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PAPER
Statistical-Mechanics Approach to Theoretical Analysis
of the FXLMS Algorithm∗

Seiji MIYOSHI†a) and Yoshinobu KAJIKAWA††, Senior Members

SUMMARY We analyze the behaviors of the FXLMS algorithm us-
ing a statistical-mechanical method. The cross-correlation between a pri-
mary path and an adaptive filter and the autocorrelation of the adaptive
filter are treated as macroscopic variables. We obtain simultaneous differ-
ential equations that describe the dynamical behaviors of the macroscopic
variables under the condition that the tapped-delay line is sufficiently long.
The obtained equations are deterministic and closed-form. We analytically
solve the equations to obtain the correlations and finally compute the mean-
square error. The obtained theory can quantitatively predict the behaviors
of computer simulations including the cases of both not only white but also
nonwhite reference signals. The theory also gives the upper limit of the
step size in the FXLMS algorithm.
key words: FXLMS algorithm, adaptive filter, active noise control,
statistical-mechanical informatics, long-filter assumption

1. Introduction

The adaptive filter is one of the major techniques in digi-
tal signal processing. Its purpose is to identify an unknown
system through which a reference signal propagates. Active
noise control (ANC), which has been practically realized
owing to the progress of digital signal processing technol-
ogy [1]–[4], is an application of the adaptive filter. ANC
is divided into two types, feedforward and feedback ANC
[3], [4]. In this paper, we focus on the feedforward ANC.
In the ANC system, it should be noted that a secondary path
also exists, which is the propagating path from the canceling
loudspeaker to the error microphone.

The least-mean-square (LMS) algorithm is the most
commonly used algorithm in adaptive filters. The LMS al-
gorithm was proposed more than half a century ago [5]–[7].
When the LMS algorithm is applied to ANC, the secondary
path should be estimated beforehand and a signal that has
passed through the estimated secondary path is used. We
call this procedure the Filtered-X LMS (FXLMS) algorithm
[8]. This algorithm is a generalization of the LMS algorithm
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because the FXLMS algorithm is equivalent to the LMS al-
gorithm when the secondary path impulse response is a sin-
gle unit pulse with no delay in time domain.

To theoretically analyze the behaviors of the LMS al-
gorithm, various methods have been proposed. One of the
most commonly used methods is the independence assump-
tion [9]–[11], and the FXLMS algorithm has also been ana-
lyzed on the basis of this assumption [12]–[15]. In a finite-
duration impulse response (FIR) filter, which is commonly
used as the adaptive filter [6], [7], the elements of the tap
input vector are shifted along the tapped-delay line. Theo-
retical treatment of the effect of such a tap input vector is
intractable. Professor Haykin [6] expressed this difficulty
as “Indeed, despite the extensive effort that has been ex-
pended in the literature to analyze the LMS filter, we still
do not have a direct mathematical analysis of its stability
and steady-state performance, and quite probably we never
will.” To evade this difficulty, with the independence as-
sumption, successive tap input vectors of the tapped-delay
line are assumed to be independently generated at each time
step. However, the actual elements of the tap input vector
are merely shifted to the next position. Hence, each tap in-
put vector is related to the previous one and the vectors are
thus not independent. Owing to this fact, analyses based on
the independence assumption involve essential and poten-
tial problems [6], [7]. Note that this assumption is incorrect
even if the reference signal is independently generated, that
is, the reference signal is white.

Various previous studies have been based on assump-
tions other than the independence assumption. In [16]–[19],
another form of independence was assumed. That is, the
correlation between the tap input vectors is assumed to be
greater than the correlation between the coefficient vector
of the adaptive filter and the tap input vectors. However,
analytical results naively based on such assumptions can-
not precisely predict experimental results, particularly when
there is little or no background noise. In [15], [20] and [21],
it was assumed that the step size is small. In [22], [23] and
[24], it was assumed that the reference signal is sinusoidal.
Thus, a general theory for the FXLMS algorithm has not
been given in the literature even though these algorithms are
widely used.

Meanwhile, statistical mechanics, which is a branch
of physics, was constructed with the aim of understanding
the macroscopic properties of gases and magnets from the
properties of microscopic elements such as molecules and
atoms. In statistical mechanics, numerous powerful ana-
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lytical and numerical methods have been developed. The
field in which these methods are used to solve problems
in information technology or information science is called
statistical-mechanical informatics [25], which is producing
significant results in many fields, such as associative mem-
ory models [26], [27], error-correcting codes [28], wire-
less communications [29], image processing [30], statisti-
cal learning [31], and so forth. In statistical-mechanical
informatics, universal properties, which are independent of
the realizations of individual problems, are macroscopically
discussed by assuming the large-system limit. In regard to
statistical learning, numerous models have been analyzed,
in which learning machines are modeled using perceptrons
[25], [31].

Comparing an FIR filter with a linear perceptron that
has a linear output function, it can be observed that they
resemble each other in that their outputs are the sums of
products of many inputs and coefficients. Focusing on
this point, in this paper we theoretically analyze the be-
haviors of the FXLMS algorithm by applying a statistical-
mechanical method that has been used to analyze on-line
learning [25], [31]–[33]. Cross-correlations between the el-
ements of a primary path and those of an adaptive filter
and autocorrelations of the elements of the adaptive filter
are treated as the macroscopic variables. We obtain simul-
taneous differential equations that describe the dynamical
behaviors of the macroscopic variables under the condition
that the tapped-delay line is sufficiently long. The obtained
equations are deterministic and closed-form. We analyti-
cally solve the equations to obtain the correlations and fi-
nally compute the mean-square error (MSE). That is, we
tackle the intractable problem by using the assumptions that
the correlation between the coefficient vector of the adap-
tive filter and the tap input vectors is small and that the im-
pulse responses of the primary path and the adaptive filter
are sufficiently long. Note that this long-impulse-response
assumption or long-filter assumption used in our analysis is
reasonable, considering actual acoustic systems. The ob-
tained theory quantitatively agrees with the results of com-
puter simulations as shown later.

The authors previously reported an approximate ver-
sion [34] of the theory based on a statistical-mechanical
method. However, the approximate version cannot predict
simulation results when the step size is large since it ne-
glects the correlations, which are generated by the effect of
the secondary path, between past tap input vectors and the
coefficient vector of the adaptive filter. In this paper, we de-
rive an exact theory taking the above correlations into con-
sideration and describe details of the analysis to show the ef-
fectiveness of the statistical-mechanical method in the field
of signal processing. In contrast to the approximate version
[34], the obtained theory is valid even when the step size is
large since it computes the correlations between past tap in-
put vectors and the coefficient vector of the adaptive filter.
This breakthrough also makes it possible to obtain the upper
bound of the step size as described in this paper.

The analysis considering the above correlations was

partially reported in [35]. However, for analytical conve-
nience in [35] as well as in [34], the primary path was a
series connection of an unknown system and the secondary
path in the model. This assumption was also a severe limita-
tion. Therefore, in this paper we obtain a theory in which the
primary path does not include the secondary path. Further-
more, our previous theories [34], [35] treated only a white
reference signal. This assumption was also a severe limita-
tion since a reference signal is not necessarily white. There-
fore, in this paper, we generalize the previous theories to
the case where the reference signal is not necessarily white
by introducing the correlation function of the reference sig-
nal. In addition, we show that the theory can predict the
behaviors in the case of an actual primary path by absorbing
the autocorrelations of the primary path. These generaliza-
tions were partially reported in [36] and [37], respectively.
However, in this paper, we present the entire theory, which
has been further generalized regarding the tap lengths of the
primary path and adaptive filter, and we discuss the valid-
ity and limitations of the theory in detail. Furthermore, the
steady-state analysis is discussed in this paper.

This paper is organized as follows. After describing
the analytical model considered in this paper in Sect. 2, the
theory of the FXLMS algorithm is derived in Sect. 3 using
a statistical-mechanical method. In Sect. 4, the validity of
the derived theory is verified by comparison with simula-
tion results. In addition, the learning curves under several
conditions, the steady-state analysis, and the effect of the
estimation error of the secondary path are discussed. Con-
clusions are presented in Sect. 5.

2. Analytical Model

Figure 1 shows a block diagram of the feedforward ANC
system considered in this paper. The primary path P is rep-
resented by an Np-tap FIR filter. Its coefficient vector is

p = [p1, p2, . . . , pNp ]T , (1)

where T denotes the transpose of a vector. Each coefficient
pi is assumed to be generated from the stochastic process
expressed as

〈pi〉 = 0,
〈
pi pi− j

〉
= κ j, (2)

and is time-invariant. Here, 〈·〉 denotes expectation. If
κ j = 0 when j , 0 in (2), the elements of the impulse re-
sponse of the primary path are uncorrelated with each other.
In this paper, we consider the autocorrelated primary path
by introducing the covariance function κ j.

The adaptive filter H is an Nh-tap FIR filter. Its coeffi-
cient vector is

h(n) = [h1(n), h2(n), . . . , hNh (n)]T , (3)

where n denotes the time step. The initial value hi(0) of each
coefficient is assumed to be generated from the stochastic
process expressed as
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Fig. 1 Block diagram of the feedforward ANC system.

〈hi(0)〉 = 0,
〈
hi(0)h j(0)

〉
= δi, j. (4)

Here, δ denotes the Kronecker delta, defined as δi, j = 1 (i =

j), or 0 (otherwise). Note that the case where hi(0) are all
zero can be analyzed in the framework of the present paper
by a slight modification of the initial value of the differential
equations as described in Sect. 3.

The reference signal x(n) is assumed to be drawn from
a distribution with

〈x(n)〉 = 0, 〈x(n)x(n − k)〉 =
rk

Nh
. (5)

The reference signal x(n) is shifted through the tapped-delay
line. Therefore, the tap input vectors of the primary path P
and adaptive filter H are

xp(n) = [x(n), x(n − 1), . . . , x(n − Np + 1)]T (6)

and

xh(n) = [x(n), x(n − 1), . . . , x(n − Nh + 1)]T , (7)

respectively. In the above model, ‖p‖ and ‖h(0)‖ are
O(

√
Np)† and O(

√
Nh), respectively. On the other hand,

‖xp(n)‖ and ‖xh(n)‖ are O(1). Here, ‖·‖ denotes the `2-norm.
The covariance of the reference signal x(n) is normalized
by Nh in (5). Assuming such a covariance and normalizing
the time step n by Nh, we can compare the learning curves
of different Nh as described later. Note that generality is
not lost by this normalization because we can determine the
value of rk such that rk/Nh equals the actual covariance. For
example, if the actual variance of the reference signal is 0.1
and the actual number Nh of taps of the adaptive filter H is
200, we only have to set r0 = 20. Considering the limit
Np,Nh → ∞ as described later, we can analytically obtain
dynamical behaviors that are independent of Np and Nh. It
should also be noted that only the mean and covariance of
the distribution are defined in (5). No specific distributions,
for example, the Gaussian distribution, are assumed. The
same statements are true for both the coefficients of the pri-
mary path P and the initial values of the coefficients of the

†We use the big O notation throughout this paper. We express
f (N) = O(g(N)) if and only if there exists a positive real number L
and a real number N0 such that | f (N)| ≤ L|g(N)| for all N > N0.

adaptive filter H. If rk = 0 when k , 0 in (5), the refer-
ence signal is white. In this paper, we analyze the behavior
of the FXLMS algorithm for a nonwhite reference signal by
introducing the covariance function rk.

Since both P and H are FIR filters, their outputs are
convolutions of their own coefficients and a sequence of ref-
erence signals. That is, the outputs d(n) of the primary path
P and u(n) of the adaptive filter H are

d(n) = pT xp(n), u(n) = h(n)T xh(n), (8)

respectively.
The secondary path C is modeled by a K-tap FIR filter.

Its coefficient vector is

c = [c1, c2, . . . , cK]T (9)

and is time-invariant. Since C is also an FIR filter, its output
is a convolution of its coefficients and its input sequence.
Therefore, the output y(n) of the secondary path C is

y(n) =

K∑
k=1

cku(n − k + 1). (10)

The error signal e(n) is generated by adding an inde-
pendent background noise ξ(n) to the difference between
d(n) and y(n). That is,

e(n) = d(n) − y(n) + ξ(n). (11)

Here, the mean and variance of ξ(n) are zero and σ2
ξ , respec-

tively.
The LMS algorithm is used to update the adaptive fil-

ter. Here, the coefficient vector c of the secondary path C
is unknown in general. Therefore, the estimated secondary
path C̃, which has been estimated in advance by a certain
method, is used to update the adaptive filter. This procedure
is called the FXLMS algorithm. When the estimated sec-
ondary path C̃ is a K-tap FIR filter and its coefficient vector
is

c̃ = [c̃1, c̃2, . . . , c̃K]T , (12)

the update procedure obtained by the FXLMS algorithm is

h(n + 1) = h(n) + µe(n)
K∑

k=1

c̃k xh(n − k + 1), (13)

where µ is the step size.

3. Theory

In this section, we theoretically analyze the behaviors of the
FXLMS algorithm using a statistical-mechanical method.
From (10) and (11), the MSE is expressed as follows [34]–
[37].〈

e2(n)
〉

=
〈
d2(n)

〉
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+

K∑
k=1

K∑
k′=1

ckck′
〈
u(n − k + 1)u(n − k′ + 1)

〉
− 2

K∑
k=1

ck 〈d(n)u(n − k + 1)〉 + σ2
ξ (14)

Equation (14) includes many means of the products of
u and u and the products of d and u, including cases where
their time steps are different. To calculate these products,
we introduce the Nh-dimensional vectors

k j(n) = [k j,1(n), k j,2(n), . . . , k j,Nh (n)]T . (15)

Here, j = −M, . . . ,M and the elements of the vectors are

k j,i(n) = hmod(i+ j−1,Nh)+1(n), (16)

where mod(i+ j−1,Nh) denotes the remainder when i+ j−1
is divided by Nh. Therefore, (15) and (16) indicate that shifts
of up to M are considered. This means that the correlations
for up to M shifts are considered as described later. Note
that k0(n) = h(n). Here, the fact that k j(n) is the shifted
vector of h(n) is important. Although (16) expresses k j(n)
as the circularly shifted vector of h(n), circular shifting is
not essential. In the long-filter assumption described below,
generality is not lost even if we assume a linearly shifted
vector instead of a circularly shifted vector because the ef-
fect of the ends of h(n) and k j(n) can be ignored macroscop-
ically since these vectors are infinitely long in the long-filter
assumption.

In the following, long filters, that is, Np,Nh → ∞, are
assumed. This condition corresponds to the thermodynamic
limit in statistical mechanics[25]. With this assumption, we
can deterministically describe the macroscopic behaviors of
the system, as described later, although the reference sig-
nal is stochastically generated. The long-filter assumption
is more acceptable than the independence assumption [9]–
[15] used in the literature since the numbers of taps of the
unknown system and the adaptive filter are usually large in
actual acoustic systems.

If the shift number j is O(1), we obtain

h(n)T xh(n) = k j(n)T xh(n − j). (17)

Equation (17) is justified in Appendix A. Equation (17) is
based on the fact that the shift of the tap input vector is can-
celed by the shift of the elements of the adaptive filter. Here,
the effect of the ends of the adaptive filter can be ignored
since both h(n) and k j(n) are Nh-dimensional, i.e., infinitely
long, vectors. Equation (17) implies that the shift j in the
time direction can be replaced by the subscript of vector k.
In addition, we consider that

a =
Np

Nh
(18)

is kept constant and introduce two macroscopic variables
R j(n) and Q j(n) defined by

R j(n) =
1

āNh

āNh∑
i=1

pik j,i(n), (19)

Fig. 2 Relationships among p, h, k, and correlations R and Q.

Q j(n) =
1

Nh

Nh∑
i=1

hi(n)k j,i(n). (20)

Here, ā is the smaller value of a and 1, that is,

ā = min(a, 1). (21)

Considering (16), it can be seen that R j(n) and Q j(n) are
equal to the means of pihi+ j(n) and hi(n)hi+ j(n), respec-
tively. That is, R j(n) and Q j(n) are the cross-correlation
between p and h(n) and the autocorrelation of h(n), respec-
tively. Figure 2 shows the relationships among the vectors
and the correlations. Note that Q j(n) is symmetric, that is,
Q j(n) = Q− j(n), from the definitions of Q j(n) and k j(n).
Q0(n) is the mean of h2

i (n) and is omitted in Fig. 2.
Then, we obtain

〈d(n − j)u(n)〉 = ā
M∑

i=−M

Ri(n)ri− j, (22)

〈u(n − j)u(n)〉 =

M∑
i=−M

Qi(n)ri− j, (23)

〈d(n − j)d(n)〉 = a
L∑

i=−L

κiri− j. (24)

Equations (22) and (24) are derived in detail in Appendix B
and Appendix C, respectively. As described in Appendix B,
we derived (22) based on the assumption that the correlation
between h(n) and xh(n) is small [16]–[18]. As described in
Sect. 1, theoretical treatment of the LMS algorithm is in-
tractable [6]. Therefore, we tackle this difficult problem by
using the above small-correlation assumption and the long-
filter assumption. Equation (23) is obtained in the same
manner as (22). Equations (22) and (23) indicate that the
correlations for up to only M shifts are considered. There-
fore, the 2M+1 vectors {k j}, j = −M, . . . ,M are considered
and it is assumed that R j = Q j = 0 when | j| > M. The larger
the value of M, the larger the computational cost and the
more precisely the theory can predict the simulation results
as shown later. In (24), L is the range in which two elements
of the primary path have some correlation. From (22)–(24),
we can express the MSE (14) in terms of R j(n) and Q j(n) as

〈
e2(n)

〉
=

K∑
k=1

ck

M∑
i=−M

( K∑
k′=1

ck′Qi(n)ri−k+k′
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− 2āRi(n)ri+k−1

)
+ a

L∑
i=−L

κiri + σ2
ξ . (25)

This formula shows that the MSE is a function of the macro-
scopic variables R j(n) and Q j(n). Therefore, we derive dif-
ferential equations that describe the dynamical behaviors of
these variables in the following.

We first derive a differential equation for R j(n). When
the coefficient vector h(n) of the adaptive filter is updated,
the j-shifted vector k j(n) is also changed. This change can
be described as

k j(n + 1)= k j(n) + µe(n)
K∑

k=1

c̃k xh(n − k + 1 − j). (26)

Note that the time step of the tap input vector xh in (26) is
shifted by j compared with that in (13). We define the Nh-
dimensional vector p̄ as

p̄ = [p1, p2, . . . , pāNh , 0, . . . , 0︸  ︷︷  ︸
(1−ā)Nh

]T . (27)

Multiplying both sides of (26) on the left by p̄T and using
(20), we obtain

āNhR j(n + 1)= āNhR j(n)+µe(n)
K∑

k=1

c̃kd̄(n−k+1− j). (28)

Here, d̄(n) = p̄T xh(n). Then, we obtain〈
d̄(n − j)u(n)

〉
= 〈d(n − j)u(n)〉 , (29)〈

d̄(n − j)d(n)
〉

=
ā
a
〈d(n − j)d(n)〉 . (30)

In (28), the left-hand side and the first term on the right-
hand side are O(Nh) and the other term is O(1). This means
that the coefficient vector h(n) of the adaptive filter should
be updated O(Nh) times to change R j(n) by O(1). There-
fore, we introduce time t = n/Nh and use it to represent the
adaptive process. Setting the variance and covariance of the
reference signal x(n) to be O(N−1

h ) as in (5) and consider-
ing the limit Nh → ∞, we can deterministically describe
the system’s behavior using a small number of macroscopic
variables as follows. Then, t becomes a continuous vari-
able since the limit Nh → ∞ is considered. This is a stan-
dard method in the statistical-mechanical analysis of on-line
learning [31].

If the adaptive filter is updated bNhdtc times in an in-
finitely small time dt, we can obtain bNhdtc equations as
follows:

āNhR j(n + 1) = āNhR j(n)

+ µe(n)
K∑

k=1

c̃kd̄(n − k + 1 − j), (31)

āNhR j(n + 2) = āNhR j(n + 1)

+ µe(n + 1)
K∑

k=1

c̃kd̄(n − k + 2 − j), (32)

...
...

...

āNhR j(n + bNhdtc) = āNhR j(n + bNhdtc − 1)
+ µe(n + bNhdtc − 1)

×

K∑
k=1

c̃kd̄(n − k + bNhdtc − j), (33)

where bNhdtc denotes the largest integer not greater than
Nhdt. Summing all these equations, we obtain

āNh(R j + dR j) = āNhR j

+ bNhdtcµ

×

〈
e(m)

K∑
k=1

c̃kd̄(m − k + 1 − j)
〉
. (34)

Here, from the law of large numbers, we have represented
the effect of the probabilistic variables by their means since
the updates are executed bNhdtc times, that is, many times,
to change R j by dR j. This property is called self-averaging
in statistical mechanics [25]. In (31)–(33), the difference in
the time steps of e and d̄ is −k + 1 − j. To express this,
an auxiliary time step m has been introduced in (34). From
(10), (11), (22), (24), (29), (30), and (34), we obtain a dif-
ferential equation that describes the dynamical behavior of
R j in a deterministic form as follows:

dR j

dt
=µ

K∑
k′=1

c̃k′

( L∑
i=−L

κiri+k′+ j−1

−

K∑
k=1

ck

M∑
i=−M

Riri+k−k′− j

)
. (35)

Next, multiplying (13) by (26) and proceeding in the
same manner as for the derivation of the above differential
equation for R j, we can derive a differential equation for Q j,
which is given by (36), where sgn(·) and Θ(·) are the sign
function and step function defined by

sgn(x) = 1 (x ≥ 0), or − 1 (otherwise), (37)
Θ(x) = 1 (x ≥ 0), or 0 (otherwise), (38)

respectively. In addition,

α = Θ(γ)γ − k′′, β = Θ(ε)ε − k′′, (39)
γ = j + 1 − k′, ε = − j + 1 − k′. (40)

Here, we have to treat the correlations carefully and execute
complicated calculations since the past tap input vectors xh
affect both the coefficient vector h of the adaptive filter and
its shifted vector k j. The derivation of (36) is outlined in
Appendix D.

Equations (35) and (36) are first-order ordinary differ-
ential equations with 3M + 2 variables since the correlations
for up to M shifts are considered as described before. That
is,

d
dt

z = Gz + b, (41)
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dQ j

dt
= µ

K∑
k′=1

c̃k′

{ M∑
i=−M

[
āRi

(
ri−γ + ri−ε

)
−

K∑
k=1

ckQi

(
ri−k′+k+ j + ri−k′+k− j

)]

− µ

[
sgn(γ)

|γ|∑
k′′=1

(
δα,0σ

2
ξ + a

L∑
i=−L

κiri+α

−

K∑
k=1

ck

M∑
i=−M

(
āRiri+k−1−α + āRiri+k−1+α −

K∑
k′′′=1

ck′′′Qiri−k+k′′′−α

)) K∑
i=1

c̃irk′−i− j+α

+ sgn(ε)
|ε |∑

k′′=1

(
δβ,0σ

2
ξ + a

L∑
i=−L

κiri+β

−

K∑
k=1

ck

M∑
i=−M

(
āRiri+k−1−β + āRiri+k−1+β −

K∑
k′′′=1

ck′′′Qiri−k+k′′′−β

)) K∑
i=1

c̃irk′−i+ j+β

]}

+ µ2
[ K∑

k=1

ck

M∑
i=−M

( K∑
k′=1

ck′Qiri−k+k′ − 2āRiri+k−1

)
+ a

L∑
i=−L

κiri + σ2
ξ

] K∑
k′′=1

K∑
k′′′=1

c̃k′′ c̃k′′′rk′′−k′′′− j, (36)

z = [Q0, . . . ,QM ,R−M , . . . ,R0, . . . ,RM]T . (42)

Here, the matrix G and vector b are determined by (35) and
(36). For example, the (2M +2+ j, 2M +2+ i) element of the
matrix G is equal to the coefficient of Ri on the right-hand
side of (35), that is,

G ji = −µ

K∑
k′=1

c̃k′

K∑
k=1

ckri+k−k′− j, (43)

where −M ≤ i, j ≤ M. Note that R0 is the (2M+2)th element
of z as shown in (42). As another example, the (2M+2+ j)th
element of the vector b is

b j = µ

K∑
k′=1

c̃k′

L∑
i=−L

κiri+k′+ j−1 (44)

as seen on the right-hand side of (35), where −M ≤ j ≤ M.
All initial values of Q j( j , 0) and R j are equal to zero

because hi(0) and pi are independently generated. The ini-
tial value of Q0 is unity since the initial value hi(0) of each
coefficient is generated from the stochastic process given by
(4). Therefore, z at t = 0 is

z(0) = [1, 0, . . . , 0︸  ︷︷  ︸
3M+1

]T . (45)

Using (45) as the initial condition, we can analytically solve
(41) to obtain

z(t) = eGt
(
z(0) − G−1e−Gt b + G−1b

)
, (46)

where eD is the matrix exponential function defined by

eD =

∞∑
k=0

1
k!

Dk = I +
1
1!

D +
1
2!

D2 + · · · . (47)

If we consider the case where the initial values of the

coefficients hi(0) are all zero, we can obtain the solution by
modifying (45) to

z(0) = [0, . . . , 0︸  ︷︷  ︸
3M+2

]T (48)

since the initial value of Q0 is zero in this case.
The averaging method and the ordinary differential

equation (ODE) method are well-known methods for an-
alyzing the dynamical behaviors of discrete-time update
systems [7], [21], [38], [39]. Here, we describe the dif-
ference between these methods and our proposed method.
When the averaging method and ODE method are ap-
plied, continuous-time differential equations are derived
from discrete-time equations based on the theorem that the
dynamical behaviors of the variables correspond to the av-
erage behaviors in the small-step-size limit. Therefore, the
small-step-size limit is essential in the averaging method
and ODE method. In contrast, in our proposed method, the
small-step-size condition is not explicitly used. In this case,
continuous-time differential equations are derived through
the reasonable processes described in this section. Here, we
note the following. Although the variance and covariance of
the reference signal are normalized by Nh, as shown in (5),
this normalization is not equivalent to the small-step-size as-
sumption. This is because the magnitude of the output of the
adaptive filter is kept to the same order when Nh approaches
infinity since not only the variance and covariance of the
reference signal become small as shown in (5) but also the
length of the adaptive filter becomes large. Therefore, the
theory derived in this section is also expected to predict the
experimental behaviors of a system in which neither the step
size nor the covariance of the reference signal is infinitely
small. To show the validity of the theory, in Sect. 4 we com-
pare and discuss the results obtained using the theory and
simulation results for a primary path and an adaptive filter
with finite numbers of taps when neither the step size nor



MIYOSHI and KAJIKAWA: STATISTICAL-MECHANICS APPROACH TO THEORETICAL ANALYSIS OF THE FXLMS ALGORITHM
2425

the covariance of the reference signal is infinitely small.

4. Results and Discussion

In this section, we discuss the validity of the theory obtained
in the previous section by comparison with simulation re-
sults. The conditions of the analysis and the simulation in
the following subsections may not appear to be consistent.
This is because each set of conditions is specifically selected
depending on the purpose of each subsection. The main con-
ditions in each subsection are summarized in Table 1.

4.1 Learning Curves and Ranges of Correlations

We first investigate the validity of the theory by compar-
ison with simulation results regarding the dynamical be-
haviors of the MSE, that is, the learning curves. Figure 3
shows the learning curves obtained using the theory in the
previous section, along with the corresponding simulation
results. The conditions are shown in Table 1. The step
size is µ = 0.1. The parameters that determine the vari-
ance and covariance of the elements of the primary path are
κk = δk,0, that is, the elements of the primary path are un-
correlated. The parameters that determine the variance and
covariance of the reference signal are rk = δk,0, that is, the
reference signal is white. There is no background noise, that
is, σ2

ξ = 0. In Fig. 3, the curves represent theoretical results
and the polygonal lines represent simulation results. In the
theoretical calculation, the results are obtained by substitut-
ing R j and Q j, which are obtained by solving (41), into (25)
in the cases where the ranges of the correlations considered
are M = 0, 1, 2, 6, and 10. Here, (41) is numerically solved
by the Runge-Kutta method because the calculation of the
analytical solution (46) involves numerical instability††. In
the computer simulations, four given primary paths are used
in the both cases of the numbers of taps of the primary path
and the adaptive filter are Np = Nh = 80 and 2000. For
all the computer simulations, ensemble means for 200 tri-
als are plotted for each given primary path. Each coefficient
pi of all the primary paths is independently generated from
the Gaussian distribution with a mean of zero and variance
of unity. Here, note that all of the simulation results using
Np = Nh = 80 and 2000 and the theoretical results derived
using Np,Nh → ∞ can be compared along a single vertical
axis because the variance of the reference is normalized by
Nh, as shown in (5), and the variable t = n/Nh is introduced
instead of the number of updates n itself as described be-
fore. The steady-state MSE, as well as the learning curves,
is independent of Nh since the variance of the reference sig-
nal is normalized by Nh in the model assumed in this paper.
All initial values of the coefficients hi(0) are set to zero in
the simulation, and the initial condition (48) is used in the

††The numerical instability regarding the analytical solution
originates from the fact that the analytical solution includes the ma-
trix exponential function defined by (47). Since (47) is expressed
as an infinite series, some numerical computations are necessary
and instability exists.

Fig. 3 Learning curves obtained theoretically and by simulation. The
theoretical results for M = 6 and M = 10 almost overlap.

theoretical calculation to compare the derived theory with
the previous theory in [19]. The reason why the theory in
[19] was chosen for comparison is that it is a relatively new
theory that avoids the independence assumption and is used
to analyze the dynamical behaviors of the MSE, similarly to
the theory derived in this paper.

Figure 3 shows that the learning curves obtained by the
computer simulations considerably vary in the case of Np =

Nh = 80, whereas the variation is small in the case of Np =

Nh = 2000. The theory derived in this paper predicts the
simulation results well in the average sense. The larger the
value of M, the more closely the theoretical results agree
with the average simulation results. The theoretical results
for M = 6 and M = 10 almost overlap and agree with the
average simulation results reasonably well. The long-time
dynamical behaviors can be predicted by using a large value
of M.

The four learning curves obtained from the theory in
[19], which assumes a small step size and statistical inde-
pendence between the adaptive filter and the tap input vec-
tors, are shown with thin lines in Fig. 3. In each of the four
cases, exactly the same primary path as that used in the com-
puter simulations for Np = Nh = 80 has been used. Note that
the theory in [19] does not provide an asymptotic analysis.
Therefore, the results depend on the realized concrete val-
ues of the primary path. The theoretical results obtained by
the theory in [19] excessively vary and are too sensitive to
the given primary path. The theory cannot predict the corre-
sponding simulation results in the model setting described in
this paper. On the other hand, the theory derived in this pa-
per predicts the average simulation results reasonably well.

The theory derived in this paper can also predict sim-
ulation results for large Np and Nh, i.e., 2000, using a rela-
tively small M, that is, using a small number of macroscopic
variables, which is a noteworthy characteristic of the derived
theory. It is the fundamental principle of statistical mechan-
ics that the behavior of a system composed of a very large
number of elements can be represented by a small number
of macroscopic variables. Therefore, the expression ‘large
Nh’, which is not quantified and appears imprecise, is not
inappropriate. Note that Fig. 3 shows that the derived theory
can predict average simulation results not only for large Np
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Table 1 Summary of the main conditions.

Sect. Fig. µ σ2
ξ rk κk K c c̃ Theory Simulation

M Np,Nh Ens.

4.1 3 0.1 0 δk,0 δk,0 2 [1, 1]T ← 0–10 80 2002000
4.2 4 0.1 0 δk,0 δk,0 25 (fn. 6) ← 20 100 4000

4.3 5 0.1–0.4 0 δk,0 δk,0 2 [1, 1]T ← 20 500 1000
r0 =1, r±1 =0.5

4.4 6 0.05–0.6 0.1 δk,0 δk,0 2 [1, 1]T ← 50 1000 10004000
4.5 8 0.1 10−5 δk,0 (fn. ††††) 2 [1, 1]T ← 10 256 1000

4.6 9 0.1 0–0.4 δk,0 δk,0

1 1 ←

20 200 2002 [1, 1]T ←

3 [1, 1, 1]T ←

4.7 10 0.1 0 δk,0 δk,0 2 [1, 1]T [1, c̃2]T 100 200 50
µ: step size,
σ2
ξ : variance of the background noise,

rk: parameter that decides the autocorrelation of the reference signal,
κk: covariance of the elements of the primary path,
K: number of taps of the secondary path C,
c: coefficients of the secondary path C,
c̃: coefficients of the estimated secondary path C̃,
M: range in which the macroscopic variables R j and Q j are considered in the proposed theory,
Np: number of taps of the primary path P in the simulation,
Nh: number of taps of the adaptive filter H in the simulation,
Ens.: number of trials for which the ensemble means are calculated in the simulation,
fn.: footnote,
δ: Kronecker delta.
c̃2 is varied from −1 to +3 in Sect. 4.7.

and Nh, i.e., 2000, but also for relatively small Np and Nh,
i.e., 80.

There is some background (BG) noise in actual situa-
tions where ANC is applied. Previous studies [12] and [19]
also treated the case where there is some BG noise. How-
ever, when there is BG noise, the accuracy of the theory is
unclear since the MSE is buried in the BG noise. In contrast,
much higher accuracy is needed when attempting to use the
theory to predict the simulation results in the case of no BG
noise. Therefore, to verify the theory, it is more rigorous
and reasonable to show the agreement with simulation re-
sults in the case of no BG noise. For this reason, the results
for a case with no BG noise are shown in Fig. 3. Of course,
the proposed theory is also valid when there is BG noise, as
shown later in Figs. 6, 8, and 9.

4.2 Long Impulse Response of Secondary Path

Figure 3 shows the results for K = 2, that is, the secondary
path has a small number of taps. Next, we investigate the
case of a large K to show the effectiveness of the obtained
theory in a more realistic case. Figure 4 shows the result for
K = 25. In both the theoretical calculation and the computer
simulations, the coefficient vector c of the secondary path is
the normalized version of the vector reported in [2]†††. The

†††c = [−0.073844, 0.280609, −0.778907, −0.321869,
2.563927, −5.876712, 11.504314, −18.114344, 25.967108,
−33.871861, 41.345085, −47.070049, 50.785450, −51.863720,
50.043129, −45.990845, 39.786583, −33.078777, 25.692730,
−18.861567, 12.781915, −8.174841, 4.567914, −2.076808,
0.728670]T

Fig. 4 Learning curves obtained theoretically and by simulation when
K = 25.

initial coefficients hi(0) are independently generated from
the Gaussian distribution with a mean of zero and variance
of unity in the simulation, and the initial condition (45) is
used in the theoretical calculation. Ensemble means in the
simulation are taken by averaging over not only the refer-
ence signals but also the stochastically generated primary
path. The other conditions are shown in Table 1. Figure 4
shows that the theory also predicts the average simulation
results when the number of taps of the secondary path K is
large.

4.3 Nonwhite Reference Signal

Figures 3 and 4 show the results for white reference sig-
nals. However, the reference signal is not necessarily white
in the actual application of an ANC system. Therefore,
we next investigate the case of a nonwhite reference signal



MIYOSHI and KAJIKAWA: STATISTICAL-MECHANICS APPROACH TO THEORETICAL ANALYSIS OF THE FXLMS ALGORITHM
2427

Fig. 5 Learning curves obtained theoretically and by simulation when
the reference signal is white and nonwhite.

to show the effectiveness of the obtained theory. Figure 5
shows the learning curves obtained theoretically along with
the corresponding simulation results [36]. The correlation
functions of the reference signal are rk = δk,0 (white) and
r0 = 1, r±1 = 0.5, r±k = 0 when k ≥ 2 (nonwhite). The ini-
tial coefficients hi(0) are independently generated from the
Gaussian distribution with a mean of zero and variance of
unity in the simulation, and the initial condition (45) is used
in the theoretical calculation. Ensemble means in the sim-
ulation are taken by averaging over not only the reference
signals but also the stochastically generated primary path.
The other conditions are shown in Table 1.

Figure 5 shows that the theoretical results agree with
the simulation results including the difference between the
behaviors for white and nonwhite reference signals. It is
also shown that the upper bound of the step size µ for the
white reference signal is larger than 0.4, whereas that for
the nonwhite reference signal is smaller than 0.4 because
the learning curve of µ = 0.4 for the nonwhite reference
signal diverges.

4.4 Effect of Step Size on Learning Curves

We next investigate the relationship between the step size µ
and the learning curves. This is important from the view-
point of the actual application of ANC systems.

Figure 6 shows the learning curves obtained theoret-
ically along with the corresponding simulation results for
various step sizes µ. The variance of the background noise
is σ2

ξ = 0.1. The initial coefficients hi(0) are independently
generated from the Gaussian distribution with a mean of
zero and variance of unity in the simulation, and the initial
condition (45) is used in the theoretical calculation. Ensem-
ble means in the simulation are taken by averaging over not
only the reference signals but also the stochastically gener-
ated primary path. The other conditions are shown in Ta-
ble 1.

Figure 6 shows that the theoretical results agree with
the simulation results reasonably well when µ is smaller
than 0.5. However, there is significant disagreement when
µ ≥ 0.5. The simulation results for Np = Nh = 4000
more closely agree with the theoretical results than those for

Fig. 6 Learning curves for various step sizes µ obtained theoretically and
by simulation.

Fig. 7 Example of impulse response of an actual primary path.

Np = Nh = 1000. The reason for this disagreement is con-
sidered to be that the theory is derived using the long-filter
assumption, that is, Np,Nh → ∞, whereas the simulations
are executed using finite values of Np and Nh. The depen-
dence of the bias on the system size is an example of the
phenomenon known as the finite-size effect in statistical me-
chanics. The condition of µ = 0.5 corresponds to the phase
transition point at which the MSE changes from being con-
vergent to divergent. Figure 6 shows that this theory quanti-
tatively predicts the simulation results for a finite number of
taps when the step size is smaller than the transition point,
which is usually the case for the FXLMS algorithm.

4.5 Actual Primary Path

In the derivation of the theory, the elements pi are assumed
to be stochastically generated as shown in (2). In addi-
tion, Fig. 3 shows the results for κk = δk,0, that is, the case
where the elements of the primary path P are uncorrelated.
However, the actual elements of the impulse response of
a primary path are not stochastic but deterministic. In ad-
dition, the elements are generally strongly correlated with
each other, that is, the primary path has a strong autocorre-
lation. For example, Fig. 7 shows an example of the impulse
response of a primary path obtained experimentally [37]††††.
While the variance of the elements of the impulse response

††††The autocorrelations of this primary path are κ̂ j ≡
1

NP− j

∑NP
i=1+ j pi pi− j are (1.211, 0.963, 0.392, −0.134, −0.363,
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Fig. 8 Learning curves obtained theoretically and by simulation in the
case of the actual primary path.

of this primary path is κ̂0 ≡
1

NP

∑NP
i=1 p2

i = 1.211 × 10−3,
the correlation between the neighboring elements is κ̂1 ≡

1
NP−1

∑NP
i=2 pi pi−1 = 0.963 × 10−3. This indicates that there

are strong correlations between the elements of the impulse
response of the actual primary path. Therefore, it is im-
portant to investigate whether the derived theory can predict
the behaviors of computer simulations using the impulse re-
sponse of the actual primary path. For this purpose, the the-
ory can absorb the characteristics of the primary path by
setting κ j = κ̂ j, where κ j is defined by (2).

Figure 8 shows the learning curves obtained theoreti-
cally along with the corresponding simulation results in the
case of the actual primary path [37].

In the theoretical calculations, the results of six cases
are plotted, that is, jmax = 0, 1, 2, 5, 10, and 20. Here, jmax
is the maximum value of the subscript j of κ j defined by (2).
For example, jmax = 0 means that κ j = 0, | j| > 0, that
is, the theory only considers the variance of the elements
of the impulse response of the primary path. jmax = 2
means that κ j = 0, | j| > 2, that is, the theory consid-
ers κ j, j = −2,−1, 0, 1, 2. In the computer simulations,
Nh = Np = 256 and ensemble means for 1000 trials are
plotted. The impulse response of the primary path in the
computer simulation is that shown in Fig. 7, that is, the ac-
tual impulse response measured experimentally. Note that
the ensemble means are obtained by averaging over only ref-
erence signals. This averaging is different from that in the
simulations in Sects. 4.1–4.4, where the ensemble means are
obtained by averaging over both reference signals and chan-
nels. The other conditions are shown in Table 1.

Figure 8 shows that the theory for jmax = 0, that is, the
theory only using the variance, cannot predict the behaviors
of the computer simulation. The theory for jmax = 1 also
cannot predict the behaviors. However, the larger the value
of jmax, the more closely the theoretical results agree with
the simulation results. The theoretical results for jmax = 10

−0.312, −0.161, −4.41, 0.0156, 0.0406, 0.0284, −0.0243,
−0.0757, −0.0680, −0.00586, 0.0290, −0.0362,−0.177, −0.287,
−0.286, −0.184) × 10−3.

Fig. 9 Relationship between step size µ and steady-state MSE obtained
theoretically and by simulation.

and 20 almost overlap and agree with the simulation results
reasonably well.

As described in this section, by using the autocorrela-
tions of the primary path, the derived theory can predict the
behaviors in the case of an actual primary path. This shows
that even if the realized values of the actual elements, which
are inherently deterministic, of the impulse response of the
primary path are not known, the theory can predict the be-
haviors in the case of an actual primary path through the
statistic κ̂.

4.6 Steady-State MSE

We next investigate the steady-state MSE on the basis of the
derived theory. Steady-state values of R and Q can be cal-
culated by letting the left-hand side of (41) be a zero vector.
That is, the steady-state value zst of z is

zst = −G−1b. (49)

Substituting the obtained steady-state R and Q, that is, the
elements of zst, into (25), we analytically obtain the steady-
state MSE. We compare the theoretically obtained steady-
state MSE and simulation results. The conditions regarding
the number K of taps and the coefficient vector c of the sec-
ondary path C are K = 1 (c = 1), K = 2 (c = [1, 1]T ),
and K = 3 (c = [1, 1, 1]T ). The variances of the back-
ground noise are σ2

ξ = 0, 0.2, and 0.4. Figure 9 shows the
results obtained theoretically and by simulation [35]. In the
computer simulations, the medians and standard deviations
of the 200 squared errors from t = 9000 to t = 11000 in
200 trials are plotted using error bars. These values of t in
the simulations are sufficient for the MSE to reach a steady-
state value. Ensemble means in the simulation are taken by
averaging over not only the reference signals but also the
stochastically generated primary path. The other conditions
are shown in Table 1. The theoretical results agree with the
simulation results reasonably well in Fig. 9.

4.7 Effect of Estimation Error of Secondary Path

Figures 3–9 show results in the case of c̃ = c, i.e., the esti-
mated secondary path has no error. However, the estimated
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Fig. 10 Relationship between estimated secondary path and steady-state
MSE.

secondary path inevitably has some error in actual active
noise control. Therefore, it is important to investigate its
effect. The obtained theory is also applicable to cases where
the secondary path estimation has some error since the the-
ory treats the secondary path and the estimated secondary
path separately.

Figure 10 shows the relationship between the estimated
secondary path and the steady-state MSE obtained theoret-
ically along with the corresponding simulation results. The
secondary path C is a two-tap FIR filter, that is, K = 2, and
its coefficients are c1 = c2 = 1. The first element of the
estimated secondary path is c̃1 = 1 and the second element
is varied from c̃2 = −1 to +3. The step size is µ = 0.1.
In the computer simulations, the means and standard devi-
ations of 50 squared errors in the case of t = 10000 are
plotted using error bars. In the theoretical calculation, the
steady-state MSE is obtained by the calculation described
in Sect. 4.6. Ensemble means in the simulation are taken by
averaging over not only the reference signals but also the
stochastically generated primary path. The other conditions
are shown in Table 1.

When c̃2 = 1, which corresponds to no estimation er-
ror, the steady-state MSE is minimized. The larger the es-
timation error, the larger the steady-state MSE. The theo-
retical results qualitatively agree with the tendency of the
simulation results in Fig. 10.

The so-called 90◦ condition [40]–[42] is well known
for stability of the feedforward ANC. According to the 90◦

condition, the phase error between the secondary path C and
the estimated secondary path C̃ has to be in the region of
−π/2 to π/2 for the MSE to converge. This condition is
equivalent to that the argument of C(ω)/C̃(ω) has to exist
in the region of −π/2 to π/2. Here, ω denotes the angular
frequency. C(ω) and C̃(ω) denote the frequency responses
of C and C̃, respectively.

When K = 2, we obtain

C(ω)
C̃(ω)

=
c1 + c2e− jω

c̃1 + c̃2e− jω . (50)

We can easily calculate the real part of (50) as

c1c̃1 + c2c̃2 + (c1c̃2 + c̃1c2) cosω
((c̃1 + c̃2) cosω)2 + (c̃2 sinω)2 . (51)

Here, the denominator of (51) is obviously positive. There-
fore, the numerator of (51) should be positive for the argu-
ment of C(ω)/C̃(ω) to exist in the region of −π/2 to π/2.
That is, the necessary condition for stability is

c1c̃1 + c2c̃2 + (c1c̃2 + c̃1c2) cosω > 0. (52)

Substituting c1 = c2 = c̃1 = 1, that is, the conditions in
this subsection, into (52), we obtain

(1 + c̃2)(1 + cosω) > 0. (53)

Therefore, the condition for stability is

c̃2 > −1. (54)

It can be seen that the behavior in Fig. 10 is consistent with
(54).

However, the 90◦ condition is valid for the infinitely
small step size µ [41], [42]. This means that the 90◦ con-
dition is not a sufficient condition but a necessary condition
when the step size µ is not infinitely small. Therefore, the
right-hand side of (54) does not agree with the value of c̃2
for which the MSE diverges in Fig. 10.

The necessary and sufficient condition in the case
where the step size is not infinitely small was derived in
[41], [42], written by one of the authors of this paper. The
condition is∣∣∣1 − µ‖xh(n)‖2C(ω)C̃∗(ω)

∣∣∣ < 1, (55)

where ∗ denotes the complex conjugate.
Substituting µ = 0.1, ‖xh(n)‖ = 1, and c1 = c2 = c̃1 =

1, that is, the conditions in this subsection, into (55) and nu-
merically calculating the lower bound of c̃2 satisfying (55)
for arbitrary ω in the region of −π < ω < π, we obtain
−0.7802 as the lower bound of c̃2. This bound is exactly
in agreement with the behavior in Fig. 10. This indicates
that the theory derived in this paper and the theory derived
in [41], [42] justify each other. The authors consider this
justification to be significant.

5. Conclusions

We have analyzed the behaviors of active noise control
with the FXLMS algorithm using a statistical-mechanical
method. The obtained theory can treat not only a white ref-
erence signal but also a nonwhite reference signal. In ad-
dition, we have also shown that the theory can predict the
behaviors in the case of an actual primary path by using the
autocorrelations of the actual primary path. Furthermore,
the effect of the estimation error of the secondary path was
investigated using the derived theory. The theory quantita-
tively agrees with the results of computer simulations. The
principal assumption used in this paper is that the tapped-
delay lines of the primary path and the adaptive filter are
sufficiently long.
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Appendix A: Justification of (17)

From (3) and (7), we obtain

h(n)T xh(n) =

Nh∑
i=1

hi(n)x(n − i + 1). (A· 1)

If j ≥ 0, from (15) and (16), we obtain

k j(n)T xh(n − j)

=

Nh∑
i=1

k j,i(n)x(n − j − i + 1) (A· 2)

=

Nh∑
i=1

hmod(i+ j−1,Nh)+1(n)x(n − j − i + 1) (A· 3)

=

Nh− j∑
i=1

hi+ j(n)x(n − j − i + 1)

+

Nh∑
i=Nh− j+1

hi+ j−Nh (n)x(n − j − i + 1) (A· 4)

=

Nh∑
i=1+ j

hi(n)x(n − i + 1)

+

j∑
i=1

hi(n)x(n − i + 1 − Nh). (A· 5)

∴
k j(n)T xh(n − j)

h(n)T xh(n)

=

( Nh∑
i=1

hi(n)x(n − i + 1) −
j∑

i=1

hi(n)x(n − i + 1)

+

j∑
i=1

hi(n)x(n − i + 1 − Nh)
)/

Nh∑
i=1

hi(n)x(n − i + 1) (A· 6)

= 1 +

∑ j
i=1 hi(n) (x(n − i + 1 − Nh) − x(n − i + 1))∑Nh

i=1 hi(n)x(n − i + 1)
(A· 7)

The denominator and numerator of the second term of
the right-hand side of (A· 7) is O(1) and O(N−

1
2

h ), respec-
tively. Therefore, we obtain

lim
Nh→∞

k j(n)T xh(n − j)
h(n)T xh(n)

= 1. (A· 8)

For j < 0, the same result is derived in the same man-
ner.

Appendix B: Derivation of (22)

Since the long-filter condition Np,Nh → ∞ is assumed,

from (5), (8), (15)–(21), and the law of large numbers, we
obtain

〈d(n − j)u(n)〉

=
〈

pT xp(n − j)h(n)T xh(n)
〉

(A· 9)

=

〈 Np∑
i=1

pix(n − j − i + 1)
Nh∑

i′=1

hi′ (n)x(n − i′ + 1)
〉
(A· 10)

=

Np∑
i=1

Nh∑
i′=1

pihi′ (n)
〈
x(n − j − i + 1)x(n − i′ + 1)

〉
(A· 11)

=

Np∑
i=1

Nh∑
i′=1

piki′−i,i(n)
ri′−i− j

Nh
(A· 12)

=

M∑
k=−M

(
min(Np,Nh) − k

)
Rk(n)

rk− j

Nh
(A· 13)(

∵ k ≡ i′ − i,Rk′ (n) = 0 when |k′| > M
)

Np,Nh→∞

−−−−−−−−−−−→

M∑
k=−M

āRk(n)rk− j. (A· 14)

When transforming (A· 10) into (A· 11), we assumed
that the correlation between h(n) and xh(n) is small [16]–
[18].

Appendix C: Derivation of (24)

Since the long-filter condition Np,Nh → ∞ is assumed,
from (2), (5), (18), and the law of large numbers, we ob-
tain

〈d(n − j)d(n)〉

=
〈

pT xp(n − j)pT xp(n)
〉

(A· 15)

=

〈 Np∑
i=1

pix(n − j − i + 1)
Np∑

i′=1

pi′ x(n − i′ + 1)
〉

(A· 16)

=

Np∑
i=1

Np∑
i′=1

pi pi′
〈
x(n − j − i + 1)x(n − i′ + 1)

〉
(A· 17)

=

Np∑
i=1

Np∑
i′=1

pi pi′
ri′−i− j

Nh
(A· 18)

=

L∑
k=−L

(
Np − k

)
κk

rk− j

Nh
(A· 19)(

∵ k ≡ i′ − i, κk′ = 0 when |k′| > L
)

=

L∑
k=−L

(
a −

k
Nh

)
κkrk− j (A· 20)

Nh→∞
−−−−−−−→

L∑
k=−L

aκkrk− j. (A· 21)
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Appendix D: Outline of Derivation of (36)

Multiplying (13) by (26), we obtain

NhQ j(n + 1)
= NhQ j(n)

+ µe(n)
K∑

k′=1

c̃k′ xh(n − k′ + 1)T k j(n)

+ µe(n)
K∑

k′=1

c̃k′ xh(n − k′ + 1 − j)T h(n)

+ µ2e2(n)
K∑

k′=1

K∑
k′′=1

c̃k′ c̃k′′

× xh(n − k′ + 1)T xh(n − k′′ + 1 − j). (A· 22)

From (13), we obtain

h(n) = h(n + 1) − µe(n)
K∑

k=1

c̃k xh(n − k + 1). (A· 23)

Using ∆(n), which is defined by ∆(n) = µe(n)
∑K

k=1 c̃k xh
(n − k + 1), we can write

h(n) =

h(n + j) −
∑ j

k=1 ∆(n + j − k), j ≥ 0
h(n + j) +

∑− j
k=1 ∆(n − k), j < 0.

(A· 24)

Using the sign function and step function defined by (38),
we can represent (A· 24) by a single formula,

h(n) = h(n + j) − sgn( j)
| j|∑

k=1

∆(n + Θ( j) j − k). (A· 25)

From (17) and (A· 25), we rewrite xh(n − k′ + 1)T k j(n)
in the second term on the right-hand side of (A· 22) as

xh(n − k′ + 1)T k j(n) = xh(n − k′ + 1 + j)T h(n) (A· 26)

= xh(n + j + 1 − k′)T
(
h(n + j + 1 − k′)

− sgn( j + 1 − k′)

×

| j+1−k′ |∑
k=1

∆(n + Θ( j + 1 − k′)( j + 1 − k′) − k)
)
.

(A· 27)

From (8), (10), and (11), we can calculate (A· 27) as

u(n + γ) − µsgn(γ)
γ∑

k′′=1

(
d(n + Θ(γ)γ − k′′)

−

K∑
k′′′=1

ck′′′u(n + Θ(γ)γ − k′′ − k′′′ + 1)

+ ξ(n + Θ(γ)γ − k′′)
) K∑

k=1

c̃irΘ(γ)γ−k′′−i+k′− j, (A· 28)

where γ = j + 1 − k′. We set c̃k = 0 when k < 1 or k > K in
(A· 28).

Using (8)–(11) and (A· 28), we can calculate the mean
of the second term on the right-hand side of (A· 22) as〈
µe(n)

K∑
k′=1

c̃k′ xh(n − k′ + 1)T k j(n)
〉

= µ

K∑
k′=1

c̃k′

{ M∑
i=−M

(
āRiri−γ −

K∑
k=1

ckQiri−k′+k+ j

)

− µsgn(γ)
|γ|∑

k′′=1

[
δα,0σ

2
ξ + a

L∑
l=−L

κlrl+α

−

K∑
k=1

ck

M∑
i=−M

(
āRiri+k−1−α + āRiri+k−1+α

−

K∑
k′′′=1

ck′′′Qiri−k+k′′′−α

)]

×

K∑
i=1

c̃irk′−i− j+α

}
,

(A· 29)

where α = Θ(γ)γ − k′′.
In the same manner as that used to obtain (A· 29), we

can calculate the means of the third and fourth terms in
(A· 22). Finally, we obtain the differential equation for Q
as (36).
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