
DOI:10.1587/transfun.2024VLP0014

Publicized:2024/09/05

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Double Modular Redundancy Design of LSI Controller for Soft
Error Tolerance

Katsutoshi OTSUKA†, Nonmember andKazuhito ITO †a), Member

SUMMARY A soft error in LSI is a temporary malfunction in which
signals in combinational circuits or data stored in registers are flipped. Dou-
ble modular redundancy performs computation execution and data storing
in duplicate, detects soft errors through comparison, and corrects errors
by re-executing the computation. It is preferable in terms of LSI area and
power consumption compared to triple modular redundancy. In this pa-
per, a double modular redundancy design for LSI controllers is proposed.
The register for the control step and the combinational circuit to compute
the control step value are doubled to check an error in the controller. Re-
execution of operations necessary to correct an error in datapath and con-
troller is controlled using one bit signal which is also doubled for error
detection and correction. The area of the proposed controller is reduced to
about half of that of the conventional triple modular redundant controller.
key words: DMR, Controller, Soft error, LSI design

1. Introduction

When neutrons caused by cosmic rays enter a large scale
integrated circuit (LSI), a nuclear reaction with a neutron
occurs, and carriers produced by the secondary ions are col-
lected, the signal value in the circuit is reversed if the col-
lected charge exceeds a certain threshold. This is called
a soft error [1], [2]. Due to the miniaturization and lower
voltage of semiconductor devices, the signal energy in LSIs
is reduced, and the threshold value is lowered accordingly.
Furthermore, as the number of devices increases due to
larger scale circuits, the probability of soft errors occurring
in LSIs increases, and the probability of LSI malfunctions
due to soft errors is getting higher.

Redundancy is known as a soft error countermeasure.
Triple modular redundancy (TMR) uses three systems of
modules to perform the same calculation and store data (cal-
culation results) in triplicate, and takes majority vote [3].
Even if there is an error in either the calculation or the data,
the error can be corrected by majority vote and subsequent
calculations can be continued correctly. However, TMR has
the disadvantage that it requires three times the circuit size
and power consumption.

Double modular redundancy (DMR) detects errors by
performing the same calculations on two modules and com-
paring the results. If the results do not match, an error has
occurred, and the error is corrected by re-executing the op-
eration that may contain the error, and then the subsequent

Final manuscript received January 1, 2003.
†The authors are with the Graduate School of Science and En-

gineering, Saitama University, Saitama-shi, 338-8570, Japan.
a) E-mail: kazuhito@mail.saitama-u.ac.jp

M

M

M

REGs0FUs0

REGs1FUs1

REGs2FUs2

multiplexors

Fig. 1 Triple modular redundancy (TMR).

operations are continued [4]–[6]. Although there is a delay
time required to re-execute operations for error correction,
it has the advantage of smaller circuit size and power con-
sumption than TMR.

Generally, a digital system is divided into a data pro-
cessing section (datapath) and a control section (controller).
Since the controller is also implemented using LSI, soft er-
rors may occur in the controller as well. While many stud-
ies have been conducted on datapath soft error countermea-
sures, including TMR and DMR [7]–[9], there are few re-
ports on controller soft error countermeasures. In this study,
we propose a countermeasure against soft errors in the con-
troller using DMR.

The remainder of the paper is organized as follows.
The soft-error model and redundancy for the error detec-
tion and correction are reviewed in Sect. 2. The proposed
method for DMR controller is presented in Sect. 3. Experi-
mental results are presented in Sect. 4 and Sect. 5 concludes
the work.

2. Error collection and register usage in DMR

2.1 Error model

Based on the principle and probability of soft error occur-
rence, we assume the following model for soft errors in LSI.

• Only one soft error occurs within one LSI at a time.
• Soft errors occur uniformly regardless of whether it is

a combinational logic circuit or a flip-flop.
• The impact of a soft error is limited to one module

(combinational circuit block including majority voter
and multiplexor, functional unit, or register).

• Once a soft error occurs, it will not occur for a suffi-
ciently long time in the same LSI.

• Soft errors in combinational circuits do not persist be-
yond the trigger of the clock signal.

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

REGsSFUsS

REGsPFUsP

multiplexors

C

REGsR

Error in 
datapath

Fig. 2 Double modular redundancy (DMR).

2.2 TMR

The datapath with triple modular redundancy [3] is illus-
trated in Fig. 1. The results of operations in functional units
(FUs) are selected by multiplexers (MUXs) and stored in
registers (REGs). Data is read from the REGs and selected
by multiplexers (MUXs) to be used as input data for the
FUs. FUs, REGs, and MUXs are tripled, and a tripled ma-
jority voter (M) is inserted between the REGs output and the
input MUXs of the FUs. An error in FUs, REGs, or MUXs
causes one of the REGs to have an incorrect value. How-
ever, errors are corrected by selecting non-error values by
M and providing them to the FUs.

2.3 DMR

Figure 2 shows the datapath for DMR. There are two FUs,
one less than TMR, and they are called FUsP and FUsS, re-
spectively. Each FU performs the same operation once, for a
total of two operations. The two execution results are stored
in registers REGsP and REGsS, respectively, and the values
read from these registers are compared by a comparator (C).
If they match, a correct result was obtained; if they do not
match, an error has occurred. Then the error is corrected
by re-executing the necessary operations [10]. Re-execution
requires input data that is guaranteed to be error-free. There-
fore, a third register, REGsR, is prepared to store the neces-
sary data. When an error occurs in either REGsP or REGsS,
the data in REGsR is error-free, and the data is read from
REGsR and used as the input for re-execution.

2.4 Error Correction in DMR by Replay

Figure 3(a) shows an example data-flow graph (DFG),
where a node represents an operation and an edge repre-
sents data dependency between operations. For example,
operation 1 uses two data d2 and d3, and outputs the result
d4. Then d4 as well as d1 are used by operation 2. With
DMR, each operation is executed twice and these are called
respectively theprimary and secondaryexecutions of the
operation. They are denoted as ‘1p’ and ‘1s’ for operation
1. Figure 3(b) shows the schedule of operation executions
and storing data. An FU AddP0 executes primary opera-
tions and another FU AddS0 executes secondary operations.
RegP0 to RegP2 store the primary data and RegS0 to RegS2
store the secondary data. RegR0 to RegR2 store the input
data for re-execution. In Fig. 3(b), 1p and 1s are executed

d1

d2

d3

d4
d5

d6a

3 41

2

(constant)

532 4 6CStep

d3p

d5pd4p

d1p

d2p

d6p

2p1p 3p

RegP0

RegP1

RegP2

RegS0

RegS1

RegS2

RegR0

RegR1

RegR2

2s1s 3s

d3s

d5sd4s

d1s

d2s

d6s

d3r

d1r

d2r

4p

4s

d5r

d6r

d1r

AddP0

AddS0

(a) (b)

R2 R3 R4532 4 r5 6CStep

RegP0

RegP1

RegP2

RegS0

RegS1

RegS2

RegR0

RegR1

RegR2

AddP0

AddS0

Error in datapath

REPLAY

d3p

x’x

d1p

d2p

x”

2p1p 3p

2s1s 3s

d3s

d5sd4s

d1s

d2s

d6s

d3r

d1r

d2r

4p

4s

d3r

d1r

d2r

2p1p 3p 4p

4s

d5r

d6r

x’

x”

d5pd4p

d6p

d1p d1p

Error

d1r

10

10

0

0

ReplayLast 10 10 0

CheckPoint 10 10 01

2s1s 3s

d5s

d6s

d1s

? ? d5s

d6s

d1s

(c)

Fig. 3 An example for error correction by replay in DMR. (a) a DFG.
(b) an operation and data schedule. (c) replay the operations when an error
is detected.

in control step (CStep) 2, both 1p and 1s take one clock cy-
cle (CC). The input data d2p and d3p (d2s and d3s) are read
from RegP1 and RegP2 (RegS1 and RegS2), and used by 1p
(1s). Then the results d4p and d4s are stored in RegP1 and
RegS1, respectively, at the end of CStep 2.

A checkpoint [11] is a CStep where the correctness of
data is checked and the data necessary as the input for re-
execution are stored. Assume that CStep 2 is a checkpoint
where d1p and d1s, d2p and d2s, and d3p and d3s are re-
spectively compared, and if there is no error, d1p, d2p, and
d3p are respectively stored to RegR0 to RegR2 as shown in
Fig. 3(b). If an error occurred in RegP1 at CStep 3, the data
d4p is incorrect and the succeeding data d5p and d6p be-
comes erroneous. Let CStep 5 be another checkpoint and
the data d6p and d6s are compared by the comparator C
in Fig. 2. Then the output of C becomes 1 and the error
is detected. Since there exists an error at CStep 5, the re-
sults of operations executed at CStep 5 are erroneous and
hence the result of operation 4 in this case is discarded. The
re-execution starts at the CStep after CStep 5. Let the re-
execution be calledreplay. In this case, CSteps 2, 3, and
4 are re-executed in order to correct the data d4p, d5p, and
d6p. These CSteps are denoted as R2, R3, and R4 as shown
in Fig. 3(c). The replay requires the replay input data d1r,
d2r, and d3r. Hence the data have been stored in RegR0 to
RegR2 at CStep 2. When the error is detected at CStep 5, the
data in RegRs are maintained from CStep R2 to R4. Opera-
tion 1 executes using the input data d2r and d3r from RegR1
and RegR2, and the result d4p is stored in RegP1. Oper-
ation 2 executes using the input data d1r from RegR0 and
d4p from RegP1, the result d5p is stored in RegP1. That is,
replay is executed using either error-free data from RegRs
or re-executed data from RegPs. At the last CStep of replay,
R4, RegPs receive error-free data from RegRs if the data



OTSUKA and ITO: DOUBLE MODULAR REDUNDANCY DESIGN OF LSI CONTROLLER FOR SOFT ERROR TOLERANCE
3

M
U

X

CStepNCStep SG

CCore

Datapath

M
U

X

FUs REGs

control signals

M
U

X

branch condition data-dependent condition signals

M
U

X

Fig. 4 Processing system consisting of controller and datapath.

M

M

M

CCore1

CCore0

CCore2

SG1

SG0

SG2

Datapath1 M

M

M

Datapath0

Datapath2

controller datapath

Fig. 5 Full TMR configuration of controller and datapath.

is not corrected by replay (RegP1 in this case). In addition,
RegSs receive the correct data from either the error-free data
from RegRs (d1s in this case), the corrected data from RegPs
(d5s), or the output of FUs in replay (d6s). Then the normal
operation resumes from CStep 5, which is indicated as r5,
and the data in RegRs are updated as shown in Fig. 3(c).

The execution of operations are delayed when a replay
is executed. The longest of the delay is calleddelay penalty
and denoted asPd. In real time applications, an upper toler-
ance limit is imposed on the delay penalty. The delay length
of a replay is equal to the number of CSteps between two
successive checkpoints. Therefore checkpoints must be set
with intervals not longer thanPd to satisfy the tolerance.

3. Redundant design of controller

Generally, a circuit consists of a datapath that performs cal-
culations and a controller that controls the datapath. Just like
the datapath, the controller can also experience soft errors.
Figure 4 shows an outline of the (non-redundant) circuit.
The controller consists of a register CStep and combina-
tional circuits NCStep and SG. CStep stores the current con-
trol step in the schedule of processing execution. NCStep
calculates the next control step based on the current CStep
value and the condition signals obtained in the datapath if
data dependent conditional branches are involved. The SG is
a combinational circuit that generates control signals for the
datapath in order to cause the datapath to perform operations
determined by the processing execution schedule in each
control step. The SG may also input data-dependent con-
dition signals to conditionally switch operations in a control
step. The condition signals are omitted if necessarily in the
remaining figures for simplicity. Let CCore denote the set
of a CStep and a NCStep.

The datapath consists of functional units (FU), registers

ReplayLastChkPt

CStep

CStepR

1

0

NCStep

CStepsel

Load

L REPLAY

Error in datapath

CheckPoint

Branch condition

To SG

Fig. 6 The controller supporting the replay in DMR.

Lreplay

ReplayLast

REPLAY

ERROR

Rreplay
Error in datapath

CheckPoint

CStepsel

(a)

REPLAY=0 REPLAY=1

ReplayLast=1

ERROR=1

(b)

Fig. 7 The block L. (a) circuit. (b) state transition.

(REG), and multiplexers (MUX) that select and transfer data
between FUs and REGs.

3.1 Full TMR

Figure 5 shows a full TMR for the controller and the data-
path. The CCore, SG, and datapath are all tripled, and the
CStep output in the controller and the REG output in the dat-
apath are determined by the majority voter M. Compared to
the non-redundant case, the area of the controller and data-
path is three times larger, and the area of the majority voters
is also added.

3.2 Controlling replay in DMR

When an error is detected at a checkpoint, the error is cor-
rected by replay. The replay can be done by rewinding the
operation schedule to the previous checkpoint. For example
in Fig. 3, CSteps 2 and 5 are the checkpoints. When an error
is detected at a checkpoint, CStep 5, the operations sched-
uled from the previous checkpoint, CStep 2, to the current
checkpoint, CStep 5, are executed in replay.

The normal CStep and its corresponding CStep in re-
play are assigned the identical binary code and they are dis-
tinguished by the signal REPLAY. The value of REPLAY
becomes 0 in normal operation and 1 in replay, as shown
in Fig. 3(c) for example. In the CStep in replay, the same
operations as in the corresponding normal CStep are exe-
cuted except that the error-free input data are obtained from
REGsR. Therefore assigning the identical binary code to
these CSteps is expected to minimize the complexity of the
combinational circuits for control signal generations.

Figure 6 shows a controller to support controlling the
replay. The register CStep holds the binary code of the cur-
rent CStep. The combinational circuit NCStep calculates
the next CStep value. The combinational circuit ReplayLast
outputs 1 when the CStep is at one step before any of the



4
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

DatapathS

DatapathP

REGsR

M

M

M

CCore1

CCore0

CCore2

SGS

SGP

SGR

C

Error in datapath

controller datapath

Fig. 8 The configuration of TMR controller and DMR datapath.

controller datapath

CStepR

ChkPt ReplayLast

SGS

SGP

CL
error in 
CSteps

CCoreS

CCoreP

SGR

DatapathS

DatapathP

REGsR

C

Error in datapath

Fig. 9 DMR configuration of controller and datapath.

checkpoints. Therefore ReplayLast= 1 indicates the last
CStep in replay. The register CStepR stores the binary code
of the previous checkpoint. ReplayLast is stored in a 1-bit
register ChkPt and the output becomes 1 when the current
CStep is at one of the checkpoints. Therefore, the output of
ChkPt is used as the load control signal of CStepR.

The block L in Fig. 6 calculates the signal REPLAY.
The detailed circuit of L is shown in Fig. 7(a). The combi-
national circuit Lreplay and a 1-bit register Rreplay imple-
ments the state transition shown in Fig. 7(b). When an error
is detected in datapath in normal operation (REPLAY= 0),
the signal ERROR= 1, and CStepsel becomes 1 to set the
checkpoint stored in CStepR to CStep to start a replay and
REPLAY becomes 1. When the last CStep in replay is
reached (REPLAY= 1 and ReplayLast= 1), REPLAY re-
turns to 0.

3.3 TMR controller and DMR datapath

Figure 8 shows a configuration where the datapath is in
DMR to reduce the area of the datapath. The duplicated
datapaths are DatapathP for primary execution and Datap-
athS for secondary execution. Comparator C compares the
values of the primary and secondary registers, and if they do
not match, an error exists in the datapath. Register REGsR is
used for replay input. Each of CCores in Fig. 8 corresponds
to the controller shown in Fig. 6. The majorities of the CStep
value and the REPLAY signal are respectively taken and the
results are used by the combinational circuits SGP, SGS, and
SGR to generate the control signals for DatapathP, Datap-
athS, and REGsR, respectively. Since SGR receives the sig-
nal indicating an error in the datapath so that, when an error
occurred in the datapaths, REGsR do not overwrite the cur-
rent data which are the error-free input data for replay. The
complexity of the controller increases compared to the full

ReplayLastChkPt

CStepP

NCStepS

CStepR

1

0

CStepS
1

0

L

NCStepP

C

Error in datapath

CStepPsel

CStepSsel

Load

Error in

REPLAY

DatapathS

DatapathP

SGS
To

To
SGP

SGR
REGsR

To

AB

C

D

E

F

CheckPoint

Branch conditions

conditions
Data-dependent

CSteps

Fig. 10 The proposed architecture of DMR controller.

LreplayP

LreplayS

RreplayP

RreplayS

CStepSsel

Error in CSteps

ReplayLast

REPLAY

CStepPsel

ERRORError in datapath
CheckPoint

(a)

REPLAY=0 REPLAY=1

ReplayLast=1

ERROR=1

RreplayP = RreplayS
or

(b)

Fig. 11 The block L. (a) circuit. (b) state transition.

TMR case, and the area increases accordingly. The effect of
increased controller area is tripled in TMR controller.

3.4 Proposed DMR controller

Figure 9 shows a proposed configuration of redundancy,
where not only the datapath but also the controller is config-
ured with DMR. The detail of the proposed DMR controller
is shown in Fig. 10.

The CStep register and the combinational circuit NC-
Step in Fig. 6 are doubled, and they are called CStepP and
CStepS, and NCStepP and NCStepS, respectively. In nor-
mal operation, the value of CStepP and CStepS are identical
and thus the outputs of NCStepP and NCStepS are also iden-
tical. The value of CStepP and CStepS, and the value of the
signal REPLAY are given to the combinational circuits SGP
and SGS to generate control signals for the datapaths, Dat-
apathP and DatapathS, respectively. The value of CStepP
is also used by the combinational circuit SGR to generate
control signals for the replay input registers REGsR.

The detailed circuit of the block L in Fig. 10 is shown
in Fig. 11(a). When an error is detected either in datap-
ath at a checkpoint, CStepP, or CStepS in normal opera-
tion (REPLAY = 0), the ERROR becomes 1. The circuit
Lreplay and the 1-bit register Rreplay are duplicated and
called LreplayP and LreplayS, and RreplayP and RreplayS,
respectively. When an error occurred in any of these com-
ponents, the value of RreplayP and RreplayS differ. In this
case, because of the error model in which if an error oc-



OTSUKA and ITO: DOUBLE MODULAR REDUNDANCY DESIGN OF LSI CONTROLLER FOR SOFT ERROR TOLERANCE
5

curred in L, no other error occurred, the correct value of
RreplayP and RreplayS is known to be 0. Therefore, Lre-
playP and LreplayS receive both RreplayP and RreplayS
and when the values differ, RreplayP and RreplayS are cor-
rected to 0. The third register to store error-free data for
error correction is not necessary. The state transition of L
is shown in Fig. 11(b). When the last CStep in any re-
play is reached (REPLAY= 1 and ReplayLast= 1), RE-
PLAY returns to 0. CStepPsel becomes 1 to set CStepP to
the checkpoint stored in CStepR when an error is detected
(Error = 1) in normal operation (REPLAY= 0). CStepS-
sel becomes 1 to set CStepS to the correct value obtained
from NCStepP to resume normal operation at the end of the
replay (REPLAY= 1 and ReplayLast= 1).

When an error is detected either in datapath, CStepP, or
CStepS all the load signals to REGsR become 0 by SGR so
that the replay input data are not overwritten.

3.5 Responding to controller errors

The response to soft errors in each area of the controller will
be explained according to Fig. 10. Note that based on the
error model, if an error occurs in any area, it is guaranteed
that there is no error in other areas.
Area A: An error in CStepP or CStepS is detected by the
comparator C and ERROR signal in Fig. 11(a) becomes 1 to
start a replay. SGR sets the load signals of REGsR to 0 to
keep the current replay input data in REGsR.
Area B: If there is an error in NCStepP or NCStepS, the
next values of CStepP and CStepS do not match. Then the
replay will start as in the case of area A.
Area C: If the ERROR signal in Fig. 11(a) becomes 1 by an
error, that is a false detection of error, replay starts unneces-
sarily. Since all the data are correct and the replay itself is
performed correctly, there is no real harm other than a delay
penalty. If REPLAY becomes 1 by an error, replay operation
is executed in datapathP and the result does not match with
the result of datapathS. Then it is detected by the compara-
tor in the datapath and a valid replay will start. If CStepPsel
becomes 1 by an error, the value of CStepP becomes not the
same as CStepS in the next CStep, and the error is detected
and a replay will start. CStepSsel becoming 1 by an error
does not matter since the outputs of NCStepP and NCStepS
are identical in this case.
Area D: ReplayLast would have the incorrect value 1 by
an error in normal operation (REPLAY= 0) because of the
error model. The value 1 of ReplayLast is ignored in normal
operation by the block L. An error in either ChkPt or CStepR
makes the value of CStepR erroneous, but a replay does not
start, and the value is not used. CStepR will be overwritten
by correct value before a next error occurs.
Area E: An error in either SGP or SGS results in erroneous
control signals to the datapaths. Then, DatapathP and Data-
pathS perform different processing, resulting in a mismatch
in the results, and an error is detected. In both cases, replay
will start and correct the error.
area F: If the comparator C outputs 1 by an error, SGR sets

REPLAY

CStepP

DatapathP

DatapathS

ERROR

CStepR

REGｓR

CStepS

x

k x

k-4

d3 d5d4

d3

k

k k+1

d4

k k

d5

d6

d6 d7

d7

k+2 k+3

d6 d7

k k k kk-4 k k+3

k k k+3

d4

k k+1 k+2 k+3 k+3k+4 k+4

k+4

Error
ReplayLast

CheckPoint

(a)

REPLAY

CStepP

DatapathP

DatapathS

ERROR

CStepR

REGｓR

CStepS

x x’

k k+1

k-4

d3 d5d4

d3

k

k k+1

d4

k+2

k k

d5d4

d6

d6

d7 d8

k+2 k+3

d6

k k k kk-4 k k

k k k

k k+1 k+2 k+6 k+3k+4 k+5

Error

ReplayLast

CheckPoint

k+3

k+3

x”

d9

k

k

(b)

Fig. 12 Error and replay examples. (a) error in CStepP. (b) error in RE-
PLAY signal.

REGsP

REGsR

FUsP

DatapathP

Fig. 13 The configuration of DatapathP and REGsR.

FUsP

REGsR

REGsP

REGsSFUsS

DatapathS

Fig. 14 Copying the replay results from DatapathP to DatapathS.

the load signals of REGsR to 0 to keep the current replay
input data in REGsR. A replay starts by the error of the
comparator C becoming 1, the replay itself is done using
the correct replay input data.

An error in SGR causes REGsR to hold incorrect re-
play input values, but the replay will not start and REGsR
will be overwritten by correct replay input data at the next
checkpoint before a next error occurs.

Figure 12 shows examples of errors and the corre-
sponding replay. In this example, the checkpoints are CStep
k and k+ 3. In Fig. 12(a), an error occurred in CStepP at
CStep k+1. The comparator in the controller detects the er-
ror and the signal ERROR becomes 1. In the next CStep, the
replay starts using the replay input data stored in REGsR.
At CStep k+2 in the replay, ReplayLast= 1 and the correct
CStep value is set to CStepS, REGsS in datapathS receive
correct data from either REGsR, REGsP, or FUsP, and the
normal operation resumes from CStep k+3.

In Fig. 12(b), REPLAY becomes 1 by an error in Lre-
playP or RreplayP at CStep k+ 1. REPLAY returns to the
correct value 0 at CStep k+2 but erroneous operations are
executed in datapaths and the results mismatch at CStep
k + 2. The signal ERROR becomes 1 at the checkpoint
CStep k+ 3. The replay starts and and the normal opera-
tion resumes from CStep k+3.



6
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

3.6 How to use replay input data

When executing replay, the data stored in REGsR is used
as replay input data to perform the operations necessary for
error correction. Replay is performed by the primary execu-
tion datapath DatapathP (functional unit FUsP and register
REGsP).

Operations in replay read necessary replay input data
directly from REGsR. Therefore MUXs are connected be-
tween FUsP and REGsR as shown in Fig. 13. As the replay
proceeds, operations may read the data corrected by replay
and stored in the primary data registers REGsP.

At the end of replay, to prepare to resume the normal
operation, REGsS must receive correct data. The correct
data are obtained from either REGsR storing error-free data,
REGsP storing the data corrected by the operations in re-
play, or FUsP executing the operation at the last CStep in
replay. Therefore MUXs are connected between REGsS,
REGsR, REGsP, and FUsP as shown in Fig. 14.

Each register of REGsR receives data from the corre-
sponding register of REGsP and no MUX is necessary from
the output of REGsP to the input of REGsR.

4. Experimental Results

We evaluate the area of DMR LSI using the proposed DMR
controller. Targeted processing is 5th order wave elliptic fil-
ter (WEF) [12] (26 additions, 8 multiplications), 8 input 8
output processing (DFG1) (30 adds, 14 muls), 16 input 16
output processing (16x16) (64 adds, 32 muls) and the DFGs
are shown in Figs. 15 to 17, respectively. In the DFGs,
‘+’ represents an addition and ‘∗’ represents a multiplica-
tion. The schedule of operations, the binding between oper-
ations and FUs, and the binding between data and registers
were assumed to be given as shown in Figs. 18 to 20. For
example, 2 adders (ADD0, ADD1), 2 multipliers (MUL0,
MUL1), and 10 registers (REG0 to REG9) were used for
DatapathP in WEF. The schedule and binding for primary
and secondary operations were identical. Hence additional 2
adders (ADD2, ADD3), 2 multipliers (MUL2, MUL3), and
10 registers (REG10 to REG19) were used for DatapathS in
WEF although these are not shown in Fig. 18. Binding was
optimized by simulated annealing [13] to minimize the area
of MUXs.

The checkpoints were determined so that the delay
penaltyPd is 4 CCs for all the cases. The checkpoints are
shown with small rectangles in Figs. 18 to 20. Then the nec-
essary replay input data were derived and the binding be-
tween the replay input data and REGsR registers were given
as shown in Figs. 18 to 20. For example, as REGsR, 10
registers (REG20 to REG29) were used to store replay in-
put in WEF. Consequently, 4 adders, 4 multipliers, and 30
registers as well as necessary multiplexors are used in the
datapath for WEF. Similarly, 4 adders, 4 multipliers, and 48
registers were used for DFG1, and 4 adders, 4 multipliers,
and 72 registers for 16x16.

1

2

3

4 5 6 7

8

27

24

23

25 26

10

9

16

15 17 20 22

18 19

14

13

12 11

31

30

29 28

21

33 32

34

D

D D

D D

D

D

x0

Fig. 15 The DFG of 5th order wave elliptic filter (WEF).

33

5 67

2

3 4

1

34

35

36

39

25 2627

23 24

8 9

1210 10

28 29

3230 31

15

13 16

18

17

14

19

20 43

40

38

37

22

21

42

41

44

x5

x6

x7

x2

x3

x4

x1

x0

x5

x7

x6

x2

x3

x4

x1

x0

x0

x2

y5

y2

y3

y4

y1

y0

y7

y6

x5

Fig. 16 The DFG of 8-input, 8-output processing (DFG1).

53

54

55

56

89

44

43

42

41

49

50

51

52

65

66

75

76

73

74

29

30

31

32

26

27

28

25

90

91

67

68

79

80

78

92

77

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

20

19

18

17

61

62

63

64

93

48

47

46

45

57

58

59

60

69

70

83

84

81

82

37

38

39

40

34

35

36

33

94

95

71

72

87

88

86

96

85

24

23

22

2113

14

15

16

10

11

12

9

5

6

7

8

2

3

4

1

x[8]

x[9]

x[10]

x[11]

x[12]

x[13]

x[14]

x[15]

x[8]

x[9]

x[10]

x[11]

x[12]

x[13]

x[14]

x[15]

Fig. 17 The DFG of 16-input, 16-output processing (16x16).

1 10

16 21

15 9

18 19

6 5 8 12 2 3 14 11

27 22 24 26 33 23 29 34 31 28

17

ADD0

20

7

25 32

4

30

13

ADD1

MUL0

MUL1

REG0

REG1

REG2

REG3

REG4

REG5

REG6

REG7

REG8

REG9

REG20

REG21

REG22

REG23

REG24

REG25

REG26

REG27

REG28

REG29

1 2 3 4 65 8 13 177 109 1211 161514 180CStep

31

11

x0

x3

x14

x11

x19

x34

x28

x31

1

22

4

5

20

2

3010 9 7 6

13

16 21 18 19

33

32

27 24 25 26

34

281517

8

12

23 29

3

14

x32

x3

x11

x19

x34

x28

x0

x14

x31

10

21

27

1

15

22

6

26

4

12

29

32

19

x32

Fig. 18 The schedule and binding of WEF.

The LSI areas of 16-bit resources are shown in Table 1.
These areas were determined by logic synthesis targeting
a CMOS 90 nm process and the CC of 1 ns. An addition
takes one CC. A multiplication takes two CCs and is not
pipelined. The controller is described using HDL and its



OTSUKA and ITO: DOUBLE MODULAR REDUNDANCY DESIGN OF LSI CONTROLLER FOR SOFT ERROR TOLERANCE
7

REG43

REG44

REG45

REG46

REG47

REG34

REG35

REG36

REG37

REG38

REG39

REG40

REG41

REG42

x1

x2

x3

x4

x6

x5

x7

x0

REG33

REG32

9

4

10

28

5

24

29

23

172

1 15

18

25

30

21

19

20

33

34

22

ADD0

ADD1

MUL0

MUL1

1

2

3 4

8

7

9 2112 18

191615

10

5 11

17

13

14

3622

27

6

43

32 4435

383720

30

25 31

26 33

34 41

39

42

40

REG0

REG1

REG2

REG3

REG4

REG5

REG6

REG7

REG8

REG9

REG10

REG11

REG12

REG13

REG14

REG15

x1

x2

x3

x4

x6

x5

x7

x0

1

3

5

8

7

9

26

25

28 27

29

30

31

32

41

42

43

44

38

37

33

34

36

35

40

10

11 12

13

4

16

18

17

19

20

22

23

24

2 21

1 2 3 4 65 87 90 11 12 13 14 1615 1817 1910CStep

14

6 15

39

Fig. 19 The schedule and binding of DFG1.

ADD0

ADD1

MUL0

MUL1

REG0

REG1

REG2

REG3

REG4

REG5

REG6

REG7

REG8

REG9

REG10

REG11

REG12

REG13

REG14

REG15

REG16

REG17

REG18

REG19

REG20

REG21

REG22

REG23

REG48

REG49

REG50

REG51

REG52

REG53

REG54

REG55

REG56

REG57

REG58

REG59

REG60

REG61

REG62

REG63

REG64

REG65

1 2 3 4 65 87 90 11 12 13 14 1615 1817 1910 21 22 23 24 2625 2827 2920 31 32 3330CStep

REG66

REG67

REG68

REG69

REG70

REG71

x1

x2

x3

x4

x6

x5

x8

x7

x9

x0

x10

x11

x12

x13

x14

x15

1

2

3

4

6

5

8

7

9

26

25

28

27

29

30

31

32

41

42

43

44

46

45

48

47

38

37

53

54

58

57

61

62

49

50

33

34

36

35

y2

y4

y6

y0

y8

y10

y12

y14

74

76

78

80

84

82

88

86

y1

y3

y5

y7

y9

y11

y13

y15

40

39

10

11

12

13

14

16

15

18

17

19

20

21

22

23

24

51

52

56

55

59

60

63

64

66

65

68

67

69

70

71

72

x1

x2

x3

x4

x6

x5

x8

x7

x9

x0

x10

x11

x12

x13

x14

x15

11

12

13

14

17

2

21

15

16

5

1

4

7

19

3

8

31

23

6

20

22

24

38

37

18

44

45

41

43

32

42

39

26

34

28

40

27

33

25

47

36

35

48

55

60

46

53

y1

69

64

70

54

59

56

65

49

61

63

66

50

58

62

71

82

72

80

84 y10

57

67

78

68

y3

y9

y4

y2

y11

y5

y0

88

y7

y6

86

y8

1

2

3

4 6

5 8

7

9 11

12

13

14

16

15

18

17 19

10

21

22 23

24

26

25 28

27

29

20

31 33

32 34

36

3538

37

39

30

41

42 43

44 46

45 48

47

4940 51

52 53

5456

55

58

5759 50

61

62

63

64

66

65 68

67 69

60

71

72

7374

76 75

78 77

79

70

8182

8384 86 85

88 87

89

80

91

92

93

94

96

9590

Fig. 20 The schedule and binding of 16x16.

area is obtained by logic synthesis in the same way as the
resources.

It is possible that the replay is done both in the pri-
mary and the secondary parts. Let this be called simple
DMR. The area of the SGs and MUXs are compared in
Table 2 where MUXP is the area of MUXs in datapathP,
and MUXS in datapathS. In simple DMR, SGs and MUXs
in datapaths should be identical respectively between the
primary and the secondary parts, and the area of SGs and
MUXs are twice the SGP and MUXP plus SGR. While the
area of SGs and MUXs of simple DMR is smaller than that
of the proposed DMR where the area of SGs and MUXs
are the sum of SGP, MUXP, SGS, MUXS, and SGR in the
case of 16x16, it is reversed in the case of WEF and DFG1.
Which DMR method achieves the smaller would depend on
the given DFG, schedule, the number of resources, andPd.

Table 1 Resources (16 bits)

Area [µm2]
Adder 258
Multiplier 3973
Register 297
Comparator 115
Majority voter 120
2-to-1 Multiplexor 92
3-to-1 Multiplexor 135
4-to-1 Multiplexor 181
5-to-1 Multiplexor 240
6-to-1 Multiplexor 291
7-to-1 Multiplexor 339

Table 2 The area of the signal generators and multiplexors in datapath

SGP SGS SGR MUXP MUXS
WEF 347 240 50 4216 3931
DFG1 233 193 31 4294 3900
16x16 600 530 140 6358 7182
The unit isµm2.

In the remainder, the results for the proposed MDR rather
than the simple DMR are presented.

The area of the controllers are shown in Fig. 21. ‘Full
TMR’, ‘TMR Controller’, and ‘DMR Controller’ are the
TMR controller for full TMR in Fig. 5, the TMR controller
for DMR datapath in Fig. 8, and the proposed DMR con-
troller in Fig. 10, respectively. The area of the proposed
controller is about half the area of the TMR controller for
DMR datapath, and slightly larger than the TMR controller
for full TMR. The number of registers for CStep (CStep,
CStepP, CStepS, and CStepR) were reduced from 6 in the
TMR controller to 2 in the proposed DMR controller, the
MUX and NCStep from 3 to 2, and the circuit ReplayLast
and 1-bit register ChkPt from 3 to 1. Although a CStep com-
parator was added in the proposed DMR, the majority vot-
ers were removed. The combination of these factors was the
reason of the reduction of the area of the proposed DMR
controller from the TMR controller.

The comparison result of LSI area among the con-
ventional full-TMR configuration and the TMR controller
for DMR datapath and the proposed DMR configuration is
show in Fig. 22. DMR requires data registers REGsR for
replay input data, and the number of registers is almost the
same as REGsP and REGsS. Therefore, it can be seen from
Fig. 22 that the register areas for DMR datapath are almost
the same as TMR datapath, which have tripled data regis-
ters. The number of FUs in the DMR datapath is reduced
to two-thirds of TMR. Since the area of a multiplier is large
compared to other resources, the reduction in the number
of multipliers results in a smaller area of DMR than TMR
as shown in Fig. 22. Comparing full TMR and DMR with
proposed controller, the achieved area reduction is 19% for
WEF, 16% for DFG1, and 11% for 16x16.

The area of the controllers without SGs were estimated
when the schedule length is large. Figure 23 shows the area
of the conventional TMR controller and the proposed DMR
controller for the DMR datapath when the schedule length is



8
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

0

200

400

600

800

1000

1200

Full TMR TMR Controller DMR Controller

A
re

a
[µ

m
2
]

NCStep CStep Majority
Lreplay Rreplay Misc BlockL

ReplayLastCStepR
ChkPt

Mux
Compare

(a)

0

200

400

600

800

1000

1200

Full TMR TMR Controller DMR Controller

A
re

a
[µ

m
2
]

NCStep CStep Majority
Lreplay Rreplay Misc BlockL

ReplayLastCStepR
ChkPt

Mux
Compare

(b)

0

200

400

600

800

1000

1200

1400

Full TMR TMR Controller DMR Controller

A
re

a
[µ

m
2
]

NCStep CStep Majority
Lreplay Rreplay Misc BlockL

ReplayLastCStepR
ChkPt

Mux
Compare

(c)

Fig. 21 The area of the redundant controllers. (a) WEF, (b) DFG1, (c) 16x16.

0

10000

20000

30000

40000

50000

FU Reg RegR Mux MuxP MuxS
Maj_DP Comp_DP Controller SigGen

Full TMR TMR Controller DMR Controller

A
re

a
 [

µm
2
]

(a)

0

10000

20000

30000

40000

50000

60000

FU Reg RegR Mux MuxP MuxS
Maj_DP Comp_DP Controller SigGen

Full TMR TMR Controller DMR Controller

A
re

a
 [

µm
2
]

(b)

0

10000

20000

30000

40000

50000

60000

70000

FU Reg RegR Mux MuxP MuxS
Maj_DP Comp_DP Controller SigGen

Full TMR TMR Controller DMR Controller

A
re

a
 [

µm
2
]

(c)

Fig. 22 The total area of the redundant processing systems. (a) WEF, (b) DFG1, (c) 16x16.

0

500

1000

1500

2000

2500

3000

C
o
n
tr

o
lle

r 
a
re

a
 [

µm
2
]

Schedule length [control steps]

TMR
Proposed

w=5 w=10 w=15
w=5 w=10 w=15

experiment
experiment

20 50 100 1000200 500

Fig. 23 The area of the controllers.

100, 200, 500, and 1000 steps, and checkpoints are set every
W = 5, 10, and 15 CSteps to achievePd = W. The number
of bits of the registers CStep, CStepP, CStepS, and CStepR,
NCStep circuits and MUX were derived by the schedule
length, and ReplayLast circuit was designed according to
the checkpoints determined byW. In all the cases, it can
be seen that the area of the proposed controller is approxi-
mately half that of the conventional controller. The area of
the controllers for WEF, DFG1, and 16x16 are also shown in
Fig. 23 and it is confirmed that the estimation is appropriate.

5. Conclusions

In this paper, an architecture of a DMR controller was pro-
posed to implement the controller as well as the datapath

in DMR. The area of the proposed DMR controller is about
half the area of the TMR controller for DMR datapath. Total
area of the LSI with the DMR configuration can be reduced
up to 19% from full TMR configuration.

The proposed controller assumes that the operation and
data storing schedules of the primary and secondary are
identical. Consideration for the case that the schedules for
the primary and secondary operations are not identical for
any reason such as minimizing the number of FUs remains
as future work.

References

[1] R. Baumann, “Soft errors in advanced computer systems,” IEEE De-
sign & Test of Computers, vol.22, no.3, pp.258–266, 2005.

[2] F. Wang and V.D. Agrawal, “Single event upset: An embedded tuto-
rial,” Proc. Int. Conf. VLSI Design, pp.429–434, 2008.

[3] R.E. Lyons and W. Vanderkulk, “The use of triple-modular redun-
dancy to improve computer reliability,” IBM Journal of Research
and Development, vol.6, no.2, pp.200–209, 1962.

[4] S. Matsuzaka and K. Inoue, “A dependable processor architecture
with data-path partitioning,” IPSJ Tech. Report, vol.2004-SLDM-
117, pp.7–11, 2004.

[5] S. Mitra, M. Zhang, S. Waqas, N. Seifert, B. Gill, and K.S. Kim,
“Combinational logic soft error correction,” Proc. IEEE Int. Test
Conf., pp.824–832, 2006.

[6] Y. Suda and K. Ito, “A method of power supply voltage assign-
ment and scheduling of operations to reduce energy consumption of
error detectable computations,” Proc. The 17th Workshop on Syn-
thesis And System Integration of Mixed Information Technologies,
pp.420–424, 2012.



OTSUKA and ITO: DOUBLE MODULAR REDUNDANCY DESIGN OF LSI CONTROLLER FOR SOFT ERROR TOLERANCE
9

[7] J. Oh and M. Kaneko, “Area-efficient soft-error tolerant datap-
ath synthesis based on speculative resource sharing,” IEICE Trans.
Fund., vol.E99-A, no.7, pp.1311–1322, 2016.

[8] J. Oh and M. Kaneko, “Latency-aware selection of check vari-
ables for soft-error tolerant datapath synthesis,” IEICE Trans. Fund.,
vol.E100-A, no.7, pp.1506–1510, 2017.

[9] K. Ito, Y. Ishihara, and S. Nishizawa, “Minimization of vote oper-
ations for soft error detection in dmr design with error correction
by operation re-execution,” IEICE Trans. Fund., vol.E101-A, no.12,
pp.2271–2279, 2018.

[10] Y. Kitazawa and K. Ito, “Register minimization and its application
in schedule exploration for area minimization for double modu-
lar redundancy lsi design,” IEICE Trans. Fund., vol.E105-A, no.3,
pp.530–539, 2022.

[11] A. Orailoğlu and R. Karri, “Coactive scheduling and checkpoint de-
termination during high-level synthesis of self-recovering microar-
chitectures,” IEEE Trans. VLSI Syst., vol.2, no.3, pp.304–311,
1994.

[12] S.M. Heemstra de Groot, S.H. Gerez, and O.E. Herrmann, “Range-
chart-guided iterative data-flow graph scheduling,” IEEE Trans. Cir-
cuits Syst.-I: Fund. Theory & Appl., vol.39, pp.351–364, 1992.

[13] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by sim-
ulated annealing,” Science, vol.220, no.4598, pp.671–680, 1983.

Katsutoshi Otsuka received the B.E. and
M.E. degrees in Electrical and Electronic Engi-
neering from Saitama University, Japan, in 2022
and 2024, respectively. Currently he is with KY-
OCERA Document Solutions Inc. His research
interests include reliable LSI design.

Kazuhito Ito received the B.E., M.E.,
and Ph.D degrees in Electrical Engineering from
Tokyo Institute of Technology, Japan, in 1987,
1989, and 1992, respectively. He is a professor
of the Graduate School of Science and Engineer-
ing, Saitama University, Saitama, Japan. His re-
search interests include high-level synthesis in
LSI design, VLSI signal processing, and design
automation of system LSIs. He is a member of
IEICE, IPSJ, and IEEE.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

