
DOI:10.1587/transfun.2024TAP0013

Publicized:2024/08/20

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on Information Theory and Its Applications

Properties of Optimal k-bit Delay Decodable Alphabetic
Codes

Kengo HASHIMOTO†, Nonmember and Ken-ichi IWATA†, Senior Member

SUMMARY An alphabetic code is a source code that pre-
serves the lexicographical order between sequences in the en-
coding process. This paper studies k-bit delay alphabetic code-
tuples, which are alphabetic codes allowing multiple code tables
and at most k-bit decoding delay. As the main results, we show
theorems to limit the scope of codes to be considered when dis-
cussing k-bit delay alphabetic code-tuples with the optimal av-
erage codeword length in theoretical analysis and practical code
construction. These theorems imply the existence of an optimal
k-bit delay alphabetic code whose code tables are all injective.
They also give an upper bound of the necessary number of code
tables for an alphabetic code to be optimal. In addition to the
results above for a general integer k ≥ 0, we prove further results
for particular cases k = 1, 2.
key words: data compression, source coding, decoding delay,
alphabetic code, code-tuple

1. Introduction

An alphabetic code is a source code that preserves the
lexicographical order between sequences in the encod-
ing process. It is useful for efficient search on a set of
source sequences because it allows comparisons between
the corresponding codeword sequences without decod-
ing them instead of comparisons between the original
source sequences.

An alphabetic Huffman code is an alphabetic code
with the optimal average codeword length among all
alphabetic codes with a single prefix-free code table.
Hu-Tucker’s algorithm [1] gives an alphabetic Huffman
code in O(σ log σ) time for a given source alphabet with
size σ and a given source distribution on it. However, it
is known that there exist alphabetic codes with a better
average codeword length, which use a time-variant en-
coder consisting of multiple code tables and allow some
decoding delay [2].

The literature [3] proposes code-tuples as formal
models of binary time-variant encoders with a finite
number of code tables. It also introduces the class of
k-bit delay decodable code-tuples, which are code-tuples
decodable with at most k-bit decoding delay. The gen-
eral properties of the class of k-bit delay decodable
code-tuples are studied in [4].

In this paper, we introduce alphabetic code-tuples
imposing the constraints of alphabetic codes to the
notion of code-tuples. Further, we define k-bit delay
alphabetic optimal code-tuples, which are code-tuples

†The authors are with the University of Fukui.

with the optimal average codeword length among all k-
bit delay decodable alphabetic code-tuples for a given
and fixed source distribution. Then we investigate gen-
eral properties of the class of k-bit delay alphabetic
optimal code-tuples.

1.1 Contributions

We first prove three theorems, Theorems 1–3, which
are modifications of [4, Theorem 1], [4, Theorem 2],
and [3, Section III] for alphabetic codes, respectively.
Summing up Theorems 1–3, we show Theorem 4, which
limits the scope of codes to be considered when dis-
cussing k-bit delay alphabetic optimal codes in theoret-
ical analysis and practical code construction. Theorem
4 implies that there exists a k-bit delay alphabetic op-
timal code-tuple consisting of at most 22(k−1) injective
code tables.

Furthermore, we show Theorem 5 that it suffices to
consider only code-tuples consisting of a single prefix-
free code table to obtain a 1-bit delay alphabetic op-
timal code-tuple. Also, we show Theorem 6 that it
suffices to consider only code-tuples satisfying certain
constraints to obtain a 2-bit delay alphabetic optimal
code-tuple.

1.2 Related Work

AIFV-k codes [5, 6] are source codes that can achieve
a shorter average codeword length than Huffman codes
by using k code tables and allowing at most k-bit decod-
ing delay.†† The class of AIFV-k codes can be viewed as
a proper subclass of the class of k-bit delay decodable
code-tuples. It is shown in [3] that the class of code-
tuples with a single prefix-free code table can achieve
the optimal average codeword length in the class of 1-
bit delay decodable code-tuples; in particular, Huffman
codes are optimal in the class of 1-bit delay decodable
code-tuples. The literature [7,8] indicate that the class
of AIFV codes achieves the optimal average codeword
length in the class of 2-bit delay decodable code-tuples.
There are algorithms to construct an optimal AIFV-k
code for a given source distribution by iterative opti-
mization via dynamic programming, which are given

††In the original proposal of AIFV-k codes [6], m is used
to represent the number of code tables and the length of
allowed decoding delay instead of k.

Copyright c⃝ 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

by [5,9,10] for k = 2 and given by [11,12] for a general
integer k ≥ 2. The literature [13, 14] give another gen-
eralization of AIFV-k codes and construct an optimal
code in a class of generalized AIFV-k codes by iterative
optimization via integer programming.

Alphabetic AIFV codes [2] are alphabetic codes
that can achieve a shorter average codeword length
than alphabetic Huffman codes by using three code ta-
bles and allowing at most 2-bit decoding delay. The
class of alphabetic AIFV codes can be viewed as a
proper subclass of the class of k-bit delay alphabet
code-tuples introduced in this paper. An optimal al-
phabetic AIFV code can be obtained by the algorithm
in [15]. It can be shown from our results in this pa-
per that the algorithm in [16] can construct an optimal
k-bit delay alphabetic code-tuple.

1.3 Organization

In Section 2, we define some notation and introduce
the basic notions in [3, 4] including the definition, the
coding procedure, basic properties, basic classes, and
the average codeword length of code-tuples. In Sec-
tion 3, we present our main results: we first give the
statements of Theorems 1–6 and then give the proofs
of theorems in Subsections 3.1–3.6, respectively. Lastly,
we conclude this paper in Section 4. To clarify the flow
of the discussion, we relegate the proofs of most of the
lemmas to Appendix A. The main notation is listed in
Appendix B.

2. Preliminaries

First, we define some notation based on [3, 4]. Let |A|
denote the cardinality of a finite set A. Let A × B
denote the Cartesian product of A and B, that is, A×
B := {(a, b) : a ∈ A, b ∈ B}. Let Ak (resp. A≤k,
A≥k, A∗, A+) denote the set of all sequences of length
k (resp. of length less than or equal to k, of length
greater than or equal to k, of finite length, of finite
positive length) over a set A. Thus, A+ = A∗ \ {λ},
where λ denotes the empty sequence. The length of a
sequence xxx is denoted by |xxx|, in particular, |λ| = 0. For
a sequence xxx and an integer 1 ≤ i ≤ |xxx|, the i-th letter
of xxx is denoted by xi. For a sequence xxx and an integer
0 ≤ k ≤ |xxx|, we define [xxx]k := x1x2 . . . xk. Namely, [xxx]k
is the prefix of length k of xxx, in particular, [xxx]0 = λ.
For a sequence xxx and a set A of sequences, we define
xxxA := {xxxyyy : yyy ∈ A}. For a set A of sequences and an
integer k ≥ 0, we define [A]k := {[xxx]k : xxx ∈ A, |xxx| ≥ k}.
For a non-empty sequence xxx = x1x2 . . . xn, we define
pref(xxx) := x1x2 . . . xn−1 and suff(xxx) := x2 . . . xn−1xn.
Namely, pref(xxx) (resp. suff(xxx)) is the sequence obtained
by deleting the last (resp. first) letter from xxx. We say
xxx ⪯ yyy if xxx is a prefix of yyy, that is, there exists a sequence
zzz, possibly zzz = λ, such that yyy = xxxzzz. Also, we say xxx ≺ yyy
if xxx ⪯ yyy and xxx ̸= yyy. We say xxx ⪰≺ yyy if xxx ⪯ yyy or xxx ⪰ yyy.

Let xxx∧yyy be denote the longest common prefix of xxx and
yyy, that is, the longest sequence zzz such that zzz ⪯ xxx and
zzz ⪯ yyy. If xxx ⪯ yyy, then xxx−1yyy denotes the unique sequence
zzz such that xxxzzz = yyy. Note that a notation xxx−1 behaves
like the “inverse element” of xxx as stated in the following
statements (i)–(iii).

(i) For any xxx, we have xxx−1xxx = λ.
(ii) For any xxx and yyy such that xxx ⪯ yyy, we have xxxxxx−1yyy =

yyy.
(iii) For any xxx,yyy, and zzz such that xxxyyy ⪯ zzz, we have

(xxxyyy)−1zzz = yyy−1xxx−1zzz.

The main notation used in this paper is listed in Ap-
pendix B.

In this paper, we consider binary source coding
from a finite source alphabet S to the binary coding
alphabet C := {0, 1} with a coding system consisting of
a source, an encoder, and a decoder. We consider an
independent and identical distribution (i.i.d.) source:
each symbol of the source sequence xxx ∈ S∗ is deter-
mined independently by a fixed probability distribution
µ : S → (0, 1) ⊆ R such that

∑
s∈S µ(s) = 1. From now

on, we fix the probability distribution µ arbitrarily and
omit the notation µ even if a value depends on µ be-
cause the discussion in this paper holds for any µ. Note
that we exclude the case where µ(s) = 0 for some s ∈ S
without loss of generality. Also, we assume |S| ≥ 2.

2.1 Code-Tuples

We introduce the notion of code-tuples [3,4], which con-
sists of some code tables fi and mappings τi to deter-
mine which code table to use for each symbol.

Definition 1 ([3, Definition 1], [4, Definition 1]).
Let m be a positive integer. An m-code-tuple
F (f0, f1, . . . , fm−1, τ0, τ1, . . . , τm−1) is a tuple of m
mappings f0, f1, . . . , fm−1 : S → C∗ and m mappings
τ0, τ1, . . . , τm−1 : S → [m] := {0, 1, 2, . . . ,m − 1}. The
set of all m-code-tuples is denoted by F (m). A code-
tuple is an element of F := F (1) ∪ F (2) ∪ F (3) ∪ · · · .

We write a code-tuple F (f0, f1, . . . , fm−1, τ0, τ1,
. . . , τm−1) also as F (f, τ) or F for simplicity. The
number of code tables of F is denoted by |F |, that is,
|F | := m for F ∈ F (m). A notation [F] is a shorthand
for [|F |] = {0, 1, 2, . . . , |F | − 1}.

Example 1. Table 1 shows three examples F (α), F (β)

and F (γ) of a 3-code-tuple for S = {a,b, c,d}.

Next, we state the coding procedure specified by
a code-tuple F (f, τ). First, the encoder and decoder
share the used code-tuple F and the index i1 ∈ [F] of
the code table used for the first symbol x1 of the source
sequence in advance. Then the encoding and decoding
process with F is described as follows.

• Encoding: The encoder reads the source sequence

HASHIMOTO and IWATA: PROPERTIES OF OPTIMAL K-BIT DELAY DECODABLE ALPHABETIC CODES
3

Table 1 Three examples of an code-tuple: F (α)(f (α), τ (α)),
F (β)(f (β), τ (β)), and F (γ)(f (γ), τ (γ))

s ∈ S f
(α)
0 τ

(α)
0 f

(α)
1 τ

(α)
1 f

(α)
2 τ

(α)
2

a 01 0 00 1 1100 1
b 10 1 λ 0 1110 2
c 0100 0 00111 1 111000 2
d 01 2 00111 2 110 2

s ∈ S f
(β)
0 τ

(β)
0 f

(β)
1 τ

(β)
1 f

(β)
2 τ

(β)
2

a λ 1 0110 1 λ 2
b 101 2 01 1 λ 2
c 1011 1 0111 1 λ 2
d 1101 2 01111 1 λ 2

s ∈ S f
(γ)
0 τ

(γ)
0 f

(γ)
1 τ

(γ)
1 f

(γ)
2 τ

(γ)
2

a λ 1 0000 1 0100 2
b 110 2 00 2 01 2
c 1110 0 0011 1 10 1
d 1111 1 10 0 1011 0

xxx = x1x2 . . . xn ∈ S∗ symbol by symbol from the
beginning of xxx and encodes them according to the
code tables. The first symbol x1 is encoded with
the code table fi1 . For x2, x3, . . . , xn, we determine
which code table to use to encode them according
to the mappings τ0, τ1, . . . , τm−1: if the previous
symbol xi−1 is encoded by the code table fj , then
the current symbol xi is encoded by the code table
fτj(xi−1).

• Decoding: The decoder reads the codeword se-
quence f(xxx) bit by bit from the beginning of f(xxx).
Each time the decoder reads a bit, the decoder
recovers as long prefix of xxx as the decoder can
uniquely identify from the prefix of f(xxx) already
read.

Let i ∈ [F] and xxx ∈ S∗. Then f∗i (xxx) ∈ C∗ is
defined as the codeword sequence in the case where x1
is encoded with fi. Also, τ∗i (xxx) ∈ [F] is defined as
the index of the code table used next after encoding xxx
in the case where x1 is encoded with fi. The formal
definitions are given in the following Definition 2 as
recursive formulas.

Definition 2 ([3, Definition 2], [4, Definition 2]). For
F (f, τ) ∈ F and i ∈ [F], the mapping f∗i : S∗ → C∗

and the mapping τ∗i : S∗ → [F] are defined as

f∗i (xxx) =

{
λ if xxx = λ,

fi(x1)f
∗
τi(x1)

(suff(xxx)) if xxx ̸= λ,
(1)

τ∗i (xxx) =

{
i if xxx = λ,

τ∗τi(x1)
(suff(xxx)) if xxx ̸= λ

(2)

for xxx = x1x2 . . . xn ∈ S∗.

The next Lemma 1 follows from Definition 2.

Lemma 1 ([3, Lemma 1], [4, Lemma 1]). For any
F (f, τ) ∈ F , i ∈ [F], and xxx,yyy ∈ S∗, the following

statements (i)–(iii) hold.

(i) f∗i (xxxyyy) = f∗i (xxx)f
∗
τ∗
i (xxx)

(yyy).
(ii) τ∗i (xxxyyy) = τ∗τ∗

i (xxx)
(yyy).

(iii) If xxx ⪯ yyy, then f∗i (xxx) ⪯ f∗i (yyy).

2.2 k-bit Delay Decodable Code-Tuples

A code-tuple is said to be k-bit delay decodable if the
decoder can always uniquely identify each source sym-
bol by reading the additional k bits of the codeword
sequence. To state the formal definition of a k-bit de-
lay decodable code-tuple, we introduce the following
Definitions 3.

Definition 3 ([4, Definitions 3 and 4]). For an integer
k ≥ 0, F (f, τ) ∈ F , i ∈ [F], and bbb ∈ C∗, sets Pk

F,i(bbb)

and P̄k
F,i(bbb) are defined as

Pk
F,i(bbb) := {ccc ∈ Ck : ∃xxx ∈ S+ s.t.

(f∗i (xxx) ⪰ bbbccc, fi(x1) ⪰ bbb)}, (3)

P̄k
F,i(bbb) := {ccc ∈ Ck : ∃xxx ∈ S+ s.t.

(f∗i (xxx) ⪰ bbbccc, fi(x1) ≻ bbb)}. (4)

Also, for F (f, τ) ∈ F , i ∈ [F], and bbb ∈ C∗, sets P∗
F,i(bbb)

and P̄∗
F,i(bbb) are defined as

P∗
F,i(bbb) := P0

F,i(bbb) ∪ P1
F,i(bbb) ∪ P2

F,i(bbb) ∪ · · · , (5)

P̄∗
F,i(bbb) := P̄0

F,i(bbb) ∪ P̄1
F,i(bbb) ∪ P̄2

F,i(bbb) ∪ · · · . (6)

We write Pk
F,i(λ) (resp. P̄k

F,i(λ)) as Pk
F,i (resp. P̄k

F,i)
for simplicity. Also, we write P∗

F,i(λ) (resp. P̄∗
F,i(λ)) as

P∗
F,i (resp. P̄∗

F,i). Note that

Pk
F,i = {ccc ∈ Ck : ∃xxx ∈ S+ s.t. f∗i (xxx) ⪰ ccc}

= {ccc ∈ Ck : ∃xxx ∈ S∗ s.t. f∗i (xxx) ⪰ ccc}. (7)

Also, note that for any integer k ≥ 0, F ∈ F , i ∈ [F],
and bbb ∈ C∗, we have

Pk
F,i(bbb) =

[
P∗
F,i(bbb)

]
k
, P̄k

F,i(bbb) =
[
P̄∗
F,i(bbb)

]
k
. (8)

Moreover, the following lemma holds.

Lemma 2. For any F (f, τ) ∈ F , i ∈ [F], and bbb ∈ C∗,
we have

P̄∗
F,i(bbb) =

∪
s∈S,

fi(s)≻bbb

bbb−1fi(s)P∗
F,τi(s)

. (9)

Proof of Lemma 2. For any ccc ∈ C∗, we have

ccc ∈ P̄∗
F,i(bbb)

(A)⇐⇒ ∃xxx ∈ S+ s.t. (fi(x1) ≻ bbb, f∗i (xxx) ⪰ bcbcbc)

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

⇐⇒ ∃s ∈ S,xxx ∈ S∗ s.t. (fi(s) ≻ bbb, f∗i (sxxx) ⪰ bcbcbc)

⇐⇒ ∃s ∈ S,xxx ∈ S∗ s.t.

(fi(s) ≻ bbb, bbb−1fi(s)f
∗
τi(s)

(xxx) ⪰ ccc)

(B)⇐⇒ ∃s ∈ S s.t. (fi(s) ≻ bbb, ccc ∈ bbb−1fi(s)P∗
F,τi(s)

)

⇐⇒ ccc ∈
∪
s∈S,

fi(s)≻bbb

bbb−1fi(s)P∗
F,τi(s)

,

where (A) follows from (4) and (6), and (B) follows
from (5) and (7). □

By using Definition 3, the condition for a code-
tuple to be decodable in at most k-bit delay is given as
follows. Refer to [4] for detailed discussion.

Definition 4 ([4, Definition 5]). Let k ≥ 0 be an in-
teger. A code-tuple F (f, τ) is said to be k-bit delay
decodable if the following conditions (a) and (b) hold.

(a) For any i ∈ [F] and s ∈ S, it holds that Pk
F,τi(s)

∩
P̄k
F,i(fi(s)) = ∅.

(b) For any i ∈ [F] and s, s′ ∈ S, if s ̸= s′ and fi(s) =
fi(s

′), then Pk
F,τi(s)

∩ Pk
F,τi(s′)

= ∅.

For an integer k ≥ 0, the set of all k-bit delay decod-
able code-tuples is denoted by Fk-dec, that is, Fk-dec :=
{F ∈ F : F is k-bit delay decodable}.

The classes Fk-dec, k = 0, 1, 2, . . . form a hierar-
chical structure: F0-dec ⊆ F1-dec ⊆ F2-dec ⊆ · · · [3,
Lemma 2].

Remark 1. A k-bit delay decodable code-tuple F
is not necessarily uniquely decodable: the mappings
f∗0 , f

∗
1 , . . . , f

∗
|F |−1 are not necessarily injective. For ex-

ample, for F (f, τ) := F (α) ∈ F2-dec in Table 1, we
have f0∗(bc) = 1000111 = f0

∗(bd). In such a case, we
should append additional information for practical use.

2.3 Extendable Code-Tuples

The code-tuple F (f, τ) := F (β) in Table 1 is 1-bit delay
decodable by Definition 4. However, we have f2∗(xxx) =
λ for any xxx ∈ S∗. To exclude such abnormal and useless
code-tuples, we introduce a class Fext in the following
Definition 5.

Definition 5 ([4, Definition 6]). A code-tuple F is said
to be extendable if P1

F,i ̸= ∅ for any i ∈ [F]. The set
of all extendable code-tuples is denoted by Fext, that is,
Fext := {F ∈ F : ∀i ∈ [F],P1

F,i ̸= ∅}.

By the following Lemma 3, for an extendable code-
tuple F (f, τ), we can extend the length of f∗i (xxx) up to
an arbitrary integer by extending xxx appropriately.

Lemma 3 ([4, Lemma 3]). A code-tuple F (f, τ) is
extendable if and only if for any i ∈ [F] and integer

l ≥ 0, there exists xxx ∈ S∗ such that |f∗i (xxx)| ≥ l.

2.4 Average Codeword Length of Code-Tuple

In this subsection, we introduce the average codeword
length L(F) of a code-tuple F . First, we state the
definitions of the transition probability matrix and sta-
tionary distributions of a code-tuple in the following
Definitions 6 and 7.

Definition 6 ([3, Definition 6], [4, Definition 7]). For
F (f, τ) ∈ F , the transition probability matrix Q(F) is
the |F | × |F | matrix which (i, j) element is

Qi,j(F) :=
∑

s∈S,τi(s)=j

µ(s) (10)

for i, j ∈ [F]. Namely, Qi,j(F) is the probability of
using the code table fj next after using the code table
fi in the encoding process.

Definition 7 ([4, Definition 8]). For F ∈ F , a so-
lution πππ = (π0, π1, . . . , π|F |−1) ∈ R|F | of the following
simultaneous equations (11) and (12) is called a sta-
tionary distribution of F :

πππQ(F) = πππ, (11)∑
i∈[F]

πi = 1. (12)

It is guaranteed by [4, Lemma 6] that every code-
tuple has at least one stationary distribution πππ =
(π0, π1, . . . , π|F |−1) such that πi ≥ 0 for any i ∈ [F].
A code-tuple with a unique stationary distribution is
said to be regular as Definition 8. The average code-
word lengths are defined for regular code-tuples by the
unique stationary distribution as Definition 9.

Definition 8 ([3, Definition 7] [4, Definition 9]).
A code-tuple F is said to be regular if F has a
unique stationary distribution. The set of all regu-
lar code-tuples is denoted by Freg, that is, Freg :=
{F ∈ F : F is regular}. For F ∈ Freg, the unique
stationary distribution of F is denoted by πππ(F) =
(π0(F), π1(F), . . . , π|F |−1(F)).

The class Freg is characterized by the following
lemma.

Lemma 4 ([4, Lemma 8]). For any F ∈ F , the fol-
lowing statements (i) and (ii) hold:

(i) F ∈ Freg if and only if RF ̸= ∅;
(ii) if F ∈ Freg, then RF = {i ∈ [F] : πi(F) > 0},

where

RF := {i ∈ [F] : ∀j ∈ [F], ∃xxx ∈ S∗ s.t. τ∗j (xxx) = i}.

Definition 9 ([3, Definition 8], [4, Definition 10]).

HASHIMOTO and IWATA: PROPERTIES OF OPTIMAL K-BIT DELAY DECODABLE ALPHABETIC CODES
5

For F ∈ Freg, the average codeword length L(F) of
the code-tuple F is defined as

L(F) :=
∑
i∈[F]

πi(F)
∑
s∈S

|fi(s)|µ(s). (13)

Remark 2. Note that Q(F), L(F), and πππ(F) depend
on µ and we are now discussing a fixed µ. On the other
hand, the class Freg is determined independently of µ
since RF does not depend on µ and Lemma 4 (i) holds.

The code tables fi of F ∈ Freg such that πi(F) =
0, equivalently i ̸∈ RF by Lemma 4 (ii), do not con-
tribute to the average codeword length L(F) by (13).
It is often convenient to remove such non-essential code
tables. A code-tuple is said to be irreducible if it does
not have any non-essential code tables.

Definition 10 ([4, Definition 13]). A code-tuple F is
said to be irreducible if RF = [F]. We define Firr as
the set of all irreducible code-tuples, that is, Firr :=
{F ∈ F : RF = [F]}.

Note that Firr = {F ∈ F : RF = [F]} ⊆ {F ∈
F : RF ̸= ∅} = Freg.

2.5 Alphabetic Code-Tuples

We now define alphabetic code-tuples adding the con-
straints of alphabetic codes to code-tuples. We fix an
arbitrary total order ≤S on S and define a total order
≤C on C as 0 ≤C 1. We consider the lexicographical
order between sequences, defined as the following Def-
inition 11.

Definition 11. For a totally ordered set (A,≤), the
lexicographical order ≤∗ on A∗ is defined as follows:
for xxx,yyy ∈ A∗, it holds that xxx ≤∗ yyy if and only if at least
one of the following conditions (a) and (b) hold.

(a) xxx ⪯ yyy.
(b) There exists an integer 1 ≤ i ≤ min {|xxx|, |yyy|} such

that the following two conditions (b1) and (b2)
hold.

(b1) xi < yi.
(b2) xj = yj for any integer 1 ≤ j < i.

We say xxx <∗ yyy if xxx ≤∗ yyy and xxx ̸=∗ yyy.

Then we define an alphabetic code-tuple as a code-
tuple that preserves the lexicographical order no matter
which code table we start the encoding process from.
Note that the following definition allows f∗i (xxx) ⪰≺ f∗i (yyy)
as well as f∗i (xxx) ≤∗

C f
∗
i (yyy) even if xxx ≤∗

S yyy (cf. Remark
3).

Definition 12. A code-tuple F is alphabetic if for any
i ∈ [F] and xxx,yyy ∈ S∗, if xxx ≤∗

S yyy, then at least one of
f∗i (xxx) ⪰≺ f∗i (yyy) and f∗i (xxx) ≤∗

C f∗i (yyy) holds. We define
Falpha as the set of all alphabetic code-tuples.

Example 2. The code-tuple F (f, τ) := F (α) in Table 1
is not alphabetic because b ≤∗

S c, f∗0 (b) = 10 ⪰̸≺ 0100 =
f∗0 (c) and f∗0 (b) = 10 ̸≤∗

C 0100 = f∗0 (c).
The code-tuple F (f, τ) := F (β) in Table 1 is not

alphabetic because a ≤∗
S ba, f∗1 (a) = 0110 ⪰̸≺ 010110 =

f∗1 (ba) and f∗1 (a) = 0110 ̸≤∗
C 010110 = f∗1 (ba).

The code-tuple F (f, τ) := F (γ) in Table 1 is al-
phabetic. For example, we have f∗0 (ba) = 1100100 ⪰
11001 = f∗0 (bb) and f∗1 (ba) = 000100 ≤∗

C 0011 =
f∗1 (c).

Remark 3. The natural definition of alphabetic codes
is that xxx ≤∗

S yyy implies f∗i (xxx) ≤∗
C f∗i (yyy). However,

our definition of alphabetic code-tuples allows f∗i (xxx) ⪰≺
f∗i (yyy), that is, one codeword sequence is a prefix of the
other. By this definition, the class of alphabetic code-
tuples includes alphabetic AIFV codes [2]. This def-
inition is reasonable because it is expected that when
considering a sufficiently long (or infinitely long) en-
coding process, we have f∗i (xxx) ⪰̸≺ f∗i (yyy) and then xxx ≤∗

S yyy
implies f∗i (xxx) ≤∗

C f∗i (yyy). In practical use, we should
append appropriate k bits to the end of the codeword
sequence in the same manner as [2] so that xxx ≤∗

S yyy
necessarily implies f∗i (xxx) ≤∗

C f
∗
i (yyy).

For example, we consider F (f, τ) := F (γ) in Table
1, xxx := bca and yyy := bcb. Then f∗1 (xxx) = 00100000 ̸≤∗

C
001000 = f∗1 (yyy); however, by appending 01 to f∗1 (yyy), we
can make f∗1 (xxx) = 00100000 ≤∗

C 00100001 = f∗1 (yyy)01 in
practical use.

Remark 4. Since f∗i (xxx) ⪯ f∗i (yyy) implies f∗i (xxx) ≤∗
C

f∗i (yyy) by Definition 11 (a), the condition “at least one
of f∗i (xxx) ⪰≺ f∗i (yyy) and f∗i (xxx) ≤∗

C f∗i (yyy)” in Definition
12 can be rewritten as a simpler form “at least one
of f∗i (xxx) ≻ f∗i (yyy) and f∗i (xxx) ≤∗

C f∗i (yyy)”. However, we
adopt the former here for convenience in the later proofs
and for the sake of clarity that it is allowed that one
codeword sequence is a prefix of the other as stated in
Remark 3.

From now on, we write ≤∗
S and ≤∗

C simply as ≤ by
an abuse of notation. Similarly, we write <∗

S and <∗
C

simply as <.
To check whether a code-tuple is alphabetic, we

only need to check for xxx and yyy with x1 < y1 as shown
in the following lemma. See Subsection A.1 for the
proof of Lemma 5.

Lemma 5. A code-tuple F (f, τ) is alphabetic if and
only if for any i ∈ [F] and xxx,yyy ∈ S+, if x1 < y1, then
at least one of f∗i (xxx) ⪰≺ f∗i (yyy) and f∗i (xxx) ≤ f∗i (yyy) holds.

For an integer k ≥ 0 and sequences xxx and yyy, we say
xxx ≤k yyy if |xxx| ≥ k, |yyy| ≥ k, and [xxx]k ≤ [yyy]k. Note that
the meaning of xxx ≤k yyy includes that |xxx| ≥ k and |yyy| ≥ k
hold. Similarly, xxx =k yyy denotes that |xxx| ≥ k, |yyy| ≥ k,
and [xxx]k = [yyy]k. Also, xxx <k yyy denotes that |xxx| ≥ k, |yyy| ≥
k, and [xxx]k < [yyy]k. Notice that the binary relation ≤k

satisfies the transitivity but not the antisymmetry.

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

To state our main results in the next section, we
also define a set Qk

F,i as the “range” between the lexico-
graphical minimum and maximum of Pk

F,i, respectively.

Definition 13. For an integer k ≥ 0, F (f, τ) ∈ F ,
and i ∈ [F], we define

Qk
F,i := {ccc ∈ Ck : ∃ddd,ddd′ ∈ Pk

F,i s.t. ddd ≤ ccc ≤ ddd′}
= {ccc ∈ Ck : ∃xxx,xxx′ ∈ S∗ s.t. f∗i (xxx) ≤k ccc ≤k f

∗
i (xxx

′)}.
(14)

For F (f, τ) ∈ F and i ∈ [F], we define

Q∗
F,i := Q0

F,i ∪Q1
F,i ∪Q2

F,i ∪ · · · .

By analogy of Lemma 2, we also define a set
Q̄∗

F,i(bbb).

Definition 14. For any F ∈ F , i ∈ [F] and bbb ∈ C∗,
we define

Q̄k
F,i(bbb) :=

∪
s∈S,

fi(s)≻bbb

[
bbb−1fi(s)Qk

F,τi(s)

]
k
. (15)

For F (f, τ) ∈ F , i ∈ [F], and bbb ∈ C∗, we define

Q̄∗
F,i(bbb) := Q̄0

F,i(bbb) ∪ Q̄1
F,i(bbb) ∪ Q̄2

F,i(bbb) ∪ · · · .

Example 3. Let F := F (γ) in Table 1. Then we have

• Q2
F,0 = {00, 01, 10, 11} since P2

F,0 = {00, 10, 11};
• Q2

F,1 = {00, 01, 10} since P2
F,1 = {00, 10};

• Q2
F,2 = {01, 10} since P2

F,2 = {01, 10};
• Q̄4

F,1(00) = {0000, 0001, 0010, 1100, 1101, 1110};
• Q̄4

F,2(01) = {0001, 0010}.

Note that for any integer k ≥ 0, it holds that

Qk
F,i =

[
Q∗

F,i

]
k
, Q̄k

F,i(bbb) =
[
Q̄∗

F,i(bbb)
]
k
.

As general properties of the sets in Definitions 13 and
14, we have the following Lemmas 6–8. See Subsections
A.2–A.4 for the proofs, respectively.

Lemma 6. For any F ∈ F and i ∈ [F], the following
statements (i)–(iv) hold.

(i) For any integer k ≥ 0, we have Pk
F,i ⊆ Qk

F,i.
(ii) For any integer k ≥ 0 and bbb ∈ C∗, we have

P̄k
F,i(bbb) ⊆ Q̄k

F,i(bbb).
(iii) For any xxx ∈ S∗, we have f∗i (xxx)Q∗

F,τ∗
i (xxx)

⊆ Q∗
F,i.

(iv) For any integer k ≥ 0, bbb ∈ C∗, and ccc ∈ Q̄k
F,i(bbb),

there exist ddd,ddd′ ∈ P̄k
F,i(bbb) such that ddd ≤ ccc ≤ ddd′.

The next Lemma 7 is an analog of Definition 4.

Lemma 7. For any integer k ≥ 0 and F ∈ Fk-dec ∩
Falpha, the following statements (i) and (ii) hold.

(i) For any i ∈ [F] and s ∈ S, we have Qk
F,τi(s)

∩

Q̄k
F,i(fi(s)) = ∅.

(ii) For any i ∈ [F] and s, s′ ∈ S, if s ̸= s′ and fi(s) =
fi(s

′), then Qk
F,τi(s)

∩Qk
F,τi(s′)

= ∅.

The next Lemma 8 is used in several proofs later
to show the condition of Lemma 5.

Lemma 8. Let k ≥ 0 be an integer, and let F (f, τ) ∈
Fk-dec ∩ Falpha and F ′(f ′, τ ′) ∈ Fext be code-tuples
such that |F | = |F ′|. Also, let i ∈ [F] be an index
satisfying the following conditions (a) and (b).

(a) For any s ∈ S, it holds that fi(s) = f ′i(s).
(b) For any s ∈ S, it holds that Qk

F ′,τ ′
i(s)

⊆ Qk
F,τi(s)

.

Then for any xxx,yyy ∈ S+ such that x1 < y1, we have
f ′∗i (xxx) ⪰≺ f ′∗i (yyy) or f ′∗i (xxx) ≤ f ′∗i (yyy).

3. Main Results

This section presents our main results on code-tuples
that achieve the optimal average codeword length in
the class F ∈ Freg ∩ Fext ∩ Fk-dec ∩ Falpha for k ≥ 0.

Definition 15. Let k ≥ 0 be an integer. A code-tuple
F ∈ Freg ∩Fext ∩Fk-dec ∩Falpha is k-bit delay alpha-
betic optimal if for any F ′ ∈ Freg ∩ Fext ∩ Fk-dec ∩
Falpha, it holds that L(F) ≤ L(F ′). We define Fk-αopt
as the set of all k-bit delay alphabetic optimal code-
tuples.

We first state Theorems 1–3 related to k-bit delay
alphabetic optimal code-tuples for k ≥ 0. They can
be viewed as modifications of [4, Theorem 1], [4, The-
orem 2], and [3, Section III] for alphabetic codes, re-
spectively. Then summarizing Theorems 1–3, we ob-
tain Theorem 4, which limits the scope of codes to be
considered when discussing k-bit delay alphabetic op-
timal codes in theoretical analysis and practical code
construction. Furthermore, we show that for k = 1, at
most one prefix-free code table is sufficient to obtain
a 1-bit delay alphabetic optimal code-tuple. We also
show for k = 2 that it suffices to consider only code-
tuples satisfying certain conditions to obtain a 2-bit
delay alphabetic optimal code-tuple.

We first present the statements of six theorems and
give their proofs in Subsections 3.1–3.6, respectively.

Theorem 1. For any integer k ≥ 0 and F ∈ Freg ∩
Fext ∩ Fk-dec ∩ Falpha, there exists F † ∈ F satisfying
the following conditions (a)–(d), where Pk

F := {Pk
F,i :

i ∈ [F]}.

(a) F † ∈ Firr ∩ Fext ∩ Fk-dec ∩ Falpha.
(b) L(F †) ≤ L(F).
(c) Pk

F † ⊆ Pk
F .

(d) |Pk
F † | = |F †|.

Applying Theorem 1 to F ∈ Fk-αopt, we obtain

HASHIMOTO and IWATA: PROPERTIES OF OPTIMAL K-BIT DELAY DECODABLE ALPHABETIC CODES
7

the following corollary.

Corollary 1. For any integer k ≥ 0, there exists F ∈
Fk-αopt ∩ Firr such that |Pk

F | = |F |.

Note that |Pk
F | = |F | is equivalent to that

Pk
F,0,Pk

F,1, . . . ,Pk
F,|F |−1 are distinct. Therefore, The-

orem 1 guarantees that it suffices to consider only the
code-tuples F such that Pk

F,0,Pk
F,1, . . . ,Pk

F,|F |−1 are dis-
tinct when discussing k-bit delay alphabetic optimal
code-tuples. In particular, since the number of possi-
ble sets as Pk

F,i ⊆ Ck is finite, it is not the case that
one can achieve an arbitrarily small average codeword
length by using arbitrarily many code tables, and we
can show that a k-bit delay alphabetic optimal code-
tuple does exist indeed by almost identical discussion
to [4, Appendix B].

The next Theorem 2 gives a necessary condition
for a k-bit delay alphabetic code-tuple to be optimal.

Theorem 2. For any integer k ≥ 0, F ∈ Fk-αopt,
i ∈ RF , and bbb ∈ C≥k, if [bbb]k ∈ Qk

F,i, then bbb ∈ P∗
F,i.

Corollary 2. For any integer k ≥ 0, F ∈ Fk-αopt ∩
Firr, and i ∈ [F], we have Pk

F,i = Qk
F,i.

Proof of Corollary 2. By Lemma 6 (i), we have Pk
F,i ⊆

Qk
F,i. Conversely, for any bbb ∈ Qk

F,i, we have bbb ∈ Pk
F,i by

Theorem 2; therefore, it holds that Pk
F,i ⊇ Qk

F,i. □

Applying Theorem 2 to the case k = 0, we obtain
P∗
F,i = C∗. Thus, Theorem 2 can be viewed as a gen-

eralization of the property of Huffman codes that each
internal node in the code tree has two child nodes.

Theorem 3. For any integer k ≥ 0 and F ∈ Freg ∩
Fext ∩Fk-dec ∩Falpha, there exists F ′ ∈ Freg ∩Fext ∩
Fk-dec ∩Falpha ∩Ffork such that L(F ′) = L(F), where
Ffork := {F ∈ F : ∀i ∈ [F],P1

F,i = {0, 1}}.

Applying Theorem 3 to F ∈ Fk-αopt leads to the
following corollary.

Corollary 3. For any integer k ≥ 0, we have Fk-αopt∩
Ffork ̸= ∅.

Theorem 3 shows that it suffices to consider only
the code-tuples such that both 0 and 1 are possible as
the first bit of some codewords.

Summarizing the results above, we obtain the fol-
lowing theorem.

Theorem 4. For any integer k ≥ 0, there exists
F (f, τ) ∈ Fk-αopt ∩ Firr satisfying the following con-
ditions (a)–(c).

(a) The sets Pk
F,0,Pk

F,1, . . . ,Pk
F,|F |−1 are distinct.

(b) If k ≥ 1, then for any i ∈ [F], it holds that Pk
F,i =

Qk
F,i ⊇ {01k−1, 10k−1}, where 0k−1 (resp. 1k−1)

denotes the concatenation of k − 1 copies of 0

(resp. 1).
(c) The mappings f0, f1, . . . , f|F |−1 are injective.

Namely, to obtain a k-bit delay alphabetic optimal
code-tuple, it suffices to consider only irreducible code-
tuples satisfying the conditions (a)–(c) above. The con-
dition (b) means that each Pk

F,i occupies a “lexicograph-
ically contiguous” interval of Ck and contains 01k−1 and
10k−1. Namely, each Pk

F,i is represented as Pk
F,i = {ccc ∈

Ck : 0ddd ≤ ccc ≤ 1ddd′} by some ddd,ddd′ ∈ Ck−1. Since the
number of ways to choose a pair of ddd,ddd′ ∈ Ck−1 is
(2k−1)2 and the sets Pk

F,0,Pk
F,1, . . . ,Pk

F,|F |−1 are dis-
tinct by Theorem 4 (a), we obtain the following upper
bound of the necessary number of code tables to be
optimal.

Corollary 4. For any integer k ≥ 0, there exists a k-
bit delay alphabetic optimal code-tuple consisting of at
most 22(k−1) injective code tables.

The iterative algorithm in [16] gives a code-tuple
optimal in the class of k-bit delay alphabetic code-
tuples that satisfy the conditions (a)–(c) of Theorem
4. By Theorem 4, the code-tuple given by the itera-
tive algorithm [16] is optimal in the entire class of k-bit
delay alphabetic code-tuples. Therefore, we can obtain
a k-bit delay alphabetic optimal code-tuple for a given
source distribution by using iterative algorithm in [16].

In addition to the results above for general integers
k ≥ 0, we obtain, in particular, Theorem 5 for k = 1
and Theorem 6 for k = 2.

Theorem 5. F1-αopt ∩
(
F (1) ∩ F0-dec

)
̸= ∅.

Since there exists F ∈ F1-αopt such that F ∈
F (1) ∩ F0-dec by Theorem 5, it suffices to consider
only code-tuples consisting of a single 0-bit delay de-
codable (i.e., prefix-free by [3, Lemma 4]) code table
to obtain a 1-bit delay alphabetic optimal code-tuple.
In particular, a 1-bit delay alphabetic optimal code-
tuple can be obtained as an alphabetic Huffman code by
Hu-Tucker’s algorithm [1]. Theorem 5 corresponds to
the result of [3] that an optimal 1-bit delay code-tuple,
which is not necessarily alphabetic, can be obtained as
a Huffman code.

Also, the following Theorem 6 claims that it suf-
fices to consider only code-tuples satisfying the three
conditions below to obtain a 2-bit delay alphabetic op-
timal code-tuple.

Theorem 6. There exists F ∈ F2-αopt∩Firr satisfying
the following conditions (a)–(c).

(a) For any i ∈ [F], s, s′ ∈ S, and bbb ∈ C≤1, if s ̸= s′,
then fi(s)bbb ̸= fi(s

′).
(b) For any i ∈ [F] and s ∈ S, if |fi(s)| ≥ 1, then

|P2
F,τi(s)

| + |P̄2
F,i(fi(s))| = 4. In particular, for

any i ∈ [F] and s ∈ S, if P̄0
F,i(fi(s)) = ∅, then

P2
F,τi(s)

= {00, 01, 10, 11}.

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

(c) {{00, 01, 10, 11}} ⊆ P2
F ⊆ {{00, 01, 10, 11}, {00, 01,

10}, {01, 10, 11}, {01, 10}} and |P2
F | = |F |.

Note that Theorem 6 (a) implies that all code
tables are injective, and Theorem 6 (c) implies that
it suffices to consider at most four code tables such
that P2

F,0 = {00, 01, 10, 11},P2
F,1 = {00, 01, 10},P2

F,2 =

{01, 10, 11},P2
F,3 = {01, 10}. Considering the code

trees corresponding to the code tables, Theorem 6 (a)
means that a node with a source symbol does not have
a child with a source symbol. Also, Theorem 6 (b) im-
plies that a leaf node must have a transition to the code
table fi with P2

F,i = {00, 01, 10, 11}.
Alphabetic AIFV codes [2] are code-tuples in

Freg ∩ Fext ∩ F2-dec ∩ Falpha satisfying the three con-
ditions (a)–(c) above. They use three code tables such
that P2

F,0 = {00, 01, 10, 11},P2
F,1 = {01, 10, 11},P2

F,2 =
{00, 01, 10}. There exists a source distribution µ such
that an optimal alphabetic AIFV code is not 2-bit
delay alphabetic optimal. Namely, three code ta-
bles are not sufficient to guarantee the optimality in
Freg ∩Fext ∩F2-dec ∩Falpha. On the other hand, four
code tables are sufficient by Theorem 6.

The literature [2] also proposes an algorithm to
give an optimal alphabetic AIFV code. We can easily
modify this algorithm to obtain a code-tuple optimal in
the class of 2-bit delay alphabetic code-tuples satisfying
the conditions (a)–(c) of Theorem 6. Then the code-
tuple given by the modified algorithm is 2-bit delay
alphabetic optimal as guaranteed by Theorem 6.

3.1 Proof of Theorem 1

The proof of Theorem 1 is almost identical to the proof
of [4, Theorem 1]. However, several lemmas are mod-
ified for alphabetic code-tuples. We state only differ-
ences here.

The first lemma to be modified is [4, Lemma 7],
which shows properties of a homomorphism defined in
the following Definition 16 (identical to [4, Definition
11]).

Definition 16 ([4, Definition 11]). For F (f, τ), F ′(f ′,
τ ′) ∈ F , a mapping φ : [F ′] → [F] is called a ho-
momorphism from F ′ to F if f ′i(s) = fφ(i)(s) and
φ(τ ′i(s)) = τφ(i)(s) hold for any i ∈ [F ′] and s ∈ S.

This lemma [4, Lemma 7] is replaced with the fol-
lowing Lemma 9. The statements (i)–(vi) are identical
to [4, Lemma 7], and the statement (vii) is added.

Lemma 9. For any F (f, τ), F ′(f ′, τ ′) ∈ F and a ho-
momorphism φ : [F ′] → [F] from F ′ to F , the following
statements (i)–(vii) hold.

(i) For any i ∈ [F ′] and xxx ∈ S∗, we have f ′∗i (xxx) =
f∗φ(i)(xxx) and φ(τ ′∗i (xxx)) = τ∗φ(i)(xxx).

(ii) For any i ∈ [F ′] and bbb ∈ C∗, we have P∗
F ′,i(bbb) =

P∗
F,φ(i)(bbb) and P̄∗

F ′,i(bbb) = P̄∗
F,φ(i)(bbb).

(iii) For any stationary distribution πππ′ = (π′
0, π

′
1, . . . ,

π′
|F ′|−1) of F ′, the vector πππ = (π0, π1, . . . , π|F |−1) ∈

R|F | defined as πj =
∑

j′∈Aj
π′
j′ for j ∈ [F] is a

stationary distribution of F , where Ai := {i′ ∈
[F ′] : φ(i′) = i} for i ∈ [F].

(iv) If F ∈ Fext, then F ′ ∈ Fext.
(v) If F, F ′ ∈ Freg, then L(F ′) = L(F).
(vi) For any integer k ≥ 0, if F ∈ Fk-dec, then F ′ ∈

Fk-dec.
(vii) If F ∈ Falpha, then F ′ ∈ Falpha.

Proof of Lemma 9 (vii). Choose i ∈ [F] and xxx,yyy ∈ S∗

such that xxx ≤ yyy arbitrarily. By F ∈ Falpha, at least
one of f∗φ(i)(xxx) ⪰≺ f∗φ(i)(yyy) and f∗φ(i)(xxx) ≤ f∗φ(i)(yyy) holds.
Hence, by (i) of this lemma, at least one of f ′∗i (xxx) ⪰≺
f ′∗i (yyy) and f ′∗i (xxx) ≤ f ′∗i (yyy) holds as desired. □

Also, [4, Lemma 12] is replaced with the following
Lemma 10. The statements (i)–(iii) are identical to [4,
Lemma 12], and the statement (iv) is added.

Lemma 10. Let k ≥ 0 be an integer and let F (f, τ) and
F ′(f ′, τ ′) be code-tuples such that |F | = |F ′|. Assume
that the following conditions (a) and (b) hold.

(a) fi(s) = f ′i(s) for any i ∈ [F] and s ∈ S.
(b) Pk

F,τi(s)
= Pk

F,τ ′
i(s)

for any i ∈ [F] and s ∈ S.

Then the following statements (i)–(iv) hold.

(i) For any i ∈ [F ′] and bbb ∈ C∗, we have Pk
F,i(bbb) =

Pk
F ′,i(bbb) and P̄k

F,i(bbb) = P̄k
F ′,i(bbb).

(ii) If F ∈ Fext, then F ′ ∈ Fext.
(iii) If F ∈ Fk-dec, then F ′ ∈ Fk-dec.
(iv) If F ∈ Fext ∩ Fk-dec ∩ Falpha, then F ′ ∈ Falpha.

Proof of Lemma 10 (iv). By Lemma 5, it suffices to
prove that for any i ∈ [F ′] and xxx,yyy ∈ S+ such that
x1 < y1, we have f ′∗i (xxx) ⪰≺ f ′∗i (yyy) or f ′∗i (xxx) ≤ f ′∗i (yyy).
Since F ′ ∈ Fext by (ii) of this lemma, it suffices to
confirm that Lemma 8 (a) and (b) hold for any i ∈ [F].

(Lemma 8 (a)) Directly from (a) of this lemma.
(Lemma 8 (b)) For any i ∈ [F] and s ∈ S, we have

Pk
F ′,τ ′

i(s)

(A)
= Pk

F,τ ′
i(s)

(B)
= Pk

F,τi(s)
, (16)

where (A) follows from (i) of this lemma, and (B) fol-
lows from (b) of this lemma. This implies Qk

F ′,τ ′
i(s)

=

Qk
F,τi(s)

by Definition 13. □

3.2 Proof of Theorem 2

The proof of Theorem 2 is similar to the proof of [4,
Theorem 2], and thus some parts of the proof can be
diverted without changing. We focus on the differences
primarily here.

Proof of Theorem 2. We prove by contradiction assum-
ing that there exist i ∈ RF and bbb ∈ C≥k that do not

HASHIMOTO and IWATA: PROPERTIES OF OPTIMAL K-BIT DELAY DECODABLE ALPHABETIC CODES
9

satisfy the assertion. Assuming i = |F |−1 without loss
of generality, we may suppose

bbb ̸∈ P∗
F,|F |−1, [bbb]k ∈ Qk

F,|F |−1. (17)

By (17), we have

|bbb| > l′ := max
xxx∈S∗

∣∣∣bbb ∧ f∗|F |−1(xxx)
∣∣∣ . (18)

Then we have

∀xxx ∈ S∗, f∗|F |−1(xxx) ̸⪰ b1b2 . . . bl′bl′+1, (19)

and we have

f∗|F |−1(xxx
′) ⪰ b1b2 . . . bl′ , (20)

for some xxx′ ∈ S∗, which we may assume that satisfy

|f∗|F |−1(xxx
′)| ≥ l′ + 1 (21)

by Lemma 3. By (19)–(21), we must have

f∗|F |−1(xxx
′) ⪰ b1b2 . . . bl′ b̄l′+1, (22)

where c̄ denotes the negation of c ∈ C, that is, 0̄ := 1
and 1̄ := 0. By (19) and (22), we obtain

ddd ∈ P∗
F,|F |−1, pref(ddd)d̄l ̸∈ P∗

F,|F |−1 (23)

defining

ddd = d1d2 . . . dl := b1b2 . . . bl′ b̄l′+1, (24)

where l := l′ + 1. This implies that for any xxx ∈ S∗, we
have

f∗|F |−1(xxx) ≻ pref(ddd) =⇒ f∗|F |−1(xxx) ⪰ ddd. (25)

We define the code-tuple F ′ as follows. Put L :=
|F |(|ddd| + 1) = |F |(l + 1) and M := |S≤L|. We number
all the sequences of S≤L as zzz(0), zzz(1), zzz(2), . . . , zzz(M−1)

in any order but zzz(0) := λ. For zzz′ ∈ S≤L, we define
⟨zzz′⟩ := |F | − 1 + t, where t is the integer such that
zzz(t) = zzz′. Note that ⟨λ⟩ = |F | − 1 since zzz(0) = λ.
We define the code-tuple F ′ ∈ F (|F |−1+M) consist-
ing of f ′0, f ′1, . . . , f ′|F |−1, f

′
⟨zzz(1)⟩, f

′
⟨zzz(2)⟩, . . . , f

′
⟨zzz(M−1)⟩ and

τ ′0, τ
′
1, . . . , τ

′
|F |−1, τ

′
⟨zzz(1)⟩, τ

′
⟨zzz(2)⟩, . . . , τ

′
⟨zzz(M−1)⟩ as

f ′i(s) =

{
fτ∗

⟨λ⟩(zzz)
(s) if i = ⟨zzz⟩ for some zzz ∈ S≤L,

fi(s) otherwise,

(26)

τ ′i(s) =

⟨zzzs⟩ if i = ⟨zzz⟩ for some zzz ∈ S≤L−1,

τ∗⟨λ⟩(zzzs) if i = ⟨zzz⟩ for some zzz ∈ SL,

τi(s) otherwise
(27)

for i ∈ [F ′] and s ∈ S. Then F ′ satisfies the following

Lemma 11 [4, Lemma 16].

Lemma 11 ([4, Lemma 16]). For any zzz ∈ S≤L, the
following statements (i) and (ii) hold.

(i) τ ′∗⟨λ⟩(zzz) = ⟨zzz⟩.
(ii) ⟨zzz⟩ ∈ RF ′ .

The code-tuples F and F ′ are equivalent in the
sense of the following Lemma 12, which can be shown
by the same argument as the proof of [4, Theorem 2].

Lemma 12. The following statements (i)–(iii) hold.

(i) For any i ∈ [F] and xxx ∈ S∗, we have f ′∗i (xxx) =
f∗i (xxx).

(ii) For any i ∈ [F], we have P∗
F ′,i = P∗

F,i.
(iii) F ′ ∈ Freg ∩ Fext ∩ Falpha ∩ Fk-dec and L(F ′) =

L(F).

Next, we define a code-tuple F ′′ ∈ F (|F ′|) as

f ′′i (s) =

f ′∗⟨λ⟩(zzz)

−1pref(ddd)ddd−1f ′∗⟨λ⟩(zzzs)

if i = ⟨zzz⟩ and f ′∗⟨λ⟩(zzz) ≺ ddd ⪯ f ′∗⟨λ⟩(zzzs)

for some zzz ∈ S≤L,

f ′i(s) otherwise,
(28)

τ ′′i (s) = τ ′i(s) (29)

for i ∈ [F ′′] and s ∈ S. Then F ′′ satisfies the follow-
ing Lemmas 13–15. Lemma 13 is shown in [4, Lemma
17], and the proofs of Lemmas 14 and 15 are given in
Subsections A.5 and A.6, respectively.

Lemma 13 ([4, Lemma 17]). The following statements
(i)–(iii) hold.

(i) For any zzz ∈ S≤L and xxx ∈ S≤L−|zzz|, we have

f ′′∗⟨zzz⟩(xxx) =

f ′∗⟨λ⟩(zzz)

−1pref(ddd)ddd−1f ′∗⟨λ⟩(zzzxxx)

if f ′∗⟨λ⟩(zzz) ≺ ddd ⪯ f ′∗⟨λ⟩(zzzxxx),

f ′∗⟨zzz⟩(xxx) otherwise.
(30)

(ii) For any zzz ∈ S≤L and s, s′ ∈ S, if f ′′⟨zzz⟩(s) ≺
f ′′⟨zzz⟩(s

′), then f ′⟨zzz⟩(s) ≺ f ′⟨zzz⟩(s
′).

(iii) For any xxx ∈ S≥L, we have |f∗⟨λ⟩(xxx)| = |f ′∗⟨λ⟩(xxx)| ≥
|ddd|+ 1 and |f ′′∗⟨λ⟩(xxx)| ≥ |ddd|.

Lemma 14. The following statements (i)–(iii) hold,
where J := ([F ′] \ ⟨λ⟩) ∪ {⟨zzz⟩ : zzz ∈ SL} = [F ′] \ {⟨zzz⟩ :
zzz ∈ S≤L−1}.

(i) For any i ∈ J and s ∈ S, we have f ′′i (s) = f ′i(s).
(ii) (a) Qk

F ′′,⟨λ⟩ ⊆ Qk
F ′,⟨λ⟩.

(b) For any i ∈ J , we have Qk
F ′′,i ⊆ Qk

F ′,i.
(iii) For any i ∈ J and bbb ∈ C∗, we have Q̄k

F ′′,i(bbb) ⊆
Q̄k

F ′,i(bbb).

Lemma 15. F ′′ ∈ Freg ∩ Fext ∩ Fk-dec ∩ Falpha and
L(F ′′) < L(F ′).

10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Then we conclude that F ′′ ∈ Freg∩Fext∩Fk-dec∩
Falpha and L(F ′′) < L(F ′) = L(F) by Lemmas 12 and
15. This conflicts with F ∈ Fk-αopt and completes the
proof of Theorem 2. □

3.3 Proof of Theorem 3

We can prove Theorem 3 in a similar way to [3, Section
III]. First, we introduce rotation, which is an operation
of transforming a code-tuple F to another code-tuple
F̂ defined as follows.

Definition 17 ([3, Definition 10]). For F (f, τ) ∈
Fext, we define F̂ (f̂ , τ̂) ∈ F (|F |) as follows: for i ∈ [F]
and s ∈ S,

f̂i(s) :=

{
fi(s)dF,τi(s) if P1

F,i = {0, 1},
suff(fi(s)dF,τi(s)) if P1

F,i ̸= {0, 1},
(31)

τ̂i(s) = τi(s), (32)

where

dF,i :=

0 if P1

F,i = {0},
1 if P1

F,i = {1},
λ if P1

F,i = {0, 1}.
(33)

We state as the following Lemma 16 (i) that ro-
tation preserves the key properties of a code-tuple,
which is shown in [3, Section III]. Also, [3, Section
III] shows that any code-tuple can be transformed into
a code-tuple in Ffork by rotation in a repetitive man-
ner. Therefore, to complete the proof of Theorem 3, it
suffices to prove that rotation also preserves the alpha-
betic property, that is, Lemma 16 (ii) holds.

Lemma 16. For any F (f, τ) ∈ Fext, the following
statements (i) and (ii) hold.

(i) For any integer k ≥ 0, if F ∈ Freg∩Fext∩Fk-dec,
then F̂ ∈ Freg ∩ Fext ∩ Fk-dec and L(F̂) = L(F).

(ii) If F ∈ Falpha, then F̂ ∈ Falpha.

The proof of Lemma 16 (ii) relies on the following
lemma.

Lemma 17. For any F (f, τ) ∈ Fext, i ∈ [F], and xxx ∈
S∗, there exists zzz ∈ S∗ such that f∗i (xxxzzz) ⪰ dF,if̂∗i (xxx).

Proof of Lemma 17. By F ∈ Fext, there exist zzz ∈ S∗

and c ∈ C such that f∗τ∗
i (xxx)

(zzz) ⪰ c. Then we see that

f∗τ∗
i (xxx)

(zzz) ⪰ dF,τ∗
i (xxx)

(34)

as follows.

• In the case P1
F,i = {0, 1}, we have f∗τ∗

i (xxx)
(zzz) ⪰ λ =

dF,τ∗
i (xxx)

.
• In the case P1

F,i = {b} for some b ∈ C, it must

holds that b = c since f∗τ∗
i (xxx)

(zzz) ⪰ c. Hence, we
have f∗τ∗

i (xxx)
(zzz) ⪰ c = b = dF,τ∗

i (xxx)
.

Thus, we have

dF,if̂∗i (xxx)
(A)
= f∗i (xxx)dF,τ∗

i (xxx)

(B)

⪯ f∗i (xxxzzz) (35)

as desired, where (A) follows from [3, Lemma 5], and
(B) follows from (34). □

Proof of Lemma 16 (ii). Choose i ∈ [F] and xxx,yyy ∈ S+

such that x1 < y1 arbitrarily. We prove that at least
one of f̂∗i (xxx) ⪰≺ f̂∗i (yyy) and f̂∗i (xxx) ≤ f̂∗i (yyy) by contradic-
tion assuming that

f̂∗i (xxx) ⪰̸≺ f̂∗i (yyy), f̂∗i (xxx) > f̂∗i (yyy). (36)

By Lemma 17, there exist zzz,z′z′z′ ∈ S∗ such that

f∗i (xxxzzz) ⪰ dF,if̂∗i (xxx), f∗i (yyyz
′z′z′) ⪰ dF,if̂∗i (yyy). (37)

By (36) and (37), we have f∗i (xxxzzz) ⪰̸≺ f∗i (yyyz
′z′z′) and

f∗i (xxxzzz) > f∗i (yyyz
′z′z′). On the other hand, we have xxxzzz < yyyz′z′z′

since x1 < y1. This conflicts with F ∈ Falpha by
Lemma 5. □

3.4 Proof of Theorem 4

Proof of Theorem 4. By Theorem 3, there exists F ∈
Fk-αopt ∩ Ffork. By Theorem 1, there exists
F †(f†, τ †) ∈ Firr∩Fext∩Fk-dec∩Falpha satisfying The-
orem 1 (b)–(d). Theorem 1 (b) implies F † ∈ Fk-αopt,
and Theorem 1 (c) implies F † ∈ Ffork. We show that
F † satisfies Theorem 4 (a)–(c).

(Theorem 4 (a)) Directly from Theorem 1 (d).
(Theorem 4 (b)) Since F † ∈ Fext ∩ Ffork, there

exist bbb, bbb′ ∈ Ck−1 such that 0bbb, 1bbb′ ∈ Pk
F †,i. Since 0bbb ≤

01k−1 ≤ 1bbb′ and 0bbb ≤ 10k−1 ≤ 1bbb′, we have

{01k−1, 10k−1} ⊆ Qk
F,i

(A)
= Pk

F,i, (38)

where (A) follows from Corollary 2 and F † ∈ Firr.
(Theorem 4 (c)) If k = 0, then by F † ∈ Fk-dec

and [3, Lemma 4], the mappings f†0 , f
†
1 , . . . , f

†
|F |−1 are

prefix-free, in particular, injective as desired. We show
the assertion for the case k ≥ 1 by contradiction as-
suming that f†i (s) = f†i (s

′) and s ≠ s′ hold for some
i ∈ [F †] and s, s′ ∈ S. Then we obtain

Pk
F,†τ†

i (s)
∩ Pk

F †,τ†
i (s

′)

(A)

⊇ {01k−1, 10k−1} ̸= ∅,

where (A) follows from (38). This conflicts with F † ∈
Fk-dec. □

3.5 Proof of Theorem 5

Proof of Theorem 5. By Theorem 4, there exists

HASHIMOTO and IWATA: PROPERTIES OF OPTIMAL K-BIT DELAY DECODABLE ALPHABETIC CODES
11

F (f, τ) ∈ F1-αopt satisfying Theorem 4 (a)–(c).
By Theorem 4 (b), we have P1

F,i = {0, 1} for any
i ∈ [F]. On the other hand, P1

F,0,P1
F,1, . . . ,P1

F,|F |−1 are
distinct by Theorem 4 (a). Therefore, it must hold that
F ∈ F (1) and P1

F,0 = {0, 1}.
By [3, Lemma 4], to prove F ∈ F0-dec, it suffices

to show that the only code table f0 is prefix-free. Now,
we choose s, s′ ∈ S such that f0(s) ⪯ f0(s

′) arbitrarily.
If we assume f0(s) ≺ f0(s

′), then

P1
F,τ0(s)

∩ P̄1
F,0(f0(s)) = {0, 1} ∩ P̄1

F,0(f0(s))

= P̄1
F,0(f0(s))

(A)

⊇
[
f0(s

′)−1f0(s)P∗
F,τ0(s)

]
1

(B)

̸= ∅,

where (A) follows from Lemma 2, and (B) follows from
F ∈ Fext; this conflicts with F ∈ F1-dec. Therefore,
it must hold that f0(s) = f0(s

′), which implies s = s′

by Theorem 4 (c). This shows that f0 is prefix-free as
desired. □

3.6 Proof of Theorem 6

Proof of Theorem 6. By Theorem 4, there exists F ∈
F2-αopt ∩ Firr satisfying Theorem 4 (a)–(c). We show
that this code-tuple F satisfies Theorem 6 (a)–(c).

(Proof of (a)) In the case bbb = λ, then s ̸= s′ implies
fi(s)bbb = fi(s) ̸= fi(s

′) by Theorem 4 (c). Hence, now
let bbb = b1 ∈ C1. We prove by contradiction assuming
that s ̸= s′ and fi(s)b1 = fi(s

′). Then we have

P̄2
F,i(fi(s)) =

[
P̄∗
F,i(fi(s))

]
2

(A)

⊇
[
fi(s)

−1fi(s
′)P∗

F,τi(s′)

]
2

=
[
b1P∗

F,τi(s′)

]
2

⊇
[
b1P2

F,τi(s′)

]
2

(B)

⊇ [b1{01, 10}]2
= {b10, b11},

where (A) follows from Lemma 2 and (B) follows from
Theorem 4 (b). Therefore, we obtain

P2
F,τi(s)

∩ P̄2
F,i(fi(s))

(A)

⊇ {01, 10} ∩ {b10, b11} ̸= ∅,

where (A) follows from Theorem 4 (b). This conflicts
with F ∈ F2-dec.

(Proof of (b)) We prove by contradiction assuming
that |fi(s)| ≥ 1 and |P2

F,τi(s)
|+ |P̄2

F,i(fi(s))| < 4. Then
there exists bbb = b1b2 ∈ C2 \ P2

F,i(fi(s)) because

|P2
F,i(fi(s))|

(A)
= |P2

F,τi(s)
|+ |P̄2

F,i(fi(s))| < 4, (39)

where (A) follows from [8, Lemma 3] and Theorem 4
(c). Then we have

[fi(s)bbb]2
(A)
= [fi(s)b1]2
⊆ [fi(s){0, 1}]2
= [fi(s){01, 10}]2
(B)

⊆
[
fi(s)Q2

F,τi(s)

]
2

⊆
[
fi(s)Q∗

F,τi(s)

]
2

(C)

⊆
[
Q∗

F,i

]
2

= Q2
F,i,

where (A) follows since |fi(s)| ≥ 1, (B) follows from
Theorem 4 (b), and (C) follows from Lemma 6 (iii).

Hence, we obtain fi(s)bbb ∈ P∗
F,i by Theorem 2 and

F ∈ Firr. Therefore, there exists xxx ∈ S+ such that

f∗i (xxx) ⪰ fi(s)bbb. (40)

Then fi(x1) ⪰ fi(s) or fi(x1) ≺ fi(s) holds. Since
bbb ̸∈ P2

F,i(fi(s)) and (40) hold, the latter fi(x1) ≺ fi(s)
must hold. By (a) of this theorem, it holds that
|fi(x1)−1fi(s)| ≥ 2, so that we have[

fi(x1)
−1fi(s)

]
2
∈ P̄2

F,i(fi(x1)). (41)

Also, by (40), we have f∗τi(x1)
(suff(xxx)) ⪰ fi(x1)

−1fi(s)bbb ⪰[
fi(x1)

−1fi(s)
]
2

and thus[
fi(x1)

−1fi(s)
]
2
∈ P2

F,τi(x1)
. (42)

By (41) and (42), we obtain

P2
F,τi(x1)

∩ P̄2
F,i(fi(x1)) ⊇

{[
fi(x1)

−1fi(s)
]
2

}
̸= ∅,

which conflicts with F ∈ F2-dec.
(Proof of (c)) Choosing i ∈ [F] and s ∈

argmaxs′∈S |fi(s′)|, we have P̄0
F,i(fi(s)) = ∅. Then by

(b) of this theorem, P2
F,τi(s)

= {00, 01, 10, 11} holds,
so that {00, 01, 10, 11} ∈ P2

F . Also, by Theorem 4
(b), we have P2

F,i ⊇ {01, 10}, which leads to P2
F ⊆

{{00, 01, 10, 11}, {00, 01, 10}, {01, 10, 11}, {01, 10}}. The
condition |P2

F | = |F | is directly from Theorem 4 (a).
□

4. Conclusion

In this paper, we introduced alphabetic code-tuples
imposing the constraints of alphabetic codes to code-
tuples proposed in [3,4] and investigated general prop-
erties of k-bit delay decodable alphabetic code-tuples
with the optimal average codeword length. As our main
results, we proved theorems to limit the scope of codes
to be considered when discussing k-bit delay alphabetic

12
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

optimal code-tuples in theoretical analysis and practi-
cal code construction.

We first presented the following Theorems 1–3
modifying [4, Theorem 1], [4, Theorem 2], and [3,
Section III], respectively. These three theorems are
summed up in Theorem 4, which implies that there
exists a k-bit delay alphabetic optimal code-tuple con-
sisting of at most 22(k−1) injective code tables. For
particular cases k = 1, 2, we showed further results as
Theorems 5 and 6: to obtain a 1-bit (resp. 2-bit) de-
lay alphabetic optimal code-tuple, it suffices to consider
only code-tuples consisting of a single prefix-free code
table (resp. at most four injective code tables satisfying
certain conditions).

The following topics remain as future works: anal-
ysis of the worst-case redundancy of Freg ∩ Fext ∩
Fk-dec ∩ Falpha; generalization to d-ary alphabetic
codes, in which C := {0, 1, 2, . . . , d− 1}.

Appendix A: Proofs of the Lemmas

A.1 Proof of Lemma 5

Proof of Lemma 5. Since the necessity is clear, we now
prove the sufficiency. We assume that F is not alpha-
betic. Then there exist i ∈ [F] and xxx,yyy ∈ S∗ such
that

xxx ≤ yyy, f∗i (xxx) ⪰̸≺ f∗i (yyy), f∗i (xxx) > f∗i (yyy). (A· 1)

By f∗i (xxx) ̸⪰≺ f∗i (yyy) and the contraposition of Lemma 1
(iii), we have xxx ⪰̸≺ yyy. Hence, xxx and yyy can be written
as xxx = (xxx ∧ yyy)xxx′, yyy = (xxx ∧ yyy)yyy′ for some xxx′, yyy′ ∈ S+

satisfying x′1 ̸= y′1. Then we obtain

x′1 < y′1, f∗j (xxx
′) ̸⪰≺ f∗j (yyy

′), f∗j (xxx
′) > f∗j (yyy

′) (A· 2)

by (A· 1), where j := τ∗i (xxx ∧ yyy). This shows the suffi-
ciency as desired. □

A.2 Proof of Lemma 6

Proof of Lemma 6. (Proof of (i)) Directly from Defini-
tion 13.

(Proof of (ii))

P̄k
F,i(bbb)

(A)
=

∪
s∈S,

fi(s)≻bbb

[
bbb−1fi(s)Pk

F,τi(s)

]
k

(B)

⊆
∪
s∈S,

fi(s)≻bbb

[
bbb−1fi(s)Qk

F,τi(s)

]
k

= Q̄k
F,i(bbb),

where (A) follows from Lemma 2, and (B) follows from
Lemma 6 (i).

(Proof of (iii)) Choose ccc ∈ C∗ arbitrarily. Let n :=

|f∗i (xxx)| and c := |ccc|. Then we have

ccc ∈ f∗i (xxx)Q∗
F,τ∗

i (xxx)

⇐⇒ ccc ⪰ f∗i (xxx), f
∗
i (xxx)

−1ccc ∈ Q∗
F,τ∗

i (xxx)

(A)⇐⇒ ∃xxx′,xxx′′ ∈ S+ s.t. (ccc ⪰ f∗i (xxx),

f∗τ∗
i (xxx)

(xxx′) ≤c−n f
∗
i (xxx)

−1ccc ≤c−n f
∗
τ∗
i (xxx)

(xxx′′))

⇐⇒ ∃xxx′,xxx′′ ∈ S+ s.t.

(ccc ⪰ f∗i (xxx), f
∗
i (xxxxxx

′) ≤c ccc ≤c f
∗
i (xxxxxx

′′))

(A)⇐⇒ ccc ⪰ f∗i (xxx), ccc ∈ Qc
F,i

=⇒ ccc ∈ Q∗
F,i,

where (A)s follow from (14).
(Proof of (iv))

ccc ∈ Q̄k
F,i(bbb)

⇐⇒ ccc ∈
∪
s∈S,

fi(s)≻bbb

[
bbb−1fi(s)Qk

F,τi(s)

]
k

⇐⇒ ∃s ∈ S, ccc′ ∈ Qk
F,τi(s)

s.t.

(fi(s) ≻ bbb, ccc =
[
bbb−1fi(s)ccc

′]
k
)

⇐⇒ ∃s ∈ S, ccc′ ∈ Ck, ddd,ddd′,∈ Pk
F,τi(s)

s.t.

(fi(s) ≻ bbb, ccc =
[
bbb−1fi(s)ccc

′]
k
, ddd ≤ ccc′ ≤ ddd′)

⇐⇒ ∃s ∈ S, ccc′ ∈ Ck, ddd,ddd′,∈ Pk
F,τi(s)

s.t.

(fi(s) ≻ bbb,
[
bbb−1fi(s)ddd

]
k
≤ ccc ≤

[
bbb−1fi(s)ddd

′]
k
)

⇐⇒ ∃s ∈ S, ∃eee,eee′ ∈
[
bbb−1fi(s)P∗

F,τi(s)

]
k
s.t.

(fi(s) ≻ bbb,eee ≤ ccc ≤ eee′)

(A)
=⇒ ∃eee,eee′ ∈ P̄k

F,i(bbb) s.t. eee ≤ ccc ≤ eee′,

where (A) follows from Lemma 2. □

A.3 Proof of Lemma 7

Proof of Lemma 7. (Proof of (i)) We choose i ∈ [F]
arbitrarily and prove by contradiction assuming that
there exists ccc ∈ Ck such that ccc ∈ Qk

F,τi(s)
∩ Q̄k

F,i(fi(s)).
By ccc ∈ Qk

F,τi(s)
, there exist ddd,ddd′ ∈ Pk

F,τi(s)
such that

ddd ≤ ccc ≤ ddd′. (A· 3)

Also, by ccc ∈ Q̄k
F,i(fi(s)) and Lemma 6 (iv), there exist

eee,eee′ ∈ P̄k
F,i(fi(s)) such that

eee ≤ ccc ≤ eee′. (A· 4)

We now assume ddd ≤ eee because the symmetrical ar-
gument holds in the other case. Then we have ddd ≤
eee ≤ ccc ≤ ddd′ by (A· 3) and (A· 4). In fact, the in-
equalities hold: ddd < eee < ddd′, ddd ⪰̸≺ eee, and d′d′d′ ⪰̸≺ eee be-
cause {ddd,ddd′} ∩ {eee,eee′} ⊆ Pk

F,τi(s)
∩ P̄k

F,i(fi(s)) = ∅ by
F ∈ Fk-dec. Hence, we have

HASHIMOTO and IWATA: PROPERTIES OF OPTIMAL K-BIT DELAY DECODABLE ALPHABETIC CODES
13

fi(s)ddd < fi(s)eee < fi(s)ddd
′, (A· 5)

fi(s)ddd ̸⪰≺ fi(s)eee, (A· 6)

fi(s)d
′d′d′ ̸⪰≺ fi(s)eee. (A· 7)

By eee ∈ P̄k
F,i(fi(s)), there exists xxx ∈ S+ such that

f∗i (xxx) ⪰ fi(s)eee, (A· 8)

fi(x1) ≻ fi(s). (A· 9)

Also, by ddd,ddd′ ∈ Pk
F,τi(s)

, there exist xxx′,xxx′′ ∈ S+ such
that

f∗i (sxxx
′) ⪰ fi(s)ddd, (A· 10)

f∗i (sxxx
′′) ⪰ fi(s)ddd

′. (A· 11)

Combining (A· 8), (A· 10), and (A· 11) with (A· 5)–
(A· 7), we obtain

f∗i (sxxx
′) < f∗i (xxx) < f∗i (sxxx

′′), (A· 12)

f∗i (xxx) ̸⪰≺ f∗i (sxxx
′), (A· 13)

f∗i (xxx) ̸⪰≺ f∗i (sxxx
′′). (A· 14)

Since x1 ̸= s by (A· 9), we have x1 < s or x1 > s.

• In the case x1 < s: by F ∈ Falpha, it must hold
that f∗i (xxx) ⪰≺ f∗i (sxxx

′) or f∗i (xxx) < f∗i (sxxx
′), which

conflicts with (A· 12) and (A· 13).
• In the case x1 > s: by F ∈ Falpha, it must hold

that f∗i (xxx) ⪰≺ f∗i (sxxx
′′) or f∗i (xxx) > f∗i (sxxx

′′), which
conflicts with (A· 12) and (A· 14).

(Proof of (ii)) We prove by contradiction assuming
that there exists ccc ∈ Qk

F,τi(s)
∩ Qk

F,τi(s′)
. Then there

exist ddd,ddd′ ∈ Pk
F,τi(s)

and eee,eee′ ∈ Pk
F,τi(s′)

such that

ddd ≤ ccc ≤ ddd′, eee ≤ ccc ≤ eee′. (A· 15)

By symmetry, we may assume eee ≤ ddd. Then we have eee ≤
ddd ≤ ccc ≤ eee′ by (A· 15). Further, the inequalities hold:
eee < ddd < eee′, ddd ̸⪰≺ eee, and ddd ̸⪰≺ eee′ because {ddd,ddd′}∩ {eee,eee′} ⊆
Pk
F,τi(s)

∩ Pk
F,τi(s′)

= ∅ by F ∈ Fk-dec. Therefore, we
have

fi(s)eee < fi(s)ddd < fi(s)eee
′, (A· 16)

fi(s)ddd ̸⪰≺ fi(s)eee, (A· 17)

fi(s)ddd ̸⪰≺ fi(s)eee
′. (A· 18)

By ddd ∈ Pk
F,τi(s)

and eee,eee′ ∈ Pk
F,τi(s′)

, there exist
xxx,xxx′,xxx′′ ∈ S+ such that

f∗i (sxxx) ⪰ fi(s)ddd, (A· 19)

f∗i (s
′xxx′) ⪰ fi(s

′)eee
(A)
= fi(s)eee, (A· 20)

f∗i (s
′xxx′′) ⪰ fi(s

′)eee′
(A)
= fi(s)eee

′, (A· 21)

where (A)s follow from the assumption. Combining
(A· 19)–(A· 21) with (A· 16)–(A· 18), we obtain

f∗i (s
′xxx′) < f∗i (sxxx) < f∗i (s

′xxx′′), (A· 22)

f∗i (sxxx) ⪰̸≺ f∗i (s
′xxx′), (A· 23)

f∗i (sxxx) ⪰̸≺ f∗i (s
′xxx′′). (A· 24)

Since s ̸= s′, we have s < s′ or s > s′.

• In the case s < s′: by F ∈ Falpha, it must hold
that f∗i (sxxx) ⪰≺ f∗i (s

′xxx′) or f∗i (sxxx) < f∗i (s
′xxx′), which

conflicts with (A· 22) and (A· 23).
• In the case s > s′: by F ∈ Falpha, it must hold that
f∗i (sxxx) ⪰≺ f∗i (s

′xxx′′) or f∗i (sxxx) > f∗i (s
′xxx′′), which

conflicts with (A· 22) and (A· 24).

□

A.4 Proof of Lemma 8

Proof of Lemma 8. We prove by contradiction assum-
ing that there exist i ∈ [F ′] and xxx,yyy ∈ S+ such that

x1 < y1, f ′∗i (xxx) ̸⪰≺ f ′∗i (yyy), f ′∗i (xxx) > f ′∗i (yyy). (A· 25)

By F ′ ∈ Fext and Lemma 3, we may assume

|f ′∗τ ′
i(x1)

(suff(xxx))| ≥ k, |f ′∗τ ′
i(y1)

(suff(yyy))| ≥ k (A· 26)

by extending xxx and yyy if necessary.
We consider the following three cases separately:

the case f ′i(x1) ⪰̸≺ f ′i(y1), the case f ′i(x1) = f ′i(y1), and
the case where f ′i(x1) ≺ f ′i(y1) or f ′i(x1) ≻ f ′i(y1).

• The case f ′i(x1) ⪰̸≺ f ′i(y1): Then we have

f ′i(x1) ⪰̸≺ f ′i(y1)
(A)⇐⇒ fi(x1) ̸⪰≺ fi(y1)

(B)
=⇒ fi(x1) ≤ fi(y1)

(C)⇐⇒ f ′i(x1) ≤ f ′i(y1)

=⇒ f ′∗i (xxx) ≤ f ′∗i (yyy),

where (A) follows from the assumption (a) of this
lemma, (B) follows from F ∈ Falpha and x1 < y1,
and (C) follows from the assumption (a) of this
lemma. This conflicts with (A· 25).

• The case f ′i(x1) = f ′i(y1): Then by the assumption
(a) of this lemma, we have

fi(x1) = f ′i(x1) = f ′i(y1) = fi(y1). (A· 27)

Defining

ccc :=
[
f ′∗τ ′

i(x1)
(suff(xxx))

]
k
, (A· 28)

we have

ccc ∈ Pk
F ′,τ ′

i(x1)

(A)

⊆ Qk
F ′,τ ′

i(x1)

(B)

⊆ Qk
F,τi(x1)

(A· 29)

where (A) follows from Lemma 6 (i), and (B) fol-
lows from the assumption (b) of this lemma. Sim-
ilarly, we have

14
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

ccc′ :=
[
f ′∗τ ′

i(y1)
(suff(yyy))

]
k
∈ Qk

F,τi(y1)
. (A· 30)

We have ccc ̸= ccc′ because

{ccc} ∩ {ccc′}
(A)

⊆ Qk
F,τi(x1)

∩Qk
F,τi(y1)

(B)
= ∅,

where (A) follows from (A· 29) and (A· 30), and
(B) follows from (A· 27), F ∈ Fk-dec ∩Falpha, and
Lemma 7 (ii). In particular,

ccc ⪰̸≺ ccc′, ccc > ccc′. (A· 31)

because

f ′∗i (xxx)
(A)

⪰ f ′i(x1)ccc,

f ′∗i (yyy)
(B)

⪰ f ′i(y1)ccc
′ = f ′i(x1)ccc

′,

where (A) follows from (A· 28), and (B) follows
from (A· 30)
By (A· 29) and(A· 30), there exist ddd ∈ Pk

F,τi(x1)
and

ddd′ ∈ Pk
F,τi(y1)

such that ddd ≥k ccc and ddd′ ≤k ccc
′, so that

f∗i (x1www) ⪰ fi(x1)ddd, (A· 32)

f∗i (y1www
′) ⪰ fi(y1)ddd

′ (A)
= fi(x1)ddd

′ (A· 33)

for some www,www′ ∈ S∗, where (A) follows from
(A· 27). By F ∈ Falpha, (A· 32), and (A· 33), we
have ddd =k ddd′ or ddd <k ddd′. The latter must hold
because

{ddd} ∩ {ddd′} ⊆ Pk
F,τi(x1)

∩ Pk
F,τi(y1)

(A)
= ∅,

where (A) follows from F ∈ Fk-dec. Consequently,
we obtain

ccc ≤k ddd <k ddd
′ ≤k ccc

′,

which conflicts with (A· 31).
• The case where f ′i(x1) ≺ f ′i(y1) or f ′i(x1) ≻ f ′i(y1):

Because of the symmetry, we prove only for the
case f ′i(x1) ≺ f ′i(y1). By the same way as (A· 29),
we obtain

ccc :=
[
f ′∗τ ′

i(x1)
(suff(xxx))

]
k
∈ Qk

F,τi(x1)
. (A· 34)

Defining

ccc′ :=
[
f ′i(x1)

−1f ′i(y1)f
′∗
τ ′
i(y1)

(suff(yyy))
]
k
, (A· 35)

we have

ccc′ ∈
[
f ′i(x1)

−1f ′i(y1)Pk
F ′,τ ′

i(y1)

]
k

(A)
=

[
fi(x1)

−1fi(y1)Pk
F ′,τ ′

i(y1)

]
k

(B)

⊆
[
fi(x1)

−1fi(y1)Qk
F ′,τ ′

i(y1)

]
k

(C)

⊆
[
fi(x1)

−1fi(y1)Qk
F,τi(y1)

]
k

(A· 36)

⊆ Q̄k
F,i(fi(x1)), (A· 37)

where (A) follows from the assumption (a) of this
lemma, (B) follows from Lemma 6 (i), and (C)
follows from the assumption (b) of this lemma.
We have ccc ̸= ccc′ because

{ccc} ∩ {ccc′}
(A)

⊆ Qk
F,τi(x1)

∩ Q̄k
F,i(fi(x1))

(B)
= ∅,

where (A) follows from (A· 34) and (A· 37), and
(B) follows from F ∈ Fk-dec and Lemma 7 (i). In
particular,

ccc ̸⪰≺ ccc′, ccc > ccc′. (A· 38)

because

f ′∗i (xxx)
(A)

⪰ f ′i(x1)ccc,

f ′∗i (yyy′) = f ′i(x1)f
′
i(x1)

−1f ′i(y1)f
′∗
τ ′
i(y1)

(suff(yyy))

(B)

⪰ f ′i(x1)ccc
′,

where (A) follows from (A· 34), and (B) follows
from (A· 35).
By (A· 34) and (A· 36), there exist ddd ∈ Pk

F,τi(x1)

and ddd′ ∈
[
fi(x1)

−1fi(y1)Pk
F,τi(y1)

]
k
⊆ P̄k

F,i(fi(x1))

such that ddd ≥k ccc and ddd′ ≤k ccc
′, so that

f∗i (x1www) ⪰ fi(x1)ddd, (A· 39)

f∗i (y1www
′) = fi(x1)fi(x1)

−1fi(y1)f
∗
τi(y1)

(www′)

(A)

⪰ fi(x1)ddd
′ (A· 40)

for some www,www′ ∈ S∗, where (A) follows from
f ′i(x1) ≺ f ′i(y1) and the assumption (a) of this
lemma. By F ∈ Falpha, (A· 39), and (A· 40), we
have ddd =k ddd′ or ddd <k ddd′. The latter must hold
because

{ddd} ∩ {ddd′} ⊆ Pk
F,τi(x1)

∩ P̄k
F,i(fi(x1))

(A)
= ∅,

where (A) follows from F ∈ Fk-dec. Consequently,
we obtain

ccc ≤k ddd <k ddd
′ ≤k ccc

′,

which conflicts with (A· 38).

□

A.5 Proof of Lemma 14

Proof of Lemma 14. (Proof of (i)) We consider the fol-
lowing cases separately: the case i ∈ [F]\{⟨λ⟩} and the
case where i = ⟨zzz⟩ for some zzz ∈ SL.

• The case i ∈ [F] \ {⟨λ⟩}: We have f ′′i (s) = f ′i(s)
directly from the second case of (28).

• The case where i = ⟨zzz⟩ for some zzz ∈ SL: We have

HASHIMOTO and IWATA: PROPERTIES OF OPTIMAL K-BIT DELAY DECODABLE ALPHABETIC CODES
15

f ′∗⟨λ⟩(zzz) ̸≺ ddd because |f ′∗⟨λ⟩(zzz)| ≥ |ddd| + 1 by Lemma
13 (iii). Therefore, by the second case of (28), we
obtain f ′′i (s) = f ′i(s).

(Proof of (ii)(a)) Assume ccc ∈ Qk
F ′′,⟨λ⟩. To prove

ccc ∈ Qk
F ′,⟨λ⟩, it suffices to show that there exists xxx′ ∈

S+ such that f ′∗⟨λ⟩(xxx
′) ≤k ccc because the symmetrical

discussion shows that there exists xxx′′ ∈ S+ such that
ccc ≤k f

′∗
⟨λ⟩(xxx

′′).
By ccc ∈ Qk

F ′′,⟨λ⟩, there exists xxx ∈ S+ such that

f ′′∗⟨λ⟩(xxx) ≤k ccc. (A· 41)

We have either f ′∗⟨λ⟩(xxx) ≤k f
′′∗
⟨λ⟩(xxx) or f ′∗⟨λ⟩(xxx) >k f

′′∗
⟨λ⟩(xxx)

because

|f ′∗⟨λ⟩(xxx)|
(A)

≥ |f ′′∗⟨λ⟩(xxx)|
(B)

≥ k, (A· 42)

where (A) follows from (28), and (B) follows from
(A· 41). If f ′∗⟨λ⟩(xxx) ≤k f

′′∗
⟨λ⟩(xxx), then

f ′∗⟨λ⟩(xxx) ≤k f
′′∗
⟨λ⟩(xxx) ≤k ccc

as desired. Thus, it suffices to consider the case

f ′∗⟨λ⟩(xxx) >k f
′′∗
⟨λ⟩(xxx). (A· 43)

Then in particular, we have f ′∗⟨λ⟩(xxx) ̸= f ′′∗⟨λ⟩(xxx), which is
possible only if the first case of (30) is applied to xxx, and
thus we have

ddd ⪯ f ′∗⟨λ⟩(xxx), (A· 44)

pref(ddd)ddd−1f ′∗⟨λ⟩(xxx) = f ′′∗⟨λ⟩(xxx) (A· 45)

by the first case of (30). Then we have

pref(ddd)ddd−1f ′∗⟨λ⟩(xxx)
(A)
=k f

′′∗
⟨λ⟩(xxx)

(B)
<k f

′∗
⟨λ⟩(xxx)

=k pref(ddd)dlddd
−1f ′∗⟨λ⟩(xxx), (A· 46)

where (A) follows from (A· 45), and (B) follows from
(A· 43). This leads to

l − 1 = |pref(ddd)| < k, (A· 47)

ddd−1f ′∗⟨λ⟩(xxx) <k−l+1 dlddd
−1f ′∗⟨λ⟩(xxx). (A· 48)

Put [ddd−1f ′∗⟨λ⟩(xxx)]k−l+1 = e1e2 . . . ek−l+1 and dl = e0.
Then (A· 48) is rewritten as

e1e2 . . . ek−l+1 < e0e1e2 . . . ek−l. (A· 49)

Namely, there exists an integer 1 ≤ j ≤ k − l + 1 such
that

ej = 0 < 1 = ej−1, (A· 50)
∀j′ ∈ {1, 2, . . . , j − 1}, ej′ = ej′−1. (A· 51)

This shows

dl = e0
(A)
= e1

(A)
= · · · (A)

= ej−1
(B)
= 1, (A· 52)

where (A)s follow from (A· 51), and (B) follows from
(A· 50). Therefore, we have

ddd
(A)
= pref(ddd)1 > pref(ddd)0

(A)
= pref(ddd)d̄l

(B)
= [bbb]l, (A· 53)

where (A)s follow from (A· 52), and (B) follows from
(24). Since [bbb]k ∈ Qk

F,⟨λ⟩ = Qk
F ′,⟨λ⟩ by (17) and Lemma

12 (ii), there exists xxx′ ∈ S+ such that

f ′∗⟨λ⟩(xxx
′) ≤k bbb. (A· 54)

By (A· 47) and (A· 54), we have f ′∗⟨λ⟩(xxx
′) ≤l−1 bbb.

Namely, we have either f ′∗⟨λ⟩(xxx
′) =l−1 bbb or f ′∗⟨λ⟩(xxx

′) <l−1

bbb. If we assume the former condition f ′∗⟨λ⟩(xxx
′) =l−1 bbb,

then
f ′∗⟨λ⟩(xxx

′)
(A)
=l ddd

(B)
>l bbb, (A· 55)

where (A) follows from f ′∗⟨λ⟩(xxx
′) ⪰

[
f ′∗⟨λ⟩(xxx

′)
]
k

≻
[f ′∗⟨λ⟩(xxx

′)]l−1 = [bbb]l−1 = pref(ddd) and (25), and (B) fol-
lows from (A· 53); this leads to f ′∗⟨λ⟩(xxx

′) >k bbb, which
conflicts with (A· 54). Hence, the latter condition
f ′∗⟨λ⟩(xxx

′) <l−1 bbb holds, so that

f ′∗⟨λ⟩(xxx
′) <l−1 bbb

(A)
=l−1 pref(ddd)

=l−1 pref(ddd)ddd−1f ′∗⟨λ⟩(xxx)

(B)
=l−1 f

′′∗
⟨λ⟩(xxx), (A· 56)

where (A) follows from (24), and (B) follows from
(A· 45). Therefore, we obtain

ccc
(A)

≥k f
′′∗
⟨λ⟩(xxx)

(B)
>k f

′∗
⟨λ⟩(xxx

′) (A· 57)

as desired, where (A) follows from (A· 41), and (B) fol-
lows from (A· 56).

(Proof of (ii)(b)) It suffices to prove that for any
(i,xxx,ccc) ∈ J × S+ × C≤k, we have

f ′′∗i (xxx) ≤|ccc| ccc =⇒ ∃xxx′ ∈ S+ s.t. f ′∗i (xxx′) ≤|ccc| ccc

(A· 58)

because the symmetrical discussion shows

f ′′∗i (xxx) ≥|ccc| ccc =⇒ ∃xxx′′ ∈ S+ s.t. f ′∗i (xxx′′) ≥|ccc| ccc

(A· 59)

and thus for any i ∈ J and ccc ∈ Ck, we have

ccc ∈ Qk
F ′′,i

⇐⇒ ∃xxx′,xxx′′ ∈ S+ s.t. f ′′∗i (xxx′) ≤k ccc ≤k f
′′∗
i (xxx′′)

(A)
=⇒ ∃xxx′,xxx′′ ∈ S+ s.t. f ′∗i (xxx′) ≤k ccc ≤k f

′∗
i (xxx′′)

⇐⇒ ccc ∈ Qk
F ′,i

16
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

as desired, where (A) follows from (A· 58) and (A· 59).
We prove (A· 58) by induction on |xxx|. We choose

(i,xxx,ccc) ∈ J × S+ × C≤k arbitrarily and assume

f ′′∗i (xxx) ≤c ccc, (A· 60)

where c := |ccc|.
For the base case |xxx| = 1, we have

f ′∗i (xxx) = f ′i(x1)
(A)
= f ′′i (x1) = f ′′∗i (xxx)

(B)

≤c ccc

as desired, where (A) follows from (i) of this lemma,
and (B) follows from (A· 60).

We consider the induction step for |xxx| ≥ 2. Let
n := |f ′′i (x1)|. If n ≥ c, then we have

f ′i(x1)
(A)
=c f

′′
i (x1) =c f

′′
i (xxx)

(B)

≤c ccc

as desired, where (A) follows from (i) of this lemma, and
(B) follows from (A· 60). Thus, we consider the case
n < c. Then by (A· 60), we have f ′′i (x1) =n f

′′∗
i (xxx) ≤n

ccc. We consider the following two cases separately: the
case f ′′i (x1) <n ccc and the case f ′′i (x1) =n ccc.

• The case f ′′i (x1) <n ccc: We have

f ′∗i (xxx) =n f ′i(x1)f
′∗
i (suff(xxx))

(A)
=n f ′′i (x1)f

′∗
i (suff(xxx))

<n ccc,

where (A) follows from (i) of this lemma. This
implies f ′∗i (xxx) <c ccc as desired since n < c.

• The case f ′′i (x1) =n ccc: We have

f ′′i (x1)f
′′∗
τ ′′
i (x1)

(suff(xxx))

=c f
′′∗
i (xxx)

(A)

≤c ccc

=c [ccc]n([ccc]n)
−1ccc

(B)
=c f

′′
i (x1)f

′′
i (x1)

−1ccc

(C)
=c f

′′
i (x1)f

′
i(x1)

−1ccc,

where (A) follows from (A· 60), (B) follows from
the assumption f ′′i (x1) =n ccc, and (C) follows from
(i) of this lemma. Thus, we obtain

f ′′∗τ ′′
i (x1)

(suff(xxx)) ≤c−n f
′
i(x1)

−1ccc. (A· 61)

Now, we can see that there exists xxx′ ∈ S+ such
that

f ′∗τ ′′
i (x1)

(xxx′) ≤c−n f
′
i(x1)

−1ccc (A· 62)

dividing the following cases: the case τ ′′i (x1) = ⟨λ⟩
and the case τ ′′i (x1) ∈ J .

– The case τ ′′i (x1) = ⟨λ⟩: We have

[f ′′∗τ ′′
i (x1)

(suff(xxx))]c−n

∈ Pc−n
F ′′,⟨λ⟩

(A)

⊆ Qc−n
F ′′,⟨λ⟩

(B)

⊆ Qc−n
F ′,⟨λ⟩,

where (A) follows from Lemma 6 (i), and (B)
follows from (ii)(a) of this lemma. Hence,
there exists xxx′ ∈ S∗ such that

f ′∗τ ′′
i (x1)

(xxx′) ≤c−n f
′′∗
τ ′′
i (x1)

(suff(xxx)). (A· 63)

Combining (A· 61) and (A· 63), we obtain
(A· 62) as desired.

– The case τ ′′i (x1) ∈ J : By (A· 61),
we can apply the induction hypothesis to
(τ ′′i (x1), suff(xxx), f

′
i(x1)

−1ccc) ∈ J × S+ × C≤k.

Finally, we have

f ′∗i (x1xxx
′) =c f

′
i(x1)f

′∗
τ ′
i(x1)

(xxx′)

(A)
=c f

′
i(x1)f

′∗
τ ′′
i (x1)

(xxx′)

(B)

≤c f
′
i(x1)f

′
i(x1)

−1ccc

= ccc

as desired, where (A) follows from (29), and (B)
follows from (A· 62).

(Proof of (iii))

Q̄k
F ′′,i(bbb)=

∪
s∈S,

f ′′
i (s)≻bbb

[
bbb−1f ′′i (s)Qk

F ′′,τ ′′
i (s)

]
k

(A)
=

∪
s∈S,

f ′
i(s)≻bbb

[
bbb−1f ′i(s)Qk

F ′′,τ ′′
i (s)

]
k

(B)
=

∪
s∈S,

f ′
i(s)≻bbb

[
bbb−1f ′i(s)Qk

F ′′,τ ′
i(s)

]
k

(C)

⊆
∪
s∈S,

f ′
i(s)≻bbb

[
bbb−1f ′i(s)Qk

F ′,τ ′
i(s)

]
k

=Q̄k
F ′,i(bbb),

where (A) follows from (i) of this lemma and i ∈ J ,
(B) follows from (29), and (C) follows from (ii) of this
lemma and τ ′i(s) ∈ {⟨λ⟩} ∪ J . □

A.6 Proof of Lemma 15

We can show F ′′ ∈ Freg, F ′′ ∈ Fext, and L(F ′′) <
L(F ′) in the same manner as the proof of [4, Theorem
2]. Hence, we prove only F ′′ ∈ Falpha and F ′′ ∈ Fk-dec

HASHIMOTO and IWATA: PROPERTIES OF OPTIMAL K-BIT DELAY DECODABLE ALPHABETIC CODES
17

here.
(Proof of F ′′ ∈ Falpha) By Lemma 5, it suffices to

show that f ′′∗i (xxx) ⪰≺ f ′′∗i (yyy) or f ′′∗i (xxx) ≤ f ′′∗i (yyy) hold for
arbitrarily chosen i ∈ [F ′] and xxx,yyy ∈ S∗ such that x1 <
y1. We consider the following two cases separately: the
case i ∈ [F ′]\{⟨λ⟩} and the case where i = ⟨zzz⟩ for some
zzz ∈ S≤L.

• The case i ∈ [F ′] \ {⟨λ⟩}: The assertion follows
from Lemma 8. Indeed, Lemma 8 (a) follows from
Lemma 14 (i); Lemma 8 (b) holds because for any
s ∈ S, we have

Qk
F ′′,τ ′′

i (s)

(A)
= Qk

F ′′,τ ′
i(s)

(B)

⊆ Qk
F ′,τ ′

i(s)
,

where (A) follows from (29), and (B) follows from
Lemma 14 (ii) since τ ′i(s) ∈ [F ′].

• The case where i = ⟨zzz⟩ for some zzz ∈ S≤L: We
prove by contradiction assuming that

f ′′∗i (xxx) ̸⪰≺ f ′′∗i (yyy), f ′′∗i (xxx) > f ′′∗i (yyy). (A· 64)

By Lemma 3, we may assume

|f ′∗⟨λ⟩(zzzyyy)| ≥ |ddd| (A· 65)

by extending yyy if necessary.
If the second case of (30) is applied to both of xxx
and yyy, then we have

f ′∗i (xxx) = f ′′∗i (xxx) ̸⪰≺ f ′′∗i (yyy) = f ′∗i (yyy),

f ′∗i (xxx) = f ′′∗i (xxx) > f ′′∗i (yyy) = f ′∗i (yyy)

by (A· 64); this conflicts with F ′ ∈ Falpha.
Also, if the first case of (30) is applied to both of
xxx and yyy, then we have

f ′∗⟨λ⟩(zzz)
−1pref(ddd)ddd−1(f ′∗⟨λ⟩(zzzxxx))

= f ′′∗i (xxx)

̸⪰≺ f ′′∗i (yyy)

= f ′∗⟨λ⟩(zzz)
−1pref(ddd)ddd−1f ′∗⟨λ⟩(zzzyyy)

by (A· 64). This leads to f ′∗i (xxx) ̸⪰≺ f ′∗i (yyy), and we
also obtain f ′∗i (xxx) > f ′∗i (yyy) in a similar way. These
conflict with F ′ ∈ Falpha.
Thus, the remaining case is one where different
cases of (30) are applied to xxx and yyy. By symmetry,
we may suppose the first case of (30) is applied to
xxx and the second case of (30) is applied to yyy, which
is possible only if

f ′∗⟨λ⟩(zzz) ≺ ddd ⪯ f ′∗⟨λ⟩(zzzxxx), (A· 66)

f ′∗⟨λ⟩(zzz) ≺ ddd ̸⪯ f ′∗⟨λ⟩(zzzyyy). (A· 67)

Then we have
f ′∗⟨λ⟩(zzzyyy) ̸⪰≺ ddd (A· 68)

since (A· 65) implies f ′∗⟨λ⟩(zzzyyy) ̸≺ ddd. Applying
Lemma 12 (i) and the contraposition of (25) to

(A· 68), we obtain

f ′∗⟨λ⟩(zzzyyy) ⪰̸≺ pref(ddd). (A· 69)

Hence, we have

f ′∗⟨λ⟩(zzzxxx) ̸⪰≺ f ′∗⟨λ⟩(zzzyyy) (A· 70)

since f ′∗⟨λ⟩(zzzxxx) ⪰ ddd ≻ pref(ddd) by (A· 66). Thus, we
have

pref(ddd)ddd−1f ′∗⟨λ⟩(zzzxxx)

= f ′∗⟨λ⟩(zzz)f
′∗
⟨λ⟩(zzz)

−1pref(ddd)ddd−1f ′∗⟨λ⟩(zzzxxx)

(A)
= f ′′∗⟨λ⟩(zzzxxx)

(B)
> f ′′∗⟨λ⟩(zzzyyy)

(C)
= f ′∗⟨λ⟩(zzzyyy), (A· 71)

where (A) follows from (A· 66) and the first case
of (30), (B) follows from (A· 64), and (C) follows
from (A· 67) and the second case of (30). Finally,
we obtain

f ′∗⟨λ⟩(zzzxxx)
(A)

≥ ddd > pref(ddd)
(B)
> f ′∗⟨λ⟩(zzzyyy), (A· 72)

where (A) follows from (A· 66), and (B) follows
from (A· 69) and (A· 71). Equations (A· 70) and
(A· 72) conflict with F ′ ∈ Falpha.

(Proof of F ′′ ∈ Fk-dec) For zzz ∈ S∗, we define a
mapping ψzzz : C∗ → C∗ as

ψzzz(bbb) =

f ′∗⟨λ⟩(zzz)

−1dddpref(ddd)−1(f ′∗⟨λ⟩(zzz)bbb)

if f ′∗⟨λ⟩(zzz) ⪯ pref(ddd) ≺ f ′∗⟨λ⟩(zzz)bbb,

bbb otherwise
(A· 73)

for bbb ∈ C∗. Note that |bbb| ≤ |ψzzz(bbb)| ≤ |bbb| + 1. Then ψzzz

satisfies the following Lemma 18 [4, Lemma19].

Lemma 18 ([4, Lemma 19]). The following statements
(i)–(iii) hold.

(i) For any zzz ∈ S∗ and bbb, bbb′ ∈ C∗, if bbb ⪯ bbb′, then
ψzzz(bbb) ⪯ ψzzz(bbb

′).

(ii) For any zzz ∈ S≤L, xxx ∈ S≤L−|zzz|, and ccc ∈ C∗, we
have

ψzzz(f
′′∗
⟨zzz⟩(xxx)ccc) =

pref(f ′∗⟨zzz⟩(xxx))

if f ′∗⟨λ⟩(zzz) ≺ f ′∗⟨λ⟩(zxzxzx) = ddd,ccc = λ,

f ′∗⟨zzz⟩(xxx)ψzxzxzx(ccc) otherwise.
(A· 74)

(iii) For any zzz ∈ SL and bbb ∈ C∗, we have ψzzz(bbb) = bbb.

Now we prove F ′′ ∈ Fk-dec. We first show that
F ′′ satisfies Definition 4 (a). Namely, we show that

18
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Pk
F ′′,τ ′′

i (s)∩P̄k
F ′′,i(f

′′
i (s)) = ∅ for any i ∈ [F ′′] and s ∈ S

dividing into the following two cases: the case i ∈ J
and the case i ∈ [F ′′] \ J .

• The case i ∈ J : Then for any s ∈ S, we have

Pk
F ′′,τ ′′

i (s) ∩ P̄k
F ′′,i(f

′′
i (s))

(A)

⊆ Pk
F ′′,τ ′′

i (s) ∩ Q̄k
F ′′,i(f

′′
i (s))

(B)

⊆ Qk
F ′′,τ ′′

i (s) ∩ Q̄k
F ′′,i(f

′′
i (s))

(C)

⊆ Qk
F ′,τ ′′

i (s) ∩ Q̄k
F ′′,i(f

′′
i (s))

(D)

⊆ Qk
F ′,τ ′′

i (s) ∩ Q̄k
F ′,i(f

′′
i (s))

(E)

⊆ Qk
F ′,τ ′

i(s)
∩ Q̄k

F ′,i(f
′′
i (s))

(F)
= Qk

F ′,τ ′
i(s)

∩ Q̄k
F ′,i(f

′
i(s))

(G)
= ∅,

where (A) follows from Lemma 6 (ii), (B) follows
from Lemma 6 (i), (C) follows from Lemma 14 (ii)
and τ ′′i (s) ∈ J ∪{⟨λ⟩}, (D) follows from Lemma 14
(iii) and i ∈ J , (E) follows from (29), (F) follows
from Lemma 14 (i) and i ∈ J , and (G) follows
from Lemma 7, and F ′ ∈ Fk-dec ∩ Falpha.

• The case i ∈ [F ′′] \ J : We prove by contra-
diction assuming that there exist zzz ∈ S≤L−1,
s ∈ S, and ccc ∈ P̄k

F ′′,⟨zzz⟩(f
′′
⟨zzz⟩(s)) ∩ Pk

F ′′,⟨zzzs⟩. By
ccc ∈ P̄k

F ′′,⟨zzz⟩(f
′′
⟨zzz⟩(s)), there exist xxx ∈ SL−|zzz| and

yyy ∈ S∗ such that

f ′′∗⟨zzz⟩(xxxyyy) ⪰ f ′′⟨zzz⟩(s)ccc (A· 75)

and
f ′′⟨zzz⟩(x1) ≻ f ′′⟨zzz⟩(s). (A· 76)

By Lemma 3, we may assume

|f ′′∗⟨zxzxzx⟩(yyy)| ≥ max{k, 1} (A· 77)

by extending yyy if necessary. By (A· 76) and Lemma
13 (ii), we obtain

f ′⟨zzz⟩(x1) ≻ f ′⟨zzz⟩(s). (A· 78)

This shows that f ′⟨zzz⟩ is not prefix-free, which con-
flicts with F ′ ∈ Fk-dec in the case k = 0 by [3,
Lemma 4]. Thus, we consider the case k ≥ 1, that
is,

ccc ̸= λ. (A· 79)

Equation (A· 75) leads to

f ′′∗⟨zzz⟩(xxxyyy) ⪰ f ′′⟨zzz⟩(s)ccc (A· 80)
(A)
=⇒ ψzzz(f

′′∗
⟨zzz⟩(xxxyyy)) ⪰ ψzzz(f

′′
⟨zzz⟩(s)ccc)

(B)⇐⇒ ψzzz(f
′′∗
⟨zzz⟩(xxx)f

′′∗
⟨zzzxxx⟩(yyy)) ⪰ ψzzz(f

′′
⟨zzz⟩(s)ccc)

(C)⇐⇒ f ′∗⟨zzz⟩(xxx)ψzzzxxx(f
′′∗
⟨zzzxxx⟩(yyy)) ⪰ ψzzz(f

′′
⟨zzz⟩(s)ccc)

(D)⇐⇒ f ′∗⟨zzz⟩(xxx)ψzzzxxx(f
′′∗
⟨zzzxxx⟩(yyy)) ⪰ f ′⟨zzz⟩(s)ψzzzs(ccc)

(E)⇐⇒ f ′∗⟨zzz⟩(xxx)f
′′∗
⟨zzzxxx⟩(yyy) ⪰ f ′⟨zzz⟩(s)ψzzzs(ccc)

(F)⇐⇒ f ′⟨zzz⟩(s)
−1f ′∗⟨zzz⟩(xxx)f

′′∗
⟨zzzxxx⟩(yyy) ⪰ ψzzzs(ccc), (A· 81)

where (A) follows from Lemma 18 (i), (B) follows
from Lemma 1 (i) and Lemma 11 (i), (C) follows
from (A· 77) and the second case of (A· 74), (D)
follows from (A· 79), and the second case of (A· 74),
(E) follows from Lemma 18 (iii) and |zxzxzx| = L, and
(F) follows from (A· 76).
Since |ψzzzs(ccc)| ≥ |ccc| = k, we can define [ψzzzs(ccc)]k,
and we obtain

[ψzzzs(ccc)]k
(A)
=

[
f ′⟨zzz⟩(s)

−1f ′∗⟨zzz⟩(xxx)f
′′∗
⟨zzzxxx⟩(yyy)

]
k

∈
[
f ′⟨zzz⟩(s)

−1f ′∗⟨zzz⟩(xxx)P
∗
F ′′,⟨zzzxxx⟩

]
k

(B)

⊆
[
f ′⟨zzz⟩(s)

−1f ′∗⟨zzz⟩(xxx)Q
∗
F ′′,⟨zzzxxx⟩

]
k

(C)

⊆
[
f ′⟨zzz⟩(s)

−1f ′∗⟨zzz⟩(xxx)Q
∗
F ′,⟨zzzxxx⟩

]
k

=
[
f ′⟨zzz⟩(s)

−1f ′⟨zzz⟩(x1)f
′∗
⟨zzzx1⟩(pref(xxx))Q

∗
F ′,⟨zzzxxx⟩

]
k

(D)

⊆
[
f ′⟨zzz⟩(s)

−1f ′⟨zzz⟩(x1)Q
∗
F ′,⟨zzzx1⟩

]
k

⊆ Q̄k
F ′,⟨i⟩(f

′
⟨zzz⟩(s)), (A· 82)

where (A) follows from (A· 81), (B) follows from
Lemma 6 (i), (C) follows from Lemma 14 (ii)(b)
and |zxzxzx| = L, and (D) follows from Lemma 6 (iii).
On the other hand, by ccc ∈ Pk

F ′′,⟨zzzs⟩ and (7), there
exist xxx ∈ SL−|zzzs| and yyy ∈ S∗ such that

f ′′∗⟨zzzs⟩(xxxyyy) ⪰ ccc. (A· 83)

By Lemma 3, we may assume

|f ′′∗⟨zzzsxxx⟩(yyy)| ≥ k ≥ 1 (A· 84)

by extending yyy if necessary. We have

f ′∗⟨zzzs⟩(xxx)f
′′∗
⟨zzzsxxx⟩(yyy)

(A)
= f ′∗⟨zzzs⟩(xxx)ψzzzsxxx(f

′′∗
⟨zzzsxxx⟩(yyy))

(B)
= ψzzzs(f

′′∗
⟨zzzs⟩(xxxyyy))

(C)

⪰ ψzzzs(ccc), (A· 85)

where (A) follows from Lemma 18 (iii) and |zzzsxxx| =
L, (B) follows from (A· 84) and the second case of
(A· 74), and (C) follows from (A· 83) and Lemma
18 (i). Hence, we have

[ψzzzs(ccc)]k
(A)
=

[
f ′∗⟨zzzs⟩(xxx)f

′′∗
⟨zzzsxxx⟩(yyy)

]
k

∈
[
f ′∗⟨zzzs⟩(xxx)P

∗
F ′′,⟨zzzsxxx⟩

]
k

HASHIMOTO and IWATA: PROPERTIES OF OPTIMAL K-BIT DELAY DECODABLE ALPHABETIC CODES
19

(B)

⊆
[
f ′∗⟨zzzs⟩(xxx)Q

∗
F ′′,⟨zzzsxxx⟩

]
k

(C)

⊆
[
f ′∗⟨zzzs⟩(xxx)Q

∗
F ′,⟨zzzsxxx⟩

]
k

(D)

⊆
[
Q∗

F ′,⟨zzzs⟩
]
k

= Qk
F ′,⟨zzzs⟩, (A· 86)

where (A) follows from (A· 85), (B) follows from
Lemma 6 (i), (C) follows from Lemma 14 (ii)(b)
and |zzzsxxx| = L, and (D) follows from Lemma 6
(iii).
Equations (A· 82) and (A· 86) conflict with F ′ ∈
Fk-dec and Lemma 7 (i).

Consequently, F ′′ satisfies Definition 4 (a).
Next, we show that F ′′ satisfies Definition 4 (b).

Namely, we show that for any i ∈ [F ′′] and s, s′ ∈
S such that s ̸= s′ and f ′′i (s) = f ′′i (s

′), we have
Pk
F ′′,τ ′′

i (s) ∩ Pk
F ′′,τ ′′

i (s′) = ∅. We prove for the follow-
ing two cases: the case i ∈ J and the case i ∈ [F ′′]\J .

• The case i ∈ J : For any i ∈ J and s, s′ ∈ S such
that s ̸= s′ and f ′′i (s) = f ′′i (s

′), we have

f ′i(s) = f ′i(s
′) (A· 87)

by Lemma 14 (i), and we have

Pk
F ′′,τ ′′

i (s) ∩ Pk
F ′′,τ ′′

i (s′)

(A)

⊆ Qk
F ′′,τ ′′

i (s) ∩Qk
F ′′,τ ′′

i (s′)

(B)

⊆ Qk
F ′,τ ′′

i (s) ∩Qk
F ′,τ ′′

i (s′)

(C)
= Qk

F ′,τ ′
i(s)

∩Qk
F ′,τ ′

i(s
′)

(D)
= ∅,

where (A) follows from Lemma 6 (i), (B) follows
from Lemma 14 (ii) since τ ′′i (s) ∈ J ∪ {⟨λ⟩} by
i ∈ J , (C) follows from (29), and (D) follows from
Lemma 7 (ii), F ′ ∈ Fk-dec, and (A· 87).

• The case i ∈ [F ′′] \ J : We prove by contradiction
assuming that there exists zzz ∈ S≤L−1, s, s′ ∈ S,
and ccc ∈ Pk

F ′′,⟨zzzs⟩ ∩ Pk
F ′′,⟨zzzs′⟩ such that s ̸= s′ and

f ′′⟨zzz⟩(s) = f ′′⟨zzz⟩(s
′). (A· 88)

By the similar way to deriving (A· 86), we obtain

[ψzzzs(ccc)]k ∈ Qk
F ′,⟨zzzs⟩ (A· 89)

from ccc ∈ Pk
F ′′,⟨zzzs⟩. By (A· 88) and Lemma 18 (i),

we have

ψ⟨zzz⟩(f
′′
⟨zzz⟩(s)) = ψ⟨zzz⟩(f

′′
⟨zzz⟩(s

′)). (A· 90)

By Lemma 18 (ii), exactly one of f ′⟨zzz⟩(s) = f ′⟨zzz⟩(s
′),

f ′⟨zzz⟩(s) ≺ f ′⟨zzz⟩(s
′), and f ′⟨zzz⟩(s) ≻ f ′⟨zzz⟩(s

′) holds.
Therefore, f ′⟨zzz⟩ is not prefix-free, which conflicts

with F ′ ∈ Fk-dec in the case k = 0 by [3, Lemma
4]. We consider the case k ≥ 1, that is,

ccc ̸= λ. (A· 91)

We consider the following two cases separately:
the case f ′⟨zzz⟩(s) = f ′⟨zzz⟩(s

′) and the case f ′⟨zzz⟩(s) ≺
f ′⟨zzz⟩(s

′). Note that we may exclude the case
f ′⟨zzz⟩(s) ≻ f ′⟨zzz⟩(s

′) by symmetry.

– The case f ′⟨zzz⟩(s) = f ′⟨zzz⟩(s
′): By (A· 73), we

have ψzzzs(ccc) = ψzzzs′(ccc) and thus

[ψzzzs(ccc)]k = [ψzzzs′(ccc)]k
(A)
∈ Qk

F ′,⟨zzzs′⟩, (A· 92)

where (A) is obtained from ccc ∈ Pk
F ′,⟨zzzs′⟩ in a

similar way to deriving (A· 86).
Equations (A· 89) and (A· 92) conflict with
Lemma 7 (ii), F ′ ∈ Fk-dec, and f ′⟨zzz⟩(s) =

f ′⟨zzz⟩(s
′).

– The case f ′⟨zzz⟩(s) ≺ f ′⟨zzz⟩(s
′): By (A· 73) and

(A· 88), this case f ′⟨zzz⟩(s) ≺ f ′⟨zzz⟩(s
′) is possible

only if the first case of (A· 74) is applied to s′
and the second case is applied to s. Namely,
we have

f ′∗⟨λ⟩(zzz) ≺ f ′∗⟨λ⟩(zzzs
′) = ddd, (A· 93)

so that

f ′⟨zzz⟩(s)
(A)
= ψzzz(f

′′∗
⟨zzz⟩(s))

(B)
= ψzzz(f

′′∗
⟨zzz⟩(s

′))

(C)
= pref(f ′⟨zzz⟩(s

′)), (A· 94)

where (A) follows from the second case of
(A· 74), (B) follows from (A· 90), and (C) fol-
lows from the first case of (A· 74) and (A· 93).
Thus, we have

f ′⟨zzz⟩(s)dl
(A)
= pref(f ′⟨zzz⟩(s

′))dl

= f ′∗⟨λ⟩(zzz)
−1f ′∗⟨λ⟩(zzz)pref(f

′
⟨zzz⟩(s

′))dl

(B)
= f ′∗⟨λ⟩(zzz)

−1pref(f ′∗⟨λ⟩(zzzs
′))dl

(C)
= f ′∗⟨λ⟩(zzz)

−1pref(ddd)dl

= f ′∗⟨λ⟩(zzz)
−1ddd

(D)
= f ′∗⟨λ⟩(zzz)

−1f ′∗⟨λ⟩(zzzs
′)

(E)
= f ′∗⟨λ⟩(zzz)

−1f ′∗⟨λ⟩(zzz)f
′
⟨zzz⟩(s

′)

= f ′⟨zzz⟩(s
′), (A· 95)

where (A) follows from (A· 94), (B) follows
from Lemma 1 (i) and Lemma 11 (i), (C) fol-
lows from (A· 93), (D) follows from (A· 93),

20
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

and (E) follows from Lemma 1 (i) and Lemma
11 (i).
Also, we have

pref(ddd)
(A)
= pref(f ′∗⟨λ⟩(zzzs

′))

= pref(f ′∗⟨λ⟩(zzz)f
′
⟨zzz⟩(s

′))

(B)
= pref(f ′∗⟨λ⟩(zzz)f

′
⟨zzz⟩(s)dl)

= f ′∗⟨λ⟩(zzz)f
′
⟨zzz⟩(s)

= f ′∗⟨λ⟩(zzzs), (A· 96)

where (A) follows from (A· 93), and (B) fol-
lows from (A· 95).
By ccc ∈ Pk

F ′′,⟨zzzs′⟩ and (7), there exist xxx ∈
SL−|zzzs′| and yyy ∈ S∗ such that

f ′′∗⟨zzzs′⟩(xxxyyy) ⪰ ccc. (A· 97)

By Lemma 3, we may assume

|f ′′∗⟨zzzs′xxx⟩(yyy)| ≥ k ≥ 1 (A· 98)

by extending yyy if necessary. We have

ψzzzs(ccc) = f ′∗⟨λ⟩(zzzs)
−1dddpref(ddd)−1(f ′∗⟨λ⟩(zzzs)ccc)

(A· 99)
by the first case of (A· 73) because

f ′∗⟨λ⟩(zzzs)
(A)
= pref(f ′∗⟨λ⟩(zzzs

′))

(B)
= pref(ddd)

(C)
= f ′∗⟨λ⟩(zzzs)

(D)
≺ f ′∗⟨λ⟩(zzzs)ccc, (A· 100)

where (A) follows from (A· 94), (B) follows
from (A· 93), (C) follows from (A· 96), and (D)
follows from (A· 91). Thus, we have

f ′⟨zzz⟩(s
′)f ′∗⟨zzzs′⟩(xxx)f

′′∗
⟨zzzs′xxx⟩(yyy)

(A)
= f ′⟨zzz⟩(s

′)f ′∗⟨zzzs′⟩(xxx)ψzzzs′xxx(f
′′∗
⟨zzzs′xxx⟩(yyy))

(B)
= f ′⟨zzz⟩(s

′)ψzzzs′(f
′′∗
⟨zzzs′⟩(xxx)f

′′∗
⟨zzzs′xxx⟩(yyy))

(C)
= f ′⟨zzz⟩(s

′)ψzzzs′(f
′′∗
⟨zzzs′⟩(xxxyyy))

(D)

⪰ f ′⟨zzz⟩(s
′)ψzzzs′(ccc)

(E)
= f ′⟨zzz⟩(s)dlψzzzs′(ccc)

(F)
= f ′⟨zzz⟩(s)dlccc

= f ′⟨zzz⟩(s)pref(ddd)
−1dddpref(ddd)−1(pref(ddd)ccc)

(G)
= f ′⟨zzz⟩(s)f

′∗
⟨λ⟩(zzzs)

−1dddpref(ddd)−1(f ′∗⟨λ⟩(zzzs)ccc)

(H)
= f ′⟨zzz⟩(s)ψzzzs(ccc),

where (A) follows from Lemma 18 (iii), (B)
follows from (A· 98) and the second case of
(A· 74), (C) follows from Lemma 1 (i) and
Lemma 11 (i), (D) follows from (A· 97) and
Lemma 18 (i), (E) follows from (A· 95), (F)
follows from the second case of (A· 73) because
f ′∗⟨λ⟩(zzzs

′) ⪯ pref(ddd) does not hold by (A· 93),
(G) follows from (A· 96), and (H) follows from
(A· 99).
Hence, by the assumption f ′⟨zzz⟩(s) ≺ f ′⟨zzz⟩(s

′),
we have

ψzzzs(ccc) = f ′⟨zzz⟩(s)
−1f ′⟨zzz⟩(s

′)f ′∗⟨zzzs′⟩(xxx)f
′′∗
⟨zzzs′xxx⟩(yyy).

(A· 101)
Since |ψzzzs(ccc)| ≥ |ccc| = k, we can define
[ψzzzs(ccc)]k, and we obtain

[ψzzzs(ccc)]k
(A)
=

[
f ′⟨zzz⟩(s)

−1f ′⟨zzz⟩(s
′)f ′∗⟨zzzs′⟩(xxx)f

′′∗
⟨zzzs′xxx⟩

]
k

∈
[
f ′⟨zzz⟩(s)

−1f ′⟨zzz⟩(s
′)f ′∗⟨zzzs′⟩(xxx)P

k
F ′′,⟨zzzs′xxx⟩

]
k

(B)

⊆
[
f ′⟨zzz⟩(s)

−1f ′⟨zzz⟩(s
′)f ′∗⟨zzzs′⟩(xxx)Q

k
F ′′,⟨zzzs′xxx⟩

]
k

(C)

⊆
[
f ′⟨zzz⟩(s)

−1f ′⟨zzz⟩(s
′)f ′∗⟨zzzs′⟩(xxx)Q

k
F ′,⟨zzzs′xxx⟩

]
k

(D)

⊆
[
f ′⟨zzz⟩(s)

−1f ′⟨zzz⟩(s
′)Qk

F ′,⟨zzzs′⟩
]
k

⊆ Q̄k
F ′,⟨zzz⟩(f

′
⟨zzz⟩(s)), (A· 102)

where (A) follows from (A· 101), (B) follows
from Lemma 6 (i), (C) follows from Lemma 14
(ii)(b) and |zzzs′xxx| = L, and (D) follows from
Lemma 6 (iii).
Equations (A· 89) and (A· 102) conflict with
Lemma 7 (i) and F ′ ∈ Fk-dec.

Consequently, F ′′ satisfies Definition 4 (b).

Appendix B: List of Notations

A× B the Cartesian product of sets A and B, that
is, {(a, b) : a ∈ A, b ∈ B}, defined at the
beginning of Section 2.

|A| the cardinality of a set A, defined at the
beginning of Section 2.

Ak the set of all sequences of length k over a set
A, defined at the beginning of Section 2.

A≥k the set of all sequences of length greater
than or equal to k over a set A, defined at
the beginning of Section 2.

A≤k the set of all sequences of length less than
or equal to k over a set A, defined at the
beginning of Section 2.

A∗ the set of all sequences of finite length over
a set A, defined at the beginning of Section
2.

HASHIMOTO and IWATA: PROPERTIES OF OPTIMAL K-BIT DELAY DECODABLE ALPHABETIC CODES
21

A+ the set of all sequences of finite positive
length over a set A, defined at the begin-
ning of Section 2.

[A]k {[xxx]k : xxx ∈ A, |xxx| ≥ k} for a set A of se-
quences and an integer k ≥ 0, defined at
the beginning of Section 2.

C the coding alphabet C = {0, 1}, defined at
the beginning of Section 2.

c̄ the negation of c ∈ C, that is, 0̄ = 1, 1̄ =
0 defined at the beginning of the proof of
Theorem 2.

f∗i defined in Definition 2.
F simplified notation of a code-tuple F (f0, f1,

. . . , fm−1, τ0, τ1, . . . , τm−1), also written as
F (f, τ), defined after Definition 1.

|F | the number of code tables of F , defined after
Definition 1.

[F] simplified notation of [|F |] = {0, 1, 2, . . . ,
|F | − 1}, defined after Definition 1.

F̂ defined in Definition 17.
F the set of all code-tuples, defined in Defini-

tion 1.
F (m) the set of all m-code-tuples, defined in Def-

inition 1.
Falpha the set of all alphabetic code-tuples, defined

in Definition 12.
Fext the set of all extendable code-tuples, defined

in Definition 5.
Ffork {F ∈ F : ∀i ∈ [F],P1

F,i = {0, 1}}, defined
in Theorem 3.

Firr the set of all irreducible code-tuples, defined
in Definition 10.

Fk-dec the set of all k-bit delay decodable code-
tuples, defined in Definition 4.

Fk-αopt the set of all k-bit delay alphabetic optimal
code-tuples, defined in Definition 15.

Freg the set of all regular code-tuples, defined in
Definition 8.

L(F) the average codeword length of a code-tuple
F , defined in Definition 9.

[m] the set {0, 1, 2, . . . ,m − 1}, defined in Defi-
nition 1.

Pk
F,i defined in Definition 3.

P̄k
F,i defined in Definition 3.

P∗
F,i defined in Definition 3.

P̄∗
F,i defined in Definition 3.

Pk
F {Pk

F,i : i ∈ [F]}, defined in Theorem 1.
pref(xxx) the sequence obtained by deleting the last

letter of xxx, defined at the beginning of Sec-
tion 2.

Q(F) the transition probability matrix, defined in
Definition 6.

Qi,j(F) defined in Definition 6.
Qk

F,i defined in Definition 13.
Q∗

F,i defined in Definition 13.

Q̄k
F,i defined in Definition 14.

Q̄∗
F,i defined in Definition 14.

RF defined in Lemma 4.
S the source alphabet, defined at the begin-

ning of Section 2.
suff(xxx) the sequence obtained by deleting the first

letter of xxx, defined at the beginning of Sec-
tion 2.

xi the i-th letter of a sequence xxx, defined at the
beginning of Section 2.

|xxx| the length of a sequence xxx, defined at the
beginning of Section 2.

xxx ∧ yyy the longest common prefix of xxx and yyy, de-
fined at the beginning of Section 2.

xxx ⪯ yyy xxx is a prefix of yyy, defined at the beginning
of Section 2.

xxx ≺ yyy xxx ⪯ yyy and xxx ̸= yyy, defined at the beginning
of Section 2.

xxx ⪰≺ yyy xxx ⪯ yyy or xxx ⪰ yyy, defined at the beginning of
Section 2.

xxx−1yyy the sequence zzz such that xxxzzz = yyy, defined at
the beginning of Section 2.

xxx ≤ yyy xxx is less than or equal to yyy in the total order,
defined after Definition 12.

xxx ≤k yyy |xxx| ≥ k, |yyy| ≥ k, and [xxx]k ≤ [yyy]k, defined
after Lemma 5.

xxx <k yyy |xxx| ≥ k, |yyy| ≥ k, and [xxx]k < [yyy]k, defined
after Lemma 5.

xxx =k yyy |xxx| ≥ k, |yyy| ≥ k, and [xxx]k = [yyy]k, defined
after Lemma 5.

xxxA {xxxyyy : yyy ∈ A} for a sequence xxx and a set
A of sequences, defined at the beginning of
Section 2.

[xxx]k the prefix of length k of xxx, defined at the
beginning of Section 2.

λ the empty sequence, defined at the begin-
ning of Section 2.

µ the source distribution µ : S → (0, 1) ⊆ R,
defined at the beginning of Section 2.

πππ(F) the unique stationary distribution of F , de-
fined in Definition 8.

τ∗i defined in Definition 2.

Acknowledgment

This work was supported in part by JSPS KAKENHI
Grant Numbers JP18H01436, JP20K11674, and in part
by KIOXIA. We would like to thank the editor and
anonymous reviewers for their valuable comments and
suggestions.

References

[1] T. C. Hu and A. C. Tucker, “Optimal computer search trees
and variable-length alphabetical codes,” SIAM Journal on
Applied Mathematics, vol. 21, no. 4, pp. 514–532, 1971.

[2] T. Hiraoka and H. Yamamoto, “Alphabetic AIFV codes

22
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Constructed from Hu-Tucker Codes,” in Proc. IEEE Inter-
national Symposium on Information Theory (ISIT), Vail,
CO, USA, Jun. 2018, pp. 2182–2186.

[3] K. Hashimoto and K. Iwata, "Optimality of Huffman
Code in the Class of 1-bit Delay Decodable Codes," in
IEEE Journal on Selected Areas in Information Theory,
doi: 10.1109/JSAIT.2022.3230745, arXiv:2209.08874. [On-
line]. Available: http://arxiv.org/abs/2209.08874

[4] K. Hashimoto and K. Iwata, “Properties of k-bit De-
lay Decodable Codes,” in The IEICE Transactions on
Fundamentals of Electronics, Communications and Com-
puter Sciences, vol. E107-A, no. 3, 32 pages, Mar. 2024,
doi:10.1587/transfun.2023TAP0016.

[5] H. Yamamoto, M. Tsuchihashi, and J. Honda, “Almost
Instantaneous Fixed-to-Variable Length Codes,” IEEE
Transactions on Information Theory, vol. 61, no. 12,
pp. 6432–6443, Dec. 2015.

[6] W. Hu, H. Yamamoto, and J. Honda, “Worst-case Re-
dundancy of Optimal Binary AIFV Codes and Their Ex-
tended Codes,” IEEE Transactions on Information Theory,
vol. 63, no. 8, pp. 5074–5086, Aug. 2017.

[7] K. Hashimoto and K. Iwata, “On the Optimality of Binary
AIFV Codes with Two Code Trees,” in Proc. IEEE Inter-
national Symposium on Information Theory (ISIT), Mel-
bourne, Victoria, Australia (Virtual Conference), Jul. 2021,
pp. 3173–3178.

[8] K. Hashimoto and K. Iwata, “The Optimality of AIFV
Codes in the Class of 2-bit Delay Decodable Codes,”
arXiv:2306.09671.
[Online]. Available: https://arxiv.org/abs/2306.09671

[9] M. J. Golin and E. Y. Harb, “A Polynomial Time Algo-
rithm for Constructing Optimal Binary AIFV-2 Codes,”
IEEE Transactions on Information Theory, vol. 69, no. 10,
pp. 6269–6278, Oct. 2023.

[10] M. J. Golin and E. Y. Harb, “Speeding up the AIFV-
2 dynamic programs by two orders of magnitude using
Range Minimum Queries,” Theoretical Computer Science,
vol. 865, no. 14, pp. 99–118, Apr. 2021.

[11] R. Fujita, K. Iwata, and H. Yamamoto, “An Iterative Al-
gorithm to Optimize the Average Performance of Markov
Chains with Finite States,” in Proc. IEEE International
Symposium on Information Theory (ISIT), Paris, France,
Jul. 2019, pp. 1902-1906.

[12] M. J. Golin and A. J. L. Parupat, “Speeding Up AIFV-
m Dynamic Programs by m − 1 Orders of Magnitude,” in
Proc. IEEE International Symposium on Information The-
ory (ISIT), Espoo, Finland, Jun.–Jul. 2022, pp. 282–287.

[13] R. Sugiura, Y. Kamamoto, and T. Moriya, “General Form
of Almost Instantaneous Fixed-to-Variable-Length Codes,”
IEEE Transactions on Information Theory, vol. 69, no. 12,
pp. 7672–7690, Dec. 2023.

[14] R. Sugiura, M. Nishino, N. Yasuda, Y. Kamamoto,
and T. Moriya, “Optimal Construction of N -bit-delay
Almost Instantaneous Fixed-to-Variable-Length Codes,”
arXiv:2311.02797v1, Nov. 5, 2023.

[15] K. Iwata and H. Yamamoto, “An Algorithm for Con-
struction the Optimal Code Trees for Binary Alphabetic
AIFV-m Codes,” in Proc. IEEE Information Theory Work-
shop (ITW), Riva de Garda, Italy (Virtual Conference),
Apr. 2021 (postponed from 2020 to 2021), pp. 261–265.

[16] D. Ueda, K. Iwata, and H. Yamamoto, “A Construction
Method of Alphabetic Codes Allowing N -bit Decoding De-
lays”, IEICE Technical Report, IT2022-102, Mar. 2023,
pp. 218-223 (in Japanese).

Kengo Hashimoto received the B.E.,
M.E., and Ph.D. degrees from the Univer-
sity of Fukui in 2019, 2021, and 2024, re-
spectively. Since 2024, he has been with
the University of Fukui, as an Assistant
Professor in the Graduate School of Engi-
neering. His research interests include in-
formation theory and combinatorial game
theory.

Ken-ichi Iwata received his B.Ed. de-
gree from Wakayama University in 1993,
the M.Sc. degree from the Department
of Information Science from Japan Ad-
vanced Institute of Science and Technol-
ogy in 1995, and the D.E. degree from the
University of Electro-Communications in
2006. Since 2008, he has been with
the University of Fukui in the Graduate
School of Engineering.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

