
DOI:10.1587/transfun.2024VLP0003

Publicized:2024/09/05

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. FUNDAMENTALS, VOL.E108–A, NO.3 MARCH 2025
1

PAPER Special Section on VLSI Design and CAD Algorithms (Submitted)

Gridless Gap Channel Routing with Variable-width Wires

Masayuki SHIMODA†a), Student Member and Atsushi TAKAHASHI†b), Fellow

SUMMARY In this paper, a routing problem for ad-
vanced chip designs is modeled as Gridless Gap Channel Rout-
ing (GGCR). GGCR is a routing problem to allocate variable-
width trunks of nets to as fewer gaps as possible where a
gap is defined horizontally between obstacles arranged regularly
in the routing region. We propose Ceiling-and-Packing algo-
rithm (CAP) for GGCR. CAP allocates the trunk of a net repeat-
edly so that each gap is filled as much as possible by adopting an
appropriate order of allocation, and uses fewer gaps to complete
the routing compared with conventional algorithms.
key words: Gridless channel routing, Variable-width wire

1. Introduction

With the recent technological advances, some types of
advanced chips contain a number of components such as
sensors, LCDs, and controllers for them which are scat-
tered as regular pattern in routing layers and treated
as obstacles during routing phase. In critical routing
layers in such advanced chips [1, 2], gaps that are de-
fined between obstacles, and a gap channel is defined.
It tends to be a bottleneck of routing since many nets
need to use them for their connections [3, 4]. To ac-
complish routing with a limited number of gaps, it is
necessary to use them efficiently. Pins of nets are placed
even inside the routing area since various modules are
scattered throughout the chip in addition to obstacles.
The variety of wire widths of nets needed inhibits effi-
cient use of gaps. A gap channel is treated as gridless,
and it is preferred to complete routing using a single
horizontal wire segment for each net, i.e., dogleg is not
preferred.

An example of critical routing layers in such chips
is shown in Fig. 1. The areas horizontally traversing
between the obstacles are routing areas (gray rectan-
gles) called gaps. A gridless gap channel is defined as
the union of these gaps.

Channel routing [5–7] is one of the important pro-
cesses in automated layout design, especially for cell-
based design, that significantly affects the quality of
the chip, and many studies on it have been performed
so far. Conventional channels have fixed pins of nets
on its upper and lower boundaries and floating pins of
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Fig. 1: Gridless gap channel. Gaps (gray) are de-
fined horizontally between obstacles (black) regularly
arranged. The pins of nets are defined on mod-
ules (while rectangles) inside area. The width of hori-
zontal wires (dark gray) of nets varies.
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Fig. 2: Conventional channel.

nets on its left and right boundaries (Fig. 2).
In this paper, the aforementioned routing problem,

especially focusing on horizontal wire segments of nets,
is modeled as Gridless Gap Channel Routing (GGCR).
In GGCR, the channel consists of vertically stacked
fixed width gaps, and each net is connected by using
a single horizontal wire segment, called the trunk of
the net, with a specified width. The trunk of a net is
allocated to a gap of the channel so that no overlaps
with other trunks occur. The objective of GGCR in
this paper is the number of gaps to complete the allo-
cation of trunks of nets to gaps.

Even though vertical wire segments of a net have
to connect the trunk and pins of the net to complete
routing, the allocation of trunks of nets to gaps are
focused in this paper, and no vertical constraint among
nets is assumed. The optimization of vertical wires is
out of concern in this paper, and it will be optimized
in future works as in [1, 2].

Most of conventional channel routing algorithms,
including Left-Edge (LE) [5], which is popular in con-
ventional channel routing, neither consider the divided
routing area (gaps) nor take the widths of wires into

Copyright © 2025 The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. FUNDAMENTALS, VOL.E108–A, NO.3 MARCH 2025

account, and cannot obtain good solutions in GGCR.
Therefore, the development of a dedicated routing al-
gorithm especially for GGCR is desired.

In this paper, we propose Ceiling-and-Packing al-
gorithm (CAP) to obtain a good solution efficiently in
GGCR. CAP allocates trunks repeatedly to gaps ac-
cording to the priority defined on trunks. CAP gives a
higher priority to a trunk with wider width. In addi-
tion, CAP considers the maximum density zones where
the demand for the routing resources to allocate trunks
of the remaining nets are the highest. A remaining net
whose trunk does not cover the maximum density zones
is postponed to allocate. Also, CAP allocates nets to
gaps on a gap-by-gap basis to utilize a gap as much as
possible.

The key contributions are outlined as follows:

• Recent routing problem is modeled as Gridless Gap
Channel Routing (GGCR). In GGCR, variable-
width trunks without vertical constraint are al-
located to separated routing areas, called gaps.
GGCR plays an important role in routing espe-
cially for critical routing layers which are often
found in modern chips.

• Ceiling-and-Packing algorithm (CAP) is proposed
for GGCR. CAP allocates the trunk of a net re-
peatedly so that each gap is filled as much as possi-
ble by adopting an appropriate order of allocation.

2. Gridless Gap Channel Routing (GGCR)

2.1 Background

This paper addresses Gridless Gap Channel Routing
(GGCR).

In critical routing layers in advanced designs, a
number of regularly pre-placed components that act
as obstacles during the routing process exist. It is re-
quested to connect the pins of nets by utilizing critical
routing layers as much as possible. In GGCR, gaps
are defined between obstacles, and form a gap channel.
It tends to be a bottleneck of routing since many nets
need to use these gaps for their connections. Due to
the lack of horizontal routing resources in GGCR, the
pins of a net in GGCR are connected by using a sin-
gle horizontal wire segment in a critical layer as well as
vertical wire segments in other layers.

In GGCR, the pins of nets exist at any location
inside the channel, unlike conventional channel routing
where pins exist only on the boundary of the channel.
They are defined on modules placed inside the channel
or on the boundary of the channel, and their coordi-
nates are not absolute, as there is flexibility in module
design and location. Since there is room to make ad-
justments of pin locations, in GGCR formulation in this
paper, it is assumed that no vertical constraint among

horizontal wire segments of nets exits. In case that con-
flicts among vertical wires occur, they will be resolved
by utilizing flexibility in module design and location in
followed detailed placement and routing [1].

In order to satisfy signal integrity constraints, the
width of a wire used to connect pins of a net and the
minimum spacing to adjacent wires are specified for
each net. A wider width and a wider spacing are typ-
ically requested for a net that connect distant pins.
Also, shielded wires are requested to put on both sides
of wire for each sensitive net. These special wires are
paid attention in EDA tools and they are sometimes
routed in advance by hand in small designs.

2.2 Formulation

In GGCR, a critical routing layer is modeled as gridless
gap channel, and the trunks of nets are allocated to gaps
in the channel.

A gridless gap channel consists of gaps. Each gap
is a rectangle area that spans the gap channel hori-
zontally, and is defined to avoid obstacles, and con-
tains no obstacle in it. The width (vertical length) and
length (horizontal length) of the gap channel are de-
noted by Cv and Ch, respectively. The x-coordinate
and y-coordinate of the lower left corner of gap g are
denoted by x(g) and y(g). Also, the width (vertical
length) and length (horizontal length) of gap g are de-
noted by w(g) and l(g), respectively, where l(g) = Ch.

A net n consists of two or more pins to be con-
nected by wires. The coordinate of a pin p is de-
noted by (x(p), y(p)). The minimum and the maxi-
mum x-coordinates of pins of net n are denoted by
xmin(n) = minp∈n x(p) and xmax(n) = maxp∈n x(p), re-
spectively. For each net n, the trunk T (n) of n is defined
as the dedicated area for the horizontal wire segment
of the net, including enough spacing to adjacent wires
as well as shielded wires for the net if necessary. The
width (vertical length) of the trunk of net n is denoted
by w(n). For a set of nets N , the set of trunks of nets
in N is denoted by T (N).

As an input, a set of gaps Gin = {gi}ki=1 where
x(gi) = 0, l(gi) = Ch, w(gi) > 0, and sumg∈Gin

w(g) ≤
Cv is given. Also, a set of nets Nin = {ni}mi=1,
where 0 ≤ xmin(ni) < xmax(ni) ≤ Ch and w(ni) ≤
ming∈Gin w(g) is given. It is assumed that the number
of gaps are enough to accommodate to allocate trunks
of all nets and that the y-coordinates of gaps are given
so that gaps are not overlapped.

Let a : T (Nin) → (Gin, [0,Wg]) be the allocation
function of trunks to gaps where a(n) = (g, y) rep-
resents that T (n) is allocated to gap g ∈ Gin with
offset y (y ≥ 0) from the bottom of g, and where
Wg = maxg∈Gin

w(g). It is also denoted by ag(n) = g
and ay(n) = y. The horizontal range of T (n) is
defined as Ix(n) = [xmin(n), xmax(n)]. The vertical
range of T (n) by a(n) is given as Iy(n) = [y(ag(n)) +
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Algorithm 1 First-Fit-Decreasing (FFD)
Require: set of items U , set of bins G
1: U ← DescendingWidthSort(U)
2: for all b← G do
3: b← ∅
4: end for
5: while U ̸= ∅ do ▷ descending order of size
6: n← delete(U)
7: for all b← G do ▷ search fit bin
8: if w(n) +

∑
n′∈b w(n′) ≥ w(b) then

9: continue
10: end if
11: b← b ∪ {n} ▷ allocate n to the first fit bin b
12: end for
13: end while

ay(n), y(ag(n)) + ay(n) + w(n)].
The trunk T (n) has to be allocated within a gap,

that is, ay(n) + w(n) ≤ w(ag(n)) has to be satisfied
for all trunks T (Nin). Also, trunks have to be allo-
cated to gaps without overlap, that is, for all trunks
T (n), T (n′) ∈ T (Nin), either Ix(n) ∩ Ix(n

′) = ∅ or
Iy(n) ∩ Iy(n

′) = ∅ have to be satisfied.
Density of set of nets N at x is the sum of widths

of trunks of nets N whose horizontal range contain x,
and is denoted by d(x,N) =

∑
n∈{n∈N |x∈Ix(n)} w(n).

The maximum density of N is defined as D(N) =
maxx∈[0,Ch] d(x,N). In order to complete the alloca-
tion of T (Nin) to Gin, D(Nin) ≤

∑
g∈Gin

w(g) should

be satisfied. In case that w(g) = W for all g in Gin,
⌈D(Nin)/W ⌉ gives a lower bound of the number of gaps
to complete the allocation.

The set of nets in N that contain x is denoted by
M(x,N) = {n ∈ N | x ∈ Ix(n)}. The set of nets in
N that horizontally overlap with Ix(n) is denoted by
M(n,N) = {n′ ∈ N | Ix(n′) ∩ Ix(n) ̸= ∅}.

The GGCR problem is to allocate trunks of nets to
gaps so as to obtain the minimum number of used gaps,
for given a net set Nin and a gap set Gin, as represented
by

min |{ag(n) | n ∈ Nin}|,
s.t. ag(n) ∈ Gin, ay(n) + w(n) ≤ w(ag(n)),∀n ∈ Nin,

Ix(n) ∩ Ix(n
′) = ∅ or Iy(n) ∩ Iy(n

′) = ∅,
∀n, n′ ∈ Nin.

As the objective function, the minimization of the
number of gaps used is adopted in this paper. It is
unnecessary to use a small number of gaps when gaps
are given as inputs. However, this objective function
enables us to evaluate the performance of algorithms
as well as the validity of chip design. Also, unused gaps
can be utilized to improve the quality of chip design
such as the total vertical wirelength.
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Fig. 3: An enhanced Bin Packing derived from GGCR.

2.3 Difficulty

GGCR is equivalent to Bin Packing problem when all
trunks horizontally overlap with each other. There ex-
ists a trivial transformation from the decision version of
Bin Packing to the decision version of GGCR. Bin pack-
ing is known to be NP-hard in general [8]. Therefore,
GGCR is also NP-hard in general, and it is difficult to
obtain an optimal solution efficiently in general.

Bin Packing is defined formally as follows:

BIN PACKING (BP)
Instance: Finite set U of items, a size s(u) ∈ Z+ for

each u ∈ U , a positive integer bin capacity B, and
a positive integer K.

Question: Is there a partition of U into disjoint sets
U1, U2, . . . , UK such that the sum of the sizes of
the items in each Ui is B or less?

Even though BP is NP-complete in the strong
sense in general, it is solvable in polynomial time by
exhaustive search if bin capacity is fixed [8]. However,
exhaustive search is impractical even for a small bin
capacity when the number of items is large. Therefore,
various heuristics have been proposed for BP [9].

One of the heuristics for BP is First-Fit Decreas-
ing (FFD). Algorithm 1 gives the pseudo code of FFD.
FFD allocates an item in descending order of size to
the first fit bin to be found. FFD is a heuristics, and
does not necessarily find a good allocation. For exam-
ple, FFD fails to obtain an optimal allocation when the
multiset {3, 3, 3, 3, 2, 2, 2, 2} is given as item sizes and
bin size B = 10 [10,11].

Examples of bin packing where bin size B = 7 are
given in Fig. 3. There are two sets of items whose sizes
are given as multisets {7, 3, 2, 2} and {5, 5, 2, 2} where
items in each set are allocated to a bin in its corre-
sponding set of bins. Let us assume that each set cor-
responds to the set of widths of trunks to be allocated
to a portion of the channel in GGCR. FFD packs them
successfully as b1 = {7}, b2 = {3, 2, 2} and b1 = {5, 2},
b2 = {5, 2}, respectively. On the other hand, in GGCR,
a trunk (item) has to be allocated to bins with the same
index if it spans multiple portions of the channel. In
case that two items with size 2 span two portion of the
channel, it is impossible to allocate them in two gaps.
Thus, GGCR is more complicated because GGCR is
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Fig. 4: Allocations by different orders.

a problem of accommodating 2-dimensional items with
x-coordinates instead of 1-dimensional items. There-
fore, an algorithm to find a better solution efficiently is
required.

3. Related Works

The gridless channel routing [12,13] has been a subject
of researches for a long time in conventional channels.
The gridless approach allows an arbitrary location of
terminals, nets, and vias, gaining popularity as well as
approaches using fine grids in practical situations.

There are variations of gridless channel routing
works: two layer [14,15], multi-layer [16,17], and rout-
ing in real geometries [18]. NLEA by B. Krishna et al.
is one of the closest works that deals with various width
wires without both dogleg and vertical constraint [19].

NLEA allocates trunks to lower left as much as
possible with priority given to longer trunks among left-
most trunks that keep the right boundary of allocated
region to the left as much as possible. However, these
works are targeted to apply to problems on a single
channel, whereas the target of our work is GGCR in
which the channel is divided into the fixed width gaps.
The difficulty of GGCR is high due to the fact that the
target of allocation is multiple gaps instead of a single
channel.

GGCR can be regarded as a placement problem
for modules with fixed x-coordinates. Various studies
have been conducted for various purposes in placement,
and some of them consider not only the minimization
of the area after the placement of the circuits. There
have been many studies on data structure and search
speed in layout design [20–22].

One of the issues in adapting the above to GGCR
is how to evaluate a single solution and its high com-
putational cost. In GGCR, it is necessary not only to
pack trunks vertically but also to divide it into gaps.

4. Proposed Algorithm

4.1 Allocation Scheme

GGCR is a problem of allocating trunks on a
two-dimensional plane without overlap in which x-
coordinate of each trunk is fixed. Proposed algorithm

allocates trunks to a gap by gap. For each gap, it allo-
cates a trunk repeatedly as low as possible while avoid-
ing jumping over other trunks allocated so far when it
is dropped from above.

Formally, y-coordinate of trunk T (n) is set to
ay(n) = maxn′∈M(n,N)(ay(n

′) + w(n′)) when the set
of trunks T (N) have been allocated to a gap and the
trunk T (n) is to be allocated to the gap.

Fig. 4 gives examples of allocation results of the
set of four trunks T (Nin) = {T (ni)}4i=1 in different al-
location orders. In Fig. 4(a), T (n3) is allocated on the
top of T (n2) even if there is enough space below T (n2).
This is not an optimal in terms of width used in the al-
location. An optimal result is shown in Fig. 4(c). Note
that there are various optimal results in terms of width
used and that allocation orders that derive an optimal
result are not unique.

The order of gaps to allocate trunks has no effect
on the evaluation of the proposed algorithm. The gap
order to improve the quality of other metrics is in our
future works, and the order from the lowest gap among
gaps not used so far is assumed in this paper for sim-
plicity, i.e., g = arg ming∈G y(g) is selected as the gap
to allocate, where G is the set of gaps not used so far.

4.2 Baseline: Left-Edge (LE)

The proposed algorithm uses Left-Edge (LE) [5] as a
baseline. LE is a well-known greedy algorithm for con-
ventional channel routing where horizontal tracks are
defined to which trunks are allocated. For each track,
a trunk not allocated so far is allocated to satisfy hor-
izontal constraints according to the priority defined by
the leftmost principal from left to right if vertical con-
straints are not violated. LE uses the minimum number
of tracks required if there is no vertical constraint.

Although LE allocates unit-width trunks to a track
by track in conventional grid-based channels, tracks are
not defined in GGCR since various width trunks exist.
In the proposed algorithm, the iteration of allocation
of trunks along horizontal direction from left to right is
referred by round.

In the following, unless otherwise specified, LE
refers an extended LE for GGCR. The pseudo code of
LE for GGCR without vertical constraint is given in
Algorithm 2. In each round, a trunk whose left end is
the leftmost among the trunks not allocated so far is
repeatedly allocated according to the allocation scheme
if no violation occurs.

The function “LeftEdgeSort(Nin)” sorts trunks ac-
cording to the leftmost principal. LE skips the al-
location of a higher priority trunk if horizontal con-
straint (HC) is violated, that is, if an overlap of trunks
occurs. Also, LE skips it if gap width constraint (WC)
is violated, that is, if the trunk cannot fit to the gap.

The function “ceiling width(n,N ′)”, where T (n)
is to be allocated when the trunks T (N ′) have been
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Fig. 5: Examples of allocations. Red zone indicates the range of the maximum density of Nin.

Algorithm 2 Left-Edge (LE) for GGCR.
Require: set of nets Nin, set of gaps Gin

1: N ← LeftEdgeSort(Nin), G← Gin

2: while N ̸= ∅ do ▷ next gap
3: g ← delete(G)
4: N ′ ← ∅, f ← T

5: while f = T do ▷ next round
6: x← −∞, U ← N , f ← F

7: while U ̸= ∅ do ▷ next allocation
8: n← delete(U)
9: if xmin(n) ≤ x then ▷ violate HC
10: continue
11: end if
12: y ← ceiling width(n,N ′)
13: if y + w(n) > w(g) then ▷ violate WC
14: continue
15: end if
16: a(n)← (g, y), N ′ ← N ′ ∪ {n} ▷ allocate n to g
17: x← xmax(n), f ← T

18: N ← delete(n,N)
19: end while
20: end while
21: end while

allocated, gives the y-coordinate of trunk T (n) ac-
cording to the scheme, that is, ay(n) is set to
maxn′∈M(n,N ′)(ay(n

′) + w(n′)). The rounds for a gap
are repeated until no more trunk is allocated to the
gap.

Note that, in GGCR, there is no guarantee that
LE achieves the minimum number of gaps used in
allocation, unlike conventional channel routing for
uniform-width wires. The result obtained by LE
is shown in Fig. 5(a) where the allocation order is
(n1, n2, n3, n4, n5, n6). The result obtained by NLEA
is shown in Fig. 5(b) where the allocation order is
(n1, n3, n5, n4, n6, n2). An optimal result in terms of
the width used is shown in Fig. 5(c).

4.3 Proposal: Ceiling-and-Packing Algorithm (CAP)

We propose Ceiling-and-Packing algorithm (CAP) to
use gaps efficiently in GGCR. CAP gives a higher pri-
ority to wider trunks in allocation as FFD adopts in
BP. CAP allocates trunks repeatedly as LE does while

Algorithm 3 Ceiling-and-Packing (CAP)
Require: set of nets Nin, set of gaps Gin

1: N ← CAPSort(Nin), G← Gin

2: while N ̸= ∅ do ▷ next gap
3: g ← delete(G)
4: N ′ ← ∅, C ← (w(g))
5: while C ̸= ∅ do ▷ next round
6: Z ← {x | d(x,N) = D(N)}
7: x← −∞, U ← N , c← top(C)
8: while U ̸= ∅ do ▷ next allocation
9: n← delete(U)
10: if xmin(n) ≤ x then ▷ violate HC
11: continue
12: end if
13: if (x, xmin(n)) ∩ Z ̸= ∅ then ▷ violate ZC
14: continue
15: end if
16: y ← ceiling width(n,N ′)
17: if y + w(n) > c then ▷ violate CC
18: continue
19: end if
20: a(n)← (g, y), N ′ ← N ′ ∪ {n} ▷ allocate n to g
21: x← xmax(n)
22: C ← insert(y + w(n), C)
23: N ← delete(n,N), U ← N
24: end while
25: if x = −∞ then ▷ no allocation in round
26: C ← delete(c, C)
27: end if
28: end while
29: end while

trying to cover the maximum density zone as much as
possible during allocation. Also, CAP adopts ceiling
during allocation to allocate trunks as low as possible.

The pseudo code of CAP is given in Algorithm 3.
The function “CAPSort(Nin)” sorts trunks according
to the width of trunk, and then ties are broken by the
leftmost principal. CAP skips allocation of a higher
priority trunk if horizontal constraint (HC) is violated.
Even though the trunk is not actually overlapped with
trunks allocated in the round by allocation scheme, it
is skipped if the left end of the trunk is to the left of the
rightmost end of trunks allocated in the round. CAP
also skips allocation if either zone constraints (ZC) or
ceiling constraint (CC) is violated. The details of ZC
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Fig. 6: Ceiling constraint (CC).

and CC are explained in the following subsections.
The result obtained by CAP is shown in Fig. 5(c)

where the allocation order is (n6, n2, n5, n1, n3, n4),
while the priority of trunks used in CAP is (n2, n6, n3,
n4, n5, n1).

4.4 Zone Constraint (ZC)

For a set of trunks T (N) not allocated so far, the den-
sity of N at any location gives a lower bound of the
width of the channel that are used for allocation of
T (N). In each round, CAP allocates trunks so that
this lower bound is reduced as much as possible. At
the beginning of each round, CAP defines the maxi-
mum density zone of the channel which is defined as
the set of x-coordinates at which the density of nets
not allocated is the maximum. That is, the maximum
density zone Z is defined as Z = {x | d(x,N) = D(N)}.
CAP allocates a trunk only when all the maximum den-
sity zone to the left of the trunk is covered by trunks
allocated in the round so far. CAP skips the allocation
of a trunk if there is the maximum density zone to the
left of the trunk that is not covered by trunks allocated
in the round, that is, if zone constraint (ZC) is violated.

For example, in Fig. 5(c), the priority of trunks
used in CAP is (n2, n6, n3, n4, n5, n1) where the first
criteria is the the descending order of widths of trunks.
At the beginning, the maximum density of the channel
ranges from the left end of T (n6) to the right end of
T (n2). CAP tries to allocate T (n2) first in the first
round, but it is skipped since the maximum density
zone to the left of T (n2) that is not covered exists.
CAP allocates T (n6) first, then allocates T (n2) second,
and terminates the first round.

4.5 Ceiling Constraint (CC)

CAP sets to the ceiling of allocation in each round to
pack as many trunks as possible into a low location. A
ceiling gives the upper limit of y-coordinate of trunks to
be allocated in the round. CAP skips the allocation of
a trunk if the location of the trunk exceeds the ceiling
when the trunk is allocated according to the allocation
scheme, that is, if ceiling constraint (CC) is violated.

In each round, the minimum y-coordinate among
ceiling candidates is selected as the ceiling. A candi-
date of ceiling is the location of the top boundary of
each trunk allocated. A candidate is selected as the

Table 1: Setting (w indicates trunk width).
scenario Pr(w)
(prefix) w = 1 w = 2 w = 3 w = 4

Sparse (c1) 0.80 0.10 0.08 0.02
Dense (c2) 0.50 0.30 0.15 0.05
FFD-killer (c3) 0 0.50 0.50 0

ceiling of a round among the set of candidates C, and
it is removed from C if nothing is allocated in the round.
A new candidate is inserted to C when a trunk is al-
located, but no duplicated y-coordinates are contained
in C. The function “insert(y + w(n), C)” maintains C
when a trunk is allocated. At the first round and the
final round of a gap, the ceiling is set to the width of
the gap.

Fig. 6 illustrates the effects of CC. Assume that
the priority of trunks is given as (n1, n2, n3, n4), and
that the trunks T (n1) and T (n2) have already been
allocated, but T (n3) and T (n4) are not allocated yet. If
CC is not enforced, the allocation shown in Fig. 6(a) is
obtained where T (n4) is allocated above T (n3). While,
if the top boundary of T (n2) is set to the ceiling, T (n3)
violates CC, and T (n4) is allocated before T (n3) as
shown in Fig. 6(b). CC gives a priority to a trunk if
it can be allocated below the ceiling, and enable us to
utilize the routing area effectively.

5. Experimental Results

In order to evaluate the proposed algorithm, three types
of instances that consist of trunks of four different
widths in different probabilities are prepared. They are
used as inputs for multiple gaps as well as for a single
gap.

The single gap has an infinite width virtually, and
the total width is used to evaluate algorithms. In mul-
tiple gaps, it is requested to complete the allocation by
using given gaps in practice. To evaluate algorithms, a
gap set whose size is beyond the lower bound (LB) is
used, assuming enough gaps are given as an input.

The benchmarks used in experiments were ran-
domly generated where the minimum and maximum x-
coordinates and width of each trunk are defined. The
minimum and maximum x-coordinates of each trunk
were generated uniformly from range [0, 1], that is,
xmin, xmax ∼ U(0, 1). The width of each trunk w was
selected among 1, 2, 3, and 4 according to the proba-
bilities given in Table 1.

For comparisons, LE [5], NLEA [19], CAP, and
derivations of CAP: CAP without allocation skip by
ZC and CC, CAP without CC, CAP without ZC are
used. They were implemented by Python 3.10.9, and
executed on Apple M2 CPU. The execution time of
LE, NLEA, and CAP was 0.3, 5.2, and 180.1 seconds,
respectively, for the largest benchmark.

The results for the single gap are shown in Ta-
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Table 2: The additional width for w(g) = ∞ in single gap.
The additional width beyond Density (LB)

Benchmark Density LE NLEA CAP (ours)
(#trunk) D(Nin) w/o ZC & CC w/o CC w/o ZC CAP

c1-exp1 (10) 13 0 0 0 0 0 0
c1-exp2 (100) 91 7 23 1 1 0 0
c1-exp3 (500) 377 51 191 10 10 2 2
c1-exp4 (1000) 716 91 461 14 13 8 3

c2-exp1 (10) 16 0 0 0 0 0 0
c2-exp2 (100) 121 11 29 1 1 0 0
c2-exp3 (500) 497 71 261 4 4 1 1
c2-exp4 (1000) 941 135 602 17 14 7 5

(a) LE (W = 98) (b) NLEA (W = 114) (c) CAP (ours) (W = 91(optimal)).

Fig. 7: Results on c1-exp2 in single gap. Trunks (blue rectangles) and the maximum density zone (red dotted line).

Table 3: The additional gaps for w(g) = 10 in multiple gaps.
The number of gaps used beyond LB

Benchmark Density LB LE NLEA CAP (ours)
(#trunk) D(Nin) ⌈D(Nin)/w(g)⌉ w/o ZC & CC w/o CC w/o ZC CAP

c1-exp1 (10) 13 2 0 0 0 0 0 0
c1-exp2 (100) 91 10 0 2 0 0 0 0
c1-exp3 (500) 377 38 4 23 1 1 0 0
c1-exp4 (1000) 716 72 8 51 1 1 1 0

c2-exp1 (10) 16 2 0 0 0 0 0 0
c2-exp2 (100) 121 13 0 3 0 0 0 0
c2-exp3 (500) 497 50 5 31 1 0 0 0
c2-exp4 (1000) 941 95 11 68 1 1 0 0

c3-exp1 (10) 19 2 0 0 0 0 0 0
c3-exp2 (100) 161 17 0 6 1 1 1 1
c3-exp3 (500) 704 71 5 47 5 5 5 5
c3-exp4 (1000) 1343 135 11 112 9 9 9 9

ble 2. All algorithms achieve LB for 10 trunks. For
LE and NLEA, the differences from LB increases as the
number of trunks increases, and the difference are more
than 10% of LB. On the other hand, the proposed al-
gorithm achieves LB for 100 trunks, and the differences
of widths are within 5 for 1000 trunks.

The results with the benchmark c1-exp2 are shown
in Fig. 7. The red dotted line is drawn in the zone
of the maximum density of Nin. It is confirmed that
LE (Fig. 7(a)) and NLEA (Fig. 7(b)) are unable to
cover all the maximum density zone, and that need
more widths than LB to complete the allocation. On
the other hand, the proposed CAP (Fig. 7(c)) covers all
the zone, and the total widths used is the same as LB.
Even when the routing area is not divided, the pro-
posed CAP completes routing with less total widths,

compared with conventional ones.
The results for the multiple gaps are shown in Ta-

ble 3. In benchmark settings of c1 and c2, only CAP
allocates trunks in the minimum number of gaps.

In the setting of FFD-killer c3, where FFD fails
to achieve the minimum number of bins in most cases
when the size of a bin is 10, CAP requires more number
of gaps than LB, and even more than LE in c3-exp2.
As mentioned in Section 2.3, like FFD, CAP will not be
able to find certain combinations of trunks to fit a gap.
However, as the number of trunks increases, LE also
gradually increases the number of excess gaps, which is
larger than that of CAP. Since the amount of trunks in
an actual chip design is large, CAP is more appropriate
than conventional algorithms.
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6. Conclusions

In this paper, modern routing problem was modeled as
GGCR, a variable-width routing problem with multi-
ple gaps, and CAP for GGCR was proposed. GGCR
has multiple routing areas, and the routing should be
done so as to minimize the number of gaps used. CAP
uses fewer gaps compared with conventional algorithms
by prioritizing wide trunks and filling in the gaps as
much as possible. Experimental results show that CAP
achieves the least number of gaps compared to LE and
NLE. Since an efficient solution of GGCR problem is
necessary to realize a high-performance chip design,
CAP contributes to these chip designs.
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