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An FPGA-based YOLOv6 Accelerator for High-Throughput and
Energy-Efficient Object Detection
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SUMMARY Fast, accurate, and energy-efficient object detection is in-
creasingly important for edge applications, such as Internet of Things (IoT)
devices. Among various convolutional neural network (CNN)-based meth-
ods, the You-Only-Look-Once (YOLO) algorithm series is regarded as one
of the promising methods for real-time object detection due to its optimal
balance between speed and accuracy. However, deploying YOLO on re-
source and power-constrained devices like field-programmable gate arrays
(FPGAs) poses significant challenges due to the high demand for multiply-
and-accumulate (MAC) operations and the corresponding significant off-
chip memory accesses. This paper introduces an FPGA-based accelerator
for the YOLOv6 algorithm, implemented on a VC707 FPGA board with
a Virtex-7 VX485T chip, achieving satisfying throughput, accuracy, and
energy efficiency. To our knowledge, this is the first FPGA implementation
of YOLOv6. Unlike previous works that utilized early YOLO versions, our
design deploys the hardware-friendly YOLOv6, achieving a mean average
precision (mAP) of 84.9% on the PASCAL VOC2007 dataset at a 352*352
resolution - significantly outperforming most existing object detection im-
plementations. Through model optimizations for FPGA deployment, such
as changing from SiLU to ReLU activation, lowering input resolution, and
applying quantization-aware training, we are able to greatly reduce compu-
tational cost with minimal accuracy loss. Furthermore, these optimizations
allow for the entire YOLOv6 model to be stored in on-chip memory, elimi-
nating the need for energy-intensive DRAM access. The proposed acceler-
ator design and the convolution lowering technique also contribute to high
processing speed and energy efficiency. Experimental results demonstrate
that our accelerator can process 364.5 frames per second (fps) at 150 MHz
on the Virtex-7 VX485T FPGA, achieving excellent power efficiency of
19.75 fps/W.
key words: Object Detection, CNN, YOLOv6, FPGA, Accelerator

1. Introduction

Object detection is a technique in computer vision, used
to locate and recognize objects within images or videos as
shown in Fig. 1. Nowadays, CNN-based algorithms with ex-
ceptional accuracy are dominant in object detection with the
help of Graphics Processing Units (GPUs) featuring power-
ful parallel computing capabilities. Traditional CNN-based
algorithms like Region-based Convolution Neural Networks
(R-CNNs) [1], and their variants, Fast R-CNN [2] and Faster
R-CNN [3], are two-stage detection algorithms, which con-
sist of generating potential bounding boxes, classification
on these boxes and eliminating duplicate bounding boxes
[4]. These algorithms are highly accurate but very time-
consuming for the multiple stages, which are not suitable for
real-time applications.

To address the trade-off between speed and accuracy
in object detection, Redmon et al. introduced the one-stage
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Fig. 1 One example of object detection.

Fig. 2 A timeline of YOLO series.

detection algorithm, YOLOv1, in 2016 [4]. This innovative
approach unified location and classification tasks into a sin-
gle regression problem, leveraging a single neural network
to generate bounding boxes and class probabilities simulta-
neously. As depicted in Fig. 2, the YOLO series has under-
gone significant evolution through versions [5], [6], [7], [8],
[9], to [10], with the latest models, YOLOv5, YOLOv6, and
YOLOv7, achieving accuracies of 55.8%, 52.5%, and 56.8%
on the COCO dataset respectively. In this paper, accuracy
specifically refers to mAP. These works represent a substan-
tial improvement over the earlier versions like YOLOv3 and
YOLOv4. Among these, YOLOv6 distinguishes itself by
its hardware-friendly design. Furthermore, YOLOv6 is also
quantization friendly, exhibiting minimal accuracy loss fol-
lowing Post Training Quantization (PTQ) or Quantization
Aware Training (QAT). Notably, the YOLOv6-Nano version
[9] stands out for its simplified structure, which significantly
reduces memory requirements.

GPUs are widely used in deploying CNN algorithms
like YOLO, but they are expensive and power consuming
and not suitable for edge applications. Field-Programmable
Gate Arrays (FPGAs) and Application-Specific Integrated
Circuits (ASICs) are more appealing choices for lower cost
and higher energy efficiency. FPGAs have advantages over
ASICs in regarding of reconfigurability, and short develop-
ment cycles. Therefore, this study aims to develop an FPGA-
based YOLOv6 accelerator. FPGA-based DNN accelerators
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usually consist of off-chip memory (usually DRAM), on-chip
global buffer (GLB), array of Processing Elements (PEs)
composed of ALU and register file (RF), and inter-PE net-
work [11]. The multiple PEs give designers opportunities of
exploiting parallelism to improve performance. And DRAM,
GLB, inter-PE network and RFs constitute a memory hier-
archy. The DRAM access is very power-consuming and its
energy cost is orders of magnitude higher than one GLB
buffer access and one MAC computation. And the frequent
DRAM access takes up a significant portion of energy cost
in CNN accelerators. For example, the DianNao [12] and
Cambricon-X [13] are state-of-the-art CNN accelerators, but
their DRAM access energy costs account for 90% and 80% of
the total energy costs, respectively. Therefore, the energy-
consuming DRAM access is the bottleneck of deploying
FPGA-based YOLO accelerators in power-constrained edge
device.

There have been works for FPGA-based CNN accel-
erators, tailored for YOLO deployment. In [14], Yu et al.
deployed YOLOv1 [4] on FPGA, and the layer fusion tech-
nique [15] is proposed to reduce the DRAM access. The
YOLO accelerator mentioned in [14] managed to reach a
performance of 15.4 frames per second (fps) while consum-
ing 13W of power on the XILINX KU115, and it recorded
a mAP of 62% on the VOC2007 dataset. In their study
[16], Nguyen et al. effectively quantized YOLOv2 [5] to
binary weights and 3-to-6 bit activations in a mere 2.63%
accuracy decrease on the VOC2007 dataset. This approach
allowed storing all model data in FPGA’s BRAMs, cutting
out DRAM accesses to save power. Their FPGA accelerator
reached 109.3 fps and 18.29 W on the VC707 board with
a 64.16% mAP on VOC2007. The authors in [17] devel-
oped an YOLOv3 accelerator on ZCU104 FPGA board and
used the Vitis AI quantization tool to quantize FP32 network
into int8 network, and its performance and power are 206.7
fps and 25W respectively. However, most of the existing
works still rely on frequent DRAM access leading to not
very good energy efficiency. In addition, existing works pri-
marily utilize earlier YOLO versions, characterized by their
significant computational demands and comparatively mod-
est accuracy. The YOLOv6 [9] featuring high accuracy and
hardware-friendly was introduced in 2022, yet, to date, there
has been a lack of studies on FPGA-based accelerators for
YOLOv6.

This work makes three contributions to the field. Firstly,
this work deploys advanced YOLOv6 on FPGA for the first
time to our knowledge, and the accuracy of this accelera-
tor far exceeds most existing object detection implementa-
tions. Secondly, this work optimizes the YOLOv6 model for
efficient FPGA implementations with little accuracy loss,
including changing from SiLU to ReLU activation, lower-
ing input resolution, and applying 6-bit integer quantization
aware training. These model optimizations significantly cut
down on hardware overhead and computational amount. Fur-
thermore, these optimizations allow for the entire YOLOv6
model to be stored in on-chip memory, eliminating the need
for power-hungry DRAM access for parameters and interme-

diate results. Thirdly, this work presents a novel accelerator
design on FPGA, that leverages an output stationary dataflow
and incorporates a true dual-port Psum Buffer and a pair of
ping-pong Fmp Buffers, to achieve reduced latency and a
compact memory footprint. To address the low PE array uti-
lization observed in YOLOv6’s initial convolutional layer, a
convolution lowering technique is proposed, further lower-
ing latency and diminishing the need for DRAM access.

The remainder of this paper is structured as follows:
Section 2 provides an overview of the YOLOv6 algorithm
and details the model optimizations we have applied for ef-
ficient hardware implementation. Section 3 describes the
FPGA-based design of our YOLOv6 accelerator in details.
Section 4 discusses the experimental results and compares
our work with previous studies. Finally, conclusions are
given in Section 5.

2. YOLOv6 Optimization for FPGA Implementation

In this section, the algorithm of YOLOv6 is firstly reviewed.
And then the proposed model optimization techniques such
as changing from SiLU to ReLU activation, lowering in-
put resolution and applying quantization-aware training for
efficient FPGA implementation are presented.

2.1 Review of YOLOv6 Algorithm

YOLOv6 was proposed in 2022 by Li et al. in [9]. YOLOv6
offers versions of different sizes, namely: YOLOv6-Nano,
YOLOv6-Small, YOLOv6-Middle and YOLOv6-Large, to
adapt for diversified scenarios. In the same GPU, YOLOv6
at different scales achieves higher accuracy, lower latency
and higher throughput than other advanced YOLO object
detectors like YOLOv5 [8] and YOLOv7 [10] at the same
scale. In addition, YOLOv6 is friendly for quantization and
has negligible accuracy loss after quantization, which makes
it ready for deployment in industrial applications.

Fig. 3 The structure of backbone of YOLOv6-Nano in inference.

YOLOv6 consists of three main components: a back-
bone, a neck, and a head. The backbone processes input
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Fig. 4 The activation functions of the SiLU and the ReLU.

images to extract features, accounting for the majority of the
computation. The neck combines both low-level and high-
level features to create pyramid feature maps. Finally, the
head utilizes these pyramid feature maps to generate the final
prediction results. As shown in Fig. 3, the YOLOv6-Nano
backbone has a plain structure, which helps to reduce mem-
ory cost and is suitable for resource-constrained platforms
like FPGA [9]. In addition, YOLOv6-Nano achieves higher
throughput and lower latency than Small/Middle/Large and
has the smallest model size [9]. Therefore, this work will
deploy YOLOv6-Nano on FPGA for high speed object de-
tection.

2.2 Changing SiLU to ReLU in Detection Head

In YOLOv6-Nano, all nonlinear functions in the backbone
and neck are ReLU except the detection head using SiLU
[18]. The output activation of the SiLU is obtained by mul-
tiplying the sigmoid function with its input activation [18],
as shown in (1). Compared to SiLU, ReLU is a more simple
computation as shown in Fig. 4.

SiLU(𝑥) = 𝑥 · 1
1 + 𝑒−𝑥

(1)

ReLU(𝑥) = max(0, 𝑥) (2)

If the input activation is positive or zero, the output
activation of ReLU is equal to the input activation. If the
input activation is negative, the output of ReLU is zero, as
shown in (2). So, ReLU is easy to be realized in FPGA
by only detecting whether the sign bit of input activation
is 1 or 0. However, it is difficult to realize the accurate
SiLU function in FPGA due to its complicated computation.
SiLU’s implementation on FPGA can consume an order of
magnitude more logic resources than ReLU, with higher
latency and high power consumption.

In our experiments for images with various resolutions
as shown in Fig. 5, we have demonstrated that changing SiLU
to ReLU only introduces a slight accuracy loss in VOC2007.
Therefore, this work will replace all SiLUs in the head of
YOLOv6-Nano with ReLUs as shown in Fig. 6.

Fig. 5 The mAPs of YOLOv6-Nano in various resolutions and activation
functions in VOC2007.

Fig. 6 (a)The original head of YOLOv6[9] (b)The modified ReLU-head
in this work.

2.3 Exploring Lower Resolution

Most of images’ size in VOC2007 is 300*300 or less than
300*300. In previous studies, the image size is duplicated to
416*416 to ensure higher accuracy. However, this increase
in size not only expands memory footprint but also escalates
computational amount, which has a negative impact on la-
tency. As illustrated by the blue curve in Fig. 7, the accuracy
changes relatively slowly before reaching 352*352, but after
that, it drops dramatically. The yellow curve in the same
figure highlights that lowering the resolution can effectively
reduce computational amount, thus improving processing
speed.

In this experiment as shown in Fig. 7, we have demon-
strated that lowering resolution significantly reduce latency
but there is a risk of a sudden drop in accuracy. Therefore,
this work sets image size to 352*352 for the optimal balance
between accuracy and speed.

2.4 Quantization

Quantization is the process of transforming values from a
continuous or wide range into a discrete and narrower range
[11], essentially reducing bits used to represent data. This
reduction in data bitwidth can effectively reduce hardware
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Fig. 7 The mAPs and computational amount of YOLOv6-Nano in differ-
ent resolution.

Fig. 8 The mAPs of YOLOv6-Nano in different quantization schemes.

overheads, memory footprint and energy costs, which is suit-
able for resource-power-constrained platforms like FPGA.
While most mainstream quantization tools standardize on
8-bit integers, FPGAs offer the flexibility to customize
bitwidth, enabling the model in precision of less than 8-bit
integer. To enhance resource efficiency and energy savings,
this work would try to quantize the model in the precision of
less than 8 bits. The Pytorch-Quantization package devel-
oped by Nvidia is employed to facilitate quantization-aware
training in this work. This method is a form of linear quan-
tization, where both the weights and activations are repre-
sented as signed integers.

In our evaluation of different quantization schemes or
precisions shown in Fig. 8, the int5 quantization scheme
led to a significant drop in accuracy, deeming it impractical.
While the int8 and int7 quantization schemes maintained
high accuracy, the models in the int8 and int7 precisions
cannot be accommodated within the FPGA’s on-chip mem-
ory and thus heavily rely on energy-intensive DRAM access.
On the other hand, the model in the int6 quantization scheme
can be entirely stored within on-chip memory, eliminating
all DRAM access of parameters and intermediate results.
Therefore, this work adopts int6 quantization scheme for the
optimal balance between accuracy and energy efficiency.

3. Proposed Accelerator Design

This section outlines the architecture of the FPGA-based ac-
celerator, highlighting components like the true dual-port
Psum Buffer and ping-pong Fmp Buffers used to store in-
termediate data. It also covers the configuration of the PE
(Processing Element) array and the corresponding output-
staionary dataflow. Lastly, we introduce a convolution low-
ering technique aimed at addressing the low PE array utiliza-
tion observed in YOLOv6’s initial convolutional layer, which
contributes to reduced latency and fewer DRAM accesses.

3.1 The Architecture of the Accelerator

Fig. 9 depicts the architecture of the FPGA-based YOLOv6-
Nano accelerator, which includes Processor coordinating and
controlling all modules, a Conv Module performing the con-
volution and max pooling computations, and three ROMs for
weights, biases, and quantization coefficients (q cos). Fmp
Buffers 0/1 store the feature map (fmp), which is the output
of a convolutional layer, while the Psum Buffer holds partial
sums (psums), the intermediate results that are computed
prior to the generation of a fmp. The Direct Memory Access
(DMA) unit is a circuit used to enhance data transfer effi-
ciency between DRAM and Fmp Buffers, receiving control
signals from the Processor. In this design, the DMA unit is
responsible for reading image from DRAM to Fmp Buffer
and writing the results from Fmp Buffer to DRAM. This ac-
celerator features eliminating all DRAM accesses of psums
and fmps. And this is attributed to the abundant on-chip
memory of FPGA and the above-mentioned int6 quantiza-
tion scheme, so that more BRAMs are conserved for the Fmp
Buffers 0/1 and Psum Buffer. And they are large enough to
accommodate the largest fmp and psum that aid in bypass-
ing DRAM accesses for intermediate data. The Fmp Buffer
0 and 1 are also ping-pong buffers, which helps to reduce
latency. The roles of Fmp Buffer 0 and 1 are swapped in
the next convolutional layer, so the output of one layer can
be directly used as input in the next layer. The Psum Buffer
is one true dual port RAM, which can be read and written
at the same time. In processing one convolutional layer, the
computation is usually divided into several tiles along the
channel dimensions. And the Conv Module computes the
convolution tile by tile. The generated psums of the last
tile will be read from the Psum Buffer as the input psums
(ipsums) for the Conv Module, and the psums computed
in this tile are simultaneously written into the Psum Buffer
as output psums (opsums). Within the Psum Buffer, since
the read and write operations on the same data location are
staggered in time, the convolution computation results re-
main accurate even without having two separate input and
output Psum Buffers. A single true dual-port buffer effec-
tively achieves the ping-pong effect of two buffers, which
helps to reduce latency and save memory at the same time.
Therefore, this architecture has advantages over other works
in throughput and energy efficiency, as it eliminates almost
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Fig. 9 The architecture of this accelerator.

all DRAM accesses and adopts ping-pong buffers.
The Processor sends control signals to the Conv Mod-

ule, including the start signal, convolutional information, and
address information. Convolutional information comprises
kernel size, stride, fmp size, and controls for reading ipsums
from and writing opsums to the Psum Buffer, enabling the
Conv Module to perform multiple convolutions flexibly and
accurately. The address information includes the addresses
for fmps and parameters. Specifically, the fmp address infor-
mation covers the ifmp and ofmp addresses, along with the
Fmp Buffer state, which indicates whether a buffer is an in-
put or output. This setup ensures the Conv Module correctly
reads the ifmp from the input Fmp Buffer and writes the
ofmp to the appropriate location in the output Fmp Buffer.
The parameter information furnishes the Conv Module with
addresses in the Weight ROM, Bias ROM, and Quantization
Parameter ROM for the weights, biases, and q cos necessary
for the convolutional layer it processes. During a convo-
lution, the Processor provides the Conv Module with both
convolutional and address information. Upon receiving this
information, the Processor raises the 1-bit start signal from
0 to 1. The Conv Module, detecting the rising edge of the
Start signal, initiates the convolution or max pooling oper-
ation. It reads the ifmp and ipsums from Fmp Buffer 0 (1)
and the Psum Buffer, respectively, and retrieves correspond-
ing weights, biases, and q cos from the Weight ROM, Bias
ROM, and Quantization Parameter ROM to perform the con-
volution. If all MAC operations of one convolutional layer
are finished, the ofmp produced by the Conv Module are
stored in the Fmp Buffer 1 (0). If not, the generated opsums
are stored in the Psum Buffer. Once the computation is com-
plete, the Conv Module sends a stop signal to the Processor,
which then prepares control signals for the next convolution.

3.2 The Design of Conv Module

Fig.10 depicts the Conv Module’s architecture, featuring sev-
eral key components: the Data Load Unit, Maxpooling Unit,
a 16*16 PE array with 16 18-input 4-pipeline-stage Adder
Trees, 16 Quantizer plus ReLU Units, and the Data Store
Unit. The Data Load Unit retrieves 16 channels of ifmp
from Fmp Buffer 0/1, dispatching them to the PE array for
convolution, along with 256 weights (16 input channels and
16 output channels), 16 biases, and 16 q cos from its on-

Fig. 10 The structure of the Conv Module.

Fig. 11 The data processing of the integer-based convolution in this work,
and it is handled by the PE array and quantizer within the Conv Module.

chip ROMs. The module also incorporates a Maxpooling
Unit for max pooling operations, triggered by the corre-
sponding command of the Processor. The 16*16 PE array
and 16 Adder Trees execute the integer-based MAC and
bias-addition operations of convolution as shown in Fig.11,
producing 16 channels of 24-bit integer opsums simultane-
ously. The bit width of opsums is set to 24-bit to prevent
overflow during the maximal accumulation of 6-bit by 6-bit
multiplications of 256 input channels with a 3*3 kernel size.
Once all the integer-based operations for a layer are com-
plete, these 24-bit integer psums are mapped to 6-bit integer
output activations of ofmp. This mapping process consists
of 2 subprocesses (downscale and round) is executed by the
Quantizer Unit as shown in Fig.11. First, the 24-bit opsum
would be multiplied with one FP32 quantization coefficient
to be downscaled and clipped to an FP32 intermediate result
within the range of [-32, 31]. The q cos are determined
by the quantization tool of Nvidia to avoid large mAP de-
cay. Then, the round process approximates the downscaled
FP32 intermediate result to the nearest integer value, which
is the output activation of ofmp. Lastly, the Data Store Unit
archives the ofmp from the Quantizer or Maxpooling Unit
into output Fmp Buffer. If the MAC operations of one con-
volutional layer are not finished, the Data Store Unit stores
the PE array’s intermediate opsums into the Psum Buffer.
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3.3 The Structure of PE array

The network’s convolutional layers feature variable kernel
sizes of 1*1, 2*2, and 3*3, necessitating the sequential ex-
ecution of loops of kernel size (H𝑘 and W𝑘). In order to
minimize the storage of psums, this accelerator adopts out-
put stationary dataflow, prioritizing the H𝑜 and W𝑜 loops
over the H𝑘 and W𝑘 loops to accumulate most of psums
within PEs. To enhance parallelism, the accelerator unrolls
the loops for both input channel (C𝑖) and output channel (C𝑜)
as depicted in Fig. 12 (a). Given the limited on-chip buffer,
the C𝑖 and C𝑜 loops cannot be fully unrolled. Therefore, the
C𝑖 and C𝑜 loops are divided into 4 loops, with tile sizes (TC𝑖

and TC𝑜). Notably, TC𝑖 corresponds to the width of the PE
array, while TC𝑜 corresponds to the height of the PE array as
shown in Fig. 12 (a). Fig. 12 (b) outlines the PE array struc-
ture, comprising 16*16 PEs and 16 18-input Adder Trees.
Each PE includes one multiplier and one self-accumulator
performing H𝑘*W𝑘 MACs within one input channel, while
the 18-input Adder Tree integrates one ipsum, one bias, and
the 16 outputs from 16 PEs in one row to get activations of
one output channel in ofmp. The self-accumulator is set to
16 bits to prevent overflow, as there are up to nine 6-bit by 6-
bit multiplications accumulated within a single PE. The PE
array has 16 rows allowing it to compute 16 output channels
of ofmp in parallel. This work chooses 16*16 PE array for
the following reason. The dimensions of the PE array should
be symmetrical due to the unrolling of both input and output
channels, along with the employment of ping-pong buffers.
For the YOLOv6-Nano model, the channel numbers of most
convolutional layers are multiples of 16. In processing a
convolutional layer with both input and output channels set
at 32, a 32*32 PE array would theoretically be four times
faster than a 16*16 array. However, a 31*31 PE array may
not achieve a faster performance than a 16*16 array due to
underutilization of PEs. To prevent this inefficiency, the PE
array size should conform to multiples of 16, like 16*16 or
32*32. In this study, a 16*16 PE array was chosen as it nearly
utilizes all available BRAM. Expanding to a 32*32 PE array
would demand double the on-chip buffer. Thus, the 16*16
PE array provides a practical balance between performance
and resource constraints.

3.4 Convolution Lowering for PE Utilization Improvement

The PE array is designed to simultaneously process input
activations from 16 channels in a single clock cycle, yet
an image typically contains only 3 channels. In addition,
DRAM contents are often random after powering up, ne-
cessitating correct initialization for the first convolutional
layer’s accurate processing. To address this, the original
3*352*352 image is expanded on the host computer with
13*352*352 zero-value tensor, then transferred to the FPGA
board’s DRAM. This approach, however, results in a mere
18.75% efficiency in PE array usage, as depicted in Fig. 13.
Moreover, the expanded 16*352*352 tensor requires 5.33

times more DRAM accesses than the original image.
To address the issue of small number of image chan-

nels, this study introduces a convolution lowering strategy,
illustrated in Fig. 14, aimed at augmenting the number
of image channels or input channels. During convolution
lowering, the original 𝐶𝑖 k*k weight matrix in one output
channel is split into 𝐶𝑖*k*k individual weights. Simultane-
ously, the ifmp’s data is duplicated and rearranged following
a specific pattern leading to the correct result of the origi-
nal k*k convolution through a new 1*1 convolution. This
approach effectively increases the input channels by a factor
of k*k by transforming the original 𝐶𝑖-input-channel, k*k
convolution into a new 𝐶𝑖*k*k-input-channel, 1*1 convolu-
tion, and ensures the ofmp remains consistent. Correspond-
ingly, the initial 𝐶𝑖*𝐻𝑖*𝑊𝑖 ifmp is restructured into a new
(𝐶𝑖*𝑘*𝑘)*𝐻𝑜*𝑊𝑜 ifmp without affecting accuracy.

Applying the convolution lowering technique in
YOLOv6-Nano transforms a 3*352*352 image into a
27*176*176 tensor. This tensor is then augmented with five
channels of zero-value black images to create a 32*176*176
tensor. As a result, PE utilization surges to 84.375%, as de-
picted in Fig. 15. Despite the 32*176*176 tensor being 2.67
times larger than the original 3*352*352 image, it is still
half the size of the 16*352*352 tensor produced without us-
ing the convolution lowering technique. Thus, this method
effectively halves the DRAM accesses required to transfer
the image to the FPGA board. Experimentally, process-
ing the first convolutional layer without this technique takes
154,382 clock cycles, but only 78,557 with it. In terms of
overall performance, the latency for executing all layers has
been reduced by approximately 15.56%, and the throughput
has increased by about 18.43%. Hence, convolution lower-
ing not only halves DRAM accesses but also significantly
reduces latency for the first convolutional layer.

4. Experimental Results

4.1 Implementation Result

Our design has been deployed on a Xilinx VC707 board
equipped with an XC7VX485T FPGA chip, as illustrated
in Fig. 16 (a). The accelerator’s architecture, detailed in
Fig. 16 (b), operates at a frequency of 150 MHz, with
the VC707 board consuming 18.46W of power at a supply
voltage of 12V. Resource usage on the FPGA, shown in Fig.
17, reveals that over 94% of the Block RAMs (BRAMs) serve
as on-chip buffers and ROMs, significantly reducing DRAM
access needs. The composition of these on-chip storages
is depicted in Fig. 18, with more than 70% dedicated to
Parameter ROM for storing the entire model. Processing a
single image incurs a total latency of 411,438 clock cycles,
achieving a throughput of 364.5 frames per second (fps).

4.2 Comparison Result

Based on the FPGA implementation results, we compared
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Fig. 12 (a) Loop reorder, tiling and parallel of convolution algorithm. (b) The structure of PE array
and Adder Tree. (Note: The self-accumulator register within one PE is 16 bits.)

Fig. 13 (a) The input image and weight tensor of the first convolutional
layer. (b) The utilization of PE array is 18.75% when processing the first
convolutional layer.

our design with the existing accelerators in terms of detec-
tion accuracy, throughput and power efficiency. As shown in
Table 1, this work achieves the highest accuracy in VOC2007
dataset, which is attributed to the advanced YOLOv6 algo-
rithm. This design also achieves the highest throughput and
power efficiency. There are three design advantages that con-
tribute to achieving such excellent results. Firstly, the image
resolution of this design is only 352*352, which signifi-
cantly reduces energy-consuming DRAM accesses of input
images and computational workloads. Secondly, all DRAM
accesses of parameters and intermediate feature maps are
eliminated, significantly increasing speed and reducing en-
ergy cost. Finally, most existing works adopt High Level
Synthesis (HLS) tool or Vitis AI to improve development
speed on FPGA. However, HLS tools and Vitis AI provide
limited optimization opportunities on performance and re-
source utilization, leading to lower speed and higher resource
cost. Therefore, this design is developed by the Verilog Hard-
ware Design Language (HDL), which offers more accurate
control over resource utilization and clock cycles.

5. Conclusions

This paper introduces a fast, energy-efficient and accurate

Fig. 14 Convolution lowering: mapping a k*k convolution to a new
1*1 convolution to increase input channel number by decomposing weight
matrix in one output channel and rearranging input feature maps.

object detection system implemented on Xilinx VC707, in
which the state-of-the-art YOLOv6-Nano algorithm is de-
ployed on FPGA through HDL for the first time. Leveraging
model optimization techniques such as transitioning from
SiLU to ReLU activations, reducing input resolution, and
adopting quantization-aware training, we significantly de-
crease the model size. This allows for the entire model to
be stored on the FPGA board, obviating the need for DRAM
accesses for both model parameters and intermediate results.
In addition, the proposed accelerator design and the convo-
lution lowering technique also contribute to reduced latency
and fewer DRAM access. Consequently, our system design
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Table 1 Comparison with other works.
Design Model Image Precision mAP Model Size Platform Throughput Power Power Efficiency

Size on VOC2007 (fps) (W) (fps/W)
[14] YOLOv1 416*416 8-bit 62% - Xilinx 15.4 13 1.18

fixed KU115
[16] Sim- 416*416 w:1bit 64.16% 1.88MB Xilinx 109.3 18.29 5.98

YOLOv2 a:3-6 bits VC707
[19] YOLOv2 416*416 8-bit 74.45% 10MB Intel 72.5 26 2.79

Arria-10
GX1150

[17] YOLOv3 416*416 8-bit - - Xilinx 206.7 25 8.27
integer ZCU104

[20] YOLOv3 448*448 8-bit 75% - Xilinx 19.2 5.44 3.53
integer Ultra96 V2

This YOLOv6 352*352 6-bit 84.9% 3.1MB Xilinx 364.5 18.46 19.75
work integer VC707

Fig. 15 The utilization of PE array in processing the first convolutional
layer is increased to 84.375% when adopting convolution lowering tech-
nique.

Fig. 16 (a)The VC707 FPGA board with 485760 logic cells, 2800 DSPs
and 37080 Kb memory, and (b)the layout of our accelerator design on
VC707.

demonstrates superior performance over previous works in
both speed and energy efficiency, while maintaining the high-
est accuracy in object detection. These results underscore
the design’s potential for application in environments where
power and resources are limited, such as edge computing
devices.
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