (𝑋, 𝑞) | 𝑌 ]
] )

(43)

(𝑎)
= 𝜂

(
min
𝑞𝑋|𝑌

E𝑋,𝑌

[
ℓ𝐹 (𝑋, 𝑞𝑋 |𝑌 (𝑋 | 𝑌 ))

] )
(44)

(𝑏)
= min

𝑞𝑋|𝑌
𝜂

(
E𝑋,𝑌

[
ℓ𝐹 (𝑋, 𝑞𝑋 |𝑌 (𝑋 | 𝑌 ))

] )
,

(45)

where

• (𝑎) follows from Proposition 1 and Remark 3,

†Note that if 𝐹 is differentiable, then the subdifferential 𝜕𝐹 (𝑞)
is singleton, i.e., 𝜕𝐹 (𝑞) = {∇𝐹 (𝑞)}, where ∇𝐹 (𝑞) is the gradient
of 𝐹 (𝑞).

• (𝑏) follows from the assumption that 𝜂 is strictly in-
creasing.

Therefore, we obtain the following variational characteriza-
tion of 𝐻-MI:

𝐼𝐻 (𝑋;𝑌 ) := 𝜂(𝐹 (𝑝𝑋)) − 𝜂
(
E𝑌

[
𝐹 (𝑝𝑋 |𝑌 (𝑋 | 𝑌 ))

] )
(46)

= 𝜂(𝐹 (𝑝𝑋)) −min
𝑞𝑋|𝑌

𝜂
(
E𝑋,𝑌

[
ℓ𝐹 (𝑋, 𝑞𝑋 |𝑌 (𝑋 | 𝑌 ))

] )
(47)

= max
𝑞𝑋|𝑌

(
𝜂(𝐹 (𝑝𝑋)) − 𝜂

(
E𝑋,𝑌

[
ℓ𝐹 (𝑋, 𝑞𝑋 |𝑌 (𝑋 | 𝑌 ))

] ) )︸                                                       ︷︷                                                       ︸
=:F𝐻 (𝑝𝑋 ,𝑞𝑋|𝑌 )

.

(48)

2

Example 10: From Theorem 2 and Example 9 we obtain
the variational characterization for specific 𝐻-MIs as fol-
lows:

𝐼 (𝑋;𝑌 ) = max
𝑞𝑋|𝑌

E
𝑝𝑋 𝑝𝑌 |𝑋
𝑋,𝑌

[
log

𝑞𝑋 |𝑌 (𝑋 | 𝑌 )
𝑝𝑋 (𝑋)

]
, (49)

𝐼A
𝛼 (𝑋;𝑌 ) = max

𝑞𝑋|𝑌

𝛼

𝛼 − 1
log

E
𝑝𝑋 𝑝𝑌 |𝑋
𝑋,𝑌

[(
𝑞𝑋|𝑌 (𝑋 |𝑌 )
∥𝑞𝑋|𝑌 ( · |𝑌 )∥𝛼

)𝛼−1
]

∥𝑝𝑋 ∥𝛼
,

(50)

𝐼H
𝛼 (𝑋;𝑌 ) = max

𝑞𝑋|𝑌

1
𝛼 − 1

×

log
E
𝑝𝑋 𝑝𝑌 |𝑋
𝑋,𝑌

[
𝛼𝑞𝑋 |𝑌 (𝑋 | 𝑌 )𝛼−1 − (𝛼 − 1)



𝑞𝑋 |𝑌 (· | 𝑌 )

𝛼𝛼]
∥𝑝𝑋 ∥𝛼𝛼

,

(51)

𝐼FB
𝛼 (𝑋;𝑌 ) = max

𝑞𝑋|𝑌
log

E
𝑝𝑋 𝑝𝑌 |𝑋
𝑋,𝑌

[
ℓFB (𝑋, 𝑞𝑋 |𝑌 (𝑋 | 𝑌 ))

]
∥𝑝𝑋 ∥

𝛼
𝛼−1
𝛼

,

(52)

where ℓFB (𝑥, 𝑞) := ∥𝑞∥𝛼−1
𝛼 − 𝛼

𝛼−1 (∥𝑞∥
𝛼
𝛼 − 𝑞(𝑥)𝛼−1).

Remark 4: From Example 7, we obtain another variational
characterization with ℓ𝐹 (𝑥, 𝑞) = −𝑔𝛼 (𝑥, 𝑞) that is not proper
as follows:

𝐼A
𝛼 (𝑋;𝑌 ) = max

𝑞𝑋|𝑌

𝛼

𝛼 − 1
log

E
𝑝𝑋 𝑝𝑌 |𝑋
𝑋,𝑌

[
𝑞𝑋 |𝑌 (𝑋 | 𝑌 )

𝛼−1
𝛼

]
∥𝑝𝑋 ∥𝛼

.

(53)
4. Application: Deriving Algorithm For Computing 𝑯-

Capacity

In information theory, the notion of capacity often charac-
terizes the theoretical limits of performance in the prob-
lem. For example, channel capacity 𝐶 := max𝑝𝑋 𝐼 (𝑋;𝑌 )
characterizes supremum of achievable rate in channel cod-
ing [1]. Recently, Liao et al. reported the operational
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meaning of Arimoto capacity 𝐶A
𝛼 := max𝑝𝑋 𝐼A

𝛼 (𝑋;𝑌 ) in
the privacy-guaranteed data-publishing problems [7, Thm
2]. The Arimoto–Blahut algorithm (ABA), which is a well-
known alternating optimization algorithm for computing ca-
pacity 𝐶, proposed by Arimoto [15] and Blahut [16]. Ex-
tending his results, Arimoto derived an ABA for computing
Arimoto capacity 𝐶A

𝛼 in [17]. Recently, we derived another
ABA for computing 𝐶A

𝛼 using a variational characterization
of 𝐼A

𝛼 (𝑋;𝑌 ) different from Arimoto’s method [18]. These al-
gorithms are based on a double maximization problem using
the variational characterization of MIs. In this section, we
derive an alternating optimization algorithm for computing
𝐻-capacity 𝐶𝐻 := max𝑝𝑋 𝐼𝐻 (𝑋;𝑌 ) based on the variational
characterization of 𝐻-MI and ABA. Moreover, we show that
the algorithms for computing Arimoto capacity𝐶A

𝛼 from our
approach coincide with the previous algorithms [17], [18].

From Theorem 2, 𝐻-capacity 𝐶𝐻 := max𝑝𝑋 𝐼𝐻 (𝑋;𝑌 )
can be represented as a double maximization problem as
follows:

𝐶𝐻 = max
𝑝𝑋

max
𝑞𝑋|𝑌
F𝐻 (𝑝𝑋, 𝑞𝑋 |𝑌 ), (54)

where

F𝐻 (𝑝𝑋, 𝑞𝑋 |𝑌 )
:=

(
𝜂(𝐹 (𝑝𝑋)) − 𝜂

(
E𝑋,𝑌

[
ℓ𝐹 (𝑋, 𝑞𝑋 |𝑌 (𝑋 | 𝑌 ))

] ) )
.

(55)

Based on the representation in (54), we can derive an
alternating optimization algorithm for computing 𝐶𝐻 as de-
scribed in Algorithm 1, where 𝑝 (0)𝑋 is an initial distribution
of the algorithm..

Algorithm 1 Arimoto–Blahut algorithm for computing 𝐶𝐻

Input:
𝑝
(0)
𝑋 , 𝑝𝑌 |𝑋 , 𝜖 ∈ (0, 1)

Output:
approximation of 𝐶𝐻

1: Initialization:
𝑞
(0)
𝑋|𝑌 ← argmax𝑞𝑋|𝑌 F𝐻 (𝑝

(0)
𝑋 , 𝑞𝑋|𝑌 )

𝐹 (0,0) ← F𝐻 (𝑝 (0)𝑋 , 𝑞
(0)
𝑋|𝑌 )

𝑘 ← 0
2: repeat
3: 𝑘 ← 𝑘 + 1
4: 𝑝

(𝑘)
𝑋 ← argmax𝑝𝑋

F𝐻 (𝑝𝑋 , 𝑞 (𝑘−1)
𝑋|𝑌 )

5: 𝑞
(𝑘)
𝑋|𝑌 ← argmax𝑞𝑋|𝑌 F𝐻 (𝑝

(𝑘)
𝑋 , 𝑞𝑋|𝑌 )

6: 𝐹 (𝑘,𝑘) ← F𝐻 (𝑝 (𝑘)𝑋 , 𝑞
(𝑘)
𝑋|𝑌 )

7: until
��𝐹 (𝑘,𝑘) − 𝐹 (𝑘−1,𝑘−1) �� < 𝜖

8: return 𝐹 (𝑘,𝑘)

From Propositions 1 and 4, the optimum 𝑞∗
𝑋 |𝑌 =

argmax𝑞𝑋|𝑌 F𝐻 (𝑝𝑋, 𝑞𝑋 |𝑌 ) for a fixed 𝑝𝑋 is obtained as fol-
lows.

Proposition 5: For a fixed 𝑝𝑋, F𝐻 (𝑝𝑋, 𝑞𝑋 |𝑌 ) is maximized
by

𝑞∗𝑋 |𝑌 (𝑥 | 𝑦) = 𝑝𝑋 |𝑌 (𝑥 | 𝑦) =
𝑝𝑋 (𝑥)𝑝𝑌 |𝑋 (𝑦 | 𝑥)∑
𝑥 𝑝𝑋 (𝑥)𝑝𝑌 |𝑋 (𝑦 | 𝑥)

.

(56)

Proof. It can be easily checked that finding the op-
timum 𝑞∗

𝑋 |𝑌 = argmax𝑞𝑋|𝑌 F𝐻 (𝑝𝑋, 𝑞𝑋 |𝑌 ) for fixed
𝑝𝑋 is equivalent to finding the optimum 𝑞∗

𝑋 |𝑌 =

argmin𝑞𝑋|𝑌 E𝑋,𝑌

[
ℓ𝐹 (𝑋, 𝑞𝑋 |𝑌 (𝑋 | 𝑌 ))

]
. From Proposition

1, the problem of finding 𝑞𝑋 |𝑌 = {𝑞𝑋 |𝑌 (·|𝑦)}𝑦∈Y that
minimizes E𝑋,𝑌

[
ℓ𝐹 (𝑋, 𝑞𝑋 |𝑌 (𝑋 | 𝑌 ))

]
becomes equivalent

to the problem of finding the optimal conditional dis-
tribution 𝑞𝑋 |𝑌 (·|𝑦) for each 𝑦 ∈ Y that minimizes
E𝑋

[
ℓ(𝑋, 𝑞𝑋 |𝑌 (·|𝑦)) | 𝑌 = 𝑦

]
= E

𝑝𝑋|𝑌 ( · |𝑦)
𝑋

[
ℓ(𝑋, 𝑞𝑋 |𝑌 (·|𝑦))

]
.

Since ℓ𝐹 (𝑥, 𝑞) defined in (38) is proper, the optimum is ob-
tained as 𝑞∗

𝑋 |𝑌 (·|𝑦) = 𝑝𝑋 |𝑌 (·|𝑦), 𝑦 ∈ Y. 2

Remark 5: On the other hand, whether the optimum 𝑝∗𝑋 =
argmax𝑝𝑋 F𝐻 (𝑝𝑋, 𝑞𝑋 |𝑌 ) for a fixed 𝑞𝑋 |𝑌 can be obtained
explicitly depends on 𝐻 = (𝜂, 𝐹). For example, Arimoto
[15] and Blahut [16] derived the explicit formula for 𝑝∗𝑋,
where F (𝑝𝑋, 𝑞𝑋 |𝑌 ) := E

𝑝𝑋 𝑝𝑌 |𝑋
𝑋,𝑌

[
log 𝑞𝑋|𝑌 (𝑋 |𝑌 )

𝑝𝑋 (𝑋)

]
is defined

in (49). Table 3 lists the explicit updating formulae for
computing channel capacity 𝐶. However, when computing
Hayashi capacity 𝐶H

𝛼 := max𝑝𝑋 𝐼H
𝛼 (𝑋;𝑌 ) and Fehr–Berens

capacity 𝐶FB
𝛼 := max𝑝𝑋 𝐼FB

𝛼 (𝑋;𝑌 ), it seems that there is no
explicit updating formula for 𝑝∗𝑋 for a fixed 𝑞𝑋 |𝑌 . Therefore,
one must find it numerically.

Next, we consider driving the algorithms for computing
the Arimoto capacity𝐶A

𝛼 . Based on the variational character-
izations (53) and (50), we define functionalsF𝛼A1 (𝑝𝑋, 𝑞𝑋 |𝑌 )
and F𝛼A2 (𝑝𝑋, 𝑞𝑋 |𝑌 ) as follows:

F𝛼A1 (𝑝𝑋, 𝑞𝑋 |𝑌 ) :=
𝛼

𝛼 − 1
log

E
𝑝𝑋 𝑝𝑌 |𝑋
𝑋,𝑌

[
𝑞𝑋 |𝑌 (𝑋 | 𝑌 )

𝛼−1
𝛼

]
∥𝑝𝑋 ∥𝛼

,

(57)

F𝛼A2 (𝑝𝑋, 𝑞𝑋 |𝑌 ) :=
𝛼

𝛼 − 1
log

E
𝑝𝑋 𝑝𝑌 |𝑋
𝑋,𝑌

[(
𝑞𝑋|𝑌 (𝑋 |𝑌 )
∥𝑞𝑋|𝑌 ( · |𝑌 )∥𝛼

)𝛼−1
]

∥𝑝𝑋 ∥𝛼
.

(58)

Simple calculations yield the following result.

Proposition 6:

F𝛼A1 (𝑝𝑋, 𝑞𝑋 |𝑌 )

=
𝛼

𝛼 − 1
log

∑
𝑥,𝑦

𝑝𝑋𝛼 (𝑥)
1
𝛼 𝑝𝑌 |𝑋 (𝑦 |𝑥)𝑞𝑋 |𝑌 (𝑥 |𝑦)

𝛼−1
𝛼 ,

(59)

F𝛼A2 (𝑝𝑋, 𝑞𝑋 |𝑌 )

=
𝛼

𝛼 − 1
log

∑
𝑥,𝑦

𝑝𝑋𝛼 (𝑥)
1
𝛼 𝑝𝑌 |𝑋 (𝑦 |𝑥)𝑞𝑋𝛼 |𝑌 (𝑥 |𝑦)

𝛼−1
𝛼 ,

(60)

where 𝑝𝑋𝛼 is the 𝛼-tilted distribution of 𝑝𝑋 defined in (15)
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Table 3 Formulae for updating 𝑝
(𝑘)
𝑋 and 𝑞

(𝑘)
𝑋|𝑌 in the Arimoto–Blahut Algorithm for calculating

𝐻-capacity 𝐶𝐻 (cited from [18, Table I])

Name F𝐻 (𝑝𝑋 , 𝑞𝑋|𝑌 ) 𝑝
(𝑘)
𝑋 𝑞

(𝑘)
𝑋|𝑌

ABA for
computing 𝐶 [15], [16] E

𝑝𝑋 𝑝𝑌 |𝑋
𝑋,𝑌

[
log

𝑞𝑋|𝑌 (𝑋|𝑌 )
𝑝𝑋 (𝑋)

] ∏
𝑦 𝑞
(𝑘−1)
𝑋|𝑌 (𝑥 |𝑦) 𝑝𝑌 |𝑋 (𝑦|𝑥)∑

𝑥
∏

𝑦 𝑞
(𝑘−1)
𝑋|𝑌 (𝑥 |𝑦) 𝑝𝑌 |𝑋 (𝑦|𝑥)

𝑝
(𝑘)
𝑋
(𝑥) 𝑝𝑌 |𝑋 (𝑦|𝑥)∑

𝑥 𝑝
(𝑘)
𝑋
(𝑥) 𝑝𝑌 |𝑋 (𝑦|𝑥)

ABA for
computing 𝐶A

𝛼 [17]
𝛼

𝛼−1 log
∑

𝑥,𝑦 𝑝𝑋𝛼 (𝑥 )
1
𝛼 𝑝𝑌 |𝑋 (𝑦 |𝑥 )𝑞𝑋|𝑌 (𝑥 |𝑦)

𝛼−1
𝛼

(∑
𝑦 𝑝𝑌 |𝑋 (𝑦|𝑥)𝑞

(𝑘−1)
𝑋|𝑌 (𝑥 |𝑦)

𝛼−1
𝛼

) 1
𝛼−1

∑
𝑥

(∑
𝑦 𝑝𝑌 |𝑋 (𝑦|𝑥)𝑞

(𝑘−1)
𝑋|𝑌 (𝑥 |𝑦)

𝛼−1
𝛼

) 1
𝛼−1

𝑝
(𝑘)
𝑋
(𝑥)𝛼 𝑝𝑌 |𝑋 (𝑦|𝑥)𝛼∑

𝑥 𝑝
(𝑘)
𝑋
(𝑥)𝛼 𝑝𝑌 |𝑋 (𝑦|𝑥)𝛼

ABA for
computing 𝐶A

𝛼 [18]
𝛼

𝛼−1 log
∑

𝑥,𝑦 𝑝𝑋𝛼 (𝑥 )
1
𝛼 𝑝𝑌 |𝑋 (𝑦 |𝑥 )𝑞𝑋𝛼 |𝑌 (𝑥 |𝑦)

𝛼−1
𝛼

(∑
𝑦 𝑝𝑌 |𝑋 (𝑦|𝑥)𝑞

(𝑘−1)
𝑋𝛼 |𝑌 (𝑥 |𝑦)

𝛼−1
𝛼

) 1
𝛼−1

∑
𝑥

(∑
𝑦 𝑝𝑌 |𝑋 (𝑦|𝑥)𝑞

(𝑘−1)
𝑋𝛼 |𝑌 (𝑥 |𝑦)

𝛼−1
𝛼

) 1
𝛼−1

𝑝
(𝑘)
𝑋
(𝑥) 𝑝𝑌 |𝑋 (𝑦|𝑥)∑

𝑥 𝑝
(𝑘)
𝑋
(𝑥) 𝑝𝑌 |𝑋 (𝑦|𝑥)

and 𝑞𝑋𝛼 |𝑌 = {𝑞𝑋𝛼 |𝑌 (·|𝑦)}𝑦∈Y is a set of 𝛼-tilted distribution
of 𝑞𝑋 |𝑌 (·|𝑦) defined as 𝑞𝑋𝛼 |𝑌 (𝑥 |𝑦) := 𝑞𝑋|𝑌 (𝑥 |𝑦)𝛼∑

𝑥 𝑞𝑋|𝑌 (𝑥 |𝑦)𝛼 .

The variational characterization 𝐼A
𝛼 (𝑋;𝑌 ) =

max𝑞𝑋|𝑌 F𝛼A1 (𝑝𝑋, 𝑞𝑋 |𝑌 ) is equivalent to that presented in
[17, Eq. (7.103)] by Arimoto (see also [18, Prop 4 and Re-
mark 4]). On the other hand, the variational characterization
𝐼A
𝛼 (𝑋;𝑌 ) = max𝑞𝑋|𝑌 F𝛼A2 (𝑝𝑋, 𝑞𝑋 |𝑌 ) is equivalent to that

presented in [18, Thm 1]. Therefore, Algorithm 1 applied
for computing the Arimoto capacity𝐶A

𝛼 is equivalent to those
previously presented in [17], [18]. Table 3 lists the explicit
updating formulae for computing Arimoto capacity 𝐶A

𝛼 of
each algorithm.

Finally, we discuss the global convergence property of
Algorithm 1. In general, there is no guarantee that Algorithm
1 exhibits global convergence property, and whether it does
or not depends on the given 𝐻 = (𝜂, 𝐹). However, the
following sufficient condition on 𝐻 = (𝜂, 𝐹) for the global
convergence can be immediately obtained from [32, Thm
10.5].

Proposition 7: Let {𝑝 (𝑘 )𝑋 }∞𝑘=0 and {𝑞 (𝑘 )
𝑋 |𝑌 }

∞
𝑘=0 be sequences

of distributions obtained from Algorithm 1. If (𝑝𝑋, 𝑞𝑋 |𝑌 ) ↦→
F𝐻 (𝑝𝑋, 𝑞𝑋 |𝑌 ) is jointly concave, then

lim
𝑘→∞
F𝐻 (𝑝 (𝑘 )𝑋 , 𝑞 (𝑘 )

𝑋 |𝑌 ) = 𝐶𝐻 . (61)

Remark 6: F (𝑝𝑋, 𝑞𝑋 |𝑌 ) := E
𝑝𝑋 𝑝𝑌 |𝑋
𝑋,𝑌

[
log 𝑞𝑋|𝑌 (𝑋 |𝑌 )

𝑝𝑋 (𝑋)

]
is a

typical example that satisfies this condition (see [32, Section
10.3.2]). Note that even if 𝐻 = (𝜂, 𝐹) does not satisfy this
sufficient condition, it may be possible to show the global
convergence property of Algorithm 1. For example, Kamat-
suka et al. [18, Cor 2] proved that

lim
𝑘→∞
F A1
𝛼 (𝑝

(𝑘 )
𝑋 , 𝑞 (𝑘 )

𝑋 |𝑌 ) = lim
𝑘→∞
F A2
𝛼 (𝑝

(𝑘 )
𝑋 , 𝑞 (𝑘 )

𝑋 |𝑌 ) = 𝐶A
𝛼

(62)

by showing the equivalence of the proposed algorithm with
the alternating optimization algorithm for which global con-
vergence is guaranteed by Arimoto [33, Thm 3].

5. Conclusion

In this study, we derived a variational characterization of
𝐻-MI 𝐼𝐻 (𝑋;𝑌 ). On the basis of the characterization, we
derived an alternating optimization algorithm for 𝐻-capacity
𝐶𝐻 := max𝑝𝑋 𝐼𝐻 (𝑋;𝑌 ). We also showed that the algorithms
applied for computing Arimoto capacity 𝐶A

𝛼 coincide with
the previously reported algorithms [17], [18]. In a future
study, we will derive algorithms for the calculating Hayashi
capacity 𝐶H

𝛼 := max𝑝𝑋 𝐼H
𝛼 (𝑋;𝑌 ) and Fehr–Berens capacity

𝐶FB
𝛼 := max𝑝𝑋 𝐼FB

𝛼 (𝑋;𝑌 ).
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