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SUMMARY At PQCrypto 2016, Szepieniec et al. proposed a new
type of trapdoor called Extension Field Cancellation (EFC) for construct-
ing secure multivariate encryption cryptosystems. They also specifically
suggested two schemes EFC−p and EFC−

pt2 that apply this trapdoor and
some modifiers. Although both of them seem to avoid all attacks used for
cryptanalysis on multivariate cryptography, their decryption efficiency has
room for improvement. On the other hand, their security was analyzed
mainly through an algebraic attack of computing the Gröbner basis of the
public key, and there possibly exists more effective attacks. In this paper,
we introduce a more efficient decryption approach for EFC−p and EFC−

pt2 ,
which manages to avoid all redundant computation involved in the original
decryption algorithms without altering their public key. In addition, we
estimate the secure parameters for EFC−p and EFC−

pt2 through a hybrid
attack of algebraic attack and exhaustive search.
key words: multivariate cryptography, extension field cancellation, de-
cryption algorithm, hybrid attack

1. Introduction

Ever since Shor [20] introduced a polynomial-time algo-
rithm in 1994 for solving the integer factorization problem
and the discrete logarithm problem on quantum computers,
on which currently used public key cryptosystems such as
RSA and ECC are based, cryptology community has been re-
searching on finding alternative cryptosystems that are quan-
tum resistant (Post-quantum cryptography). Specially, the
National Institute of Standards and Technology (NIST) in
the United States is calling for post-quantum cryptosystems
(PQC) proposals to be standardized, the National Security
Agency (NSA) also announced their plan for switching to
quantum resistant public key cryptosystems in the future.

Multivariate cryptography is considered as one of the
main candidates for post-quantum cryptography because the
security of multivariate cryptography is based on the hard-
ness of the problem of solving a set of multivariate quadratic
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polynomials, which was proven to be NP-complete, andmul-
tivariate cryptography is in general very efficient and re-
quires very modest computational resources. In more than
30 years of research on multivariate cryptography, results
on constructing signature schemes seem to be more fruit-
ful, UOV [15] and Rainbow [7] remains secure after many
years of attack attempts. On the other hand, history on mul-
tivariate encryption is more turbulent. Many multivariate
encryption schemes have been proposed, such as MI [16],
HFE [18], ABC [22], ZHFE [19], SRP [24], EFC [21],
HFERP [13] and EFLASH [3]. Most of them were proven
to be insecure under various attacks, such as MinRank [12],
HighRank [4], Linearization [17]. Nevertheless, ABC, EFC,
HFERP and EFLASH still remain secure. At PQCrypto
2016, Szepieniec et al. [21] proposed multivariate encryp-
tion schemes EFC−p and EFC−

pt2, which use matrix multipli-
cations as in ABC [22], and extension field structure as in
MI [16], HFE [18] and ZHFE [19].

In this paper, we introduce a more efficient decryption
approach for EFC−p and EFC−

pt2 . The decryption algorithms
for EFC−p and EFC−

pt2 rely on the bilinear relation between
the plaintext and an augmented ciphertext, that is the con-
catenation of a ciphertext and the values of the deleted poly-
nomials by the minus modifier. This bilinear relation is used
for constructing linear systems in the decryption process of
EFC−p and EFC−pt2 . Our proposed decryption algorithms aim
to separate the computation of constructing the linear sys-
tem into two kinds of computations. One is the computation
involving the plaintext and the ciphertext. The other one
is computation involving the plaintext and the guessed val-
ues. In addition, we experimentally investigate the security
of EFC−p and EFC−

pt2 through hybrid attack [1], which is a
combination of algebraic attack and exhaustive search.

This paper is structured as follows. In Sect. 2, we recall
multivariate cryptography. In Sect. 3, we recall the construc-
tion of EFC−p and EFC−

pt2 , and their decryption algorithms
in [21]. In Sect. 4, we introduce our proposed new decryp-
tion algorithms for EFC−p and EFC−

pt2 . In Sect. 5, we apply
hybrid algebraic attack on EFC−p and EFC−

pt2 and estimate
new secure parameters for them. Finally, we conclude the
paper in Sect. 6.

2. Multivariate Cryptography

In this section, we give a short introduction to multivariate
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cryptography. Let F denote a finite field with q elements,
n,m be two positive integers and denote the polynomial ring
in variables x1, . . . , xn over F by F[x1, . . . , xn].

2.1 Quadratic Maps and MQ Problem

In this subsection, we introduce the notion of quadratic maps
and MQ-problem.

Given quadratic polynomials f1, . . . , fm ∈F[x1, . . . , xn],

fk =
n∑
i=1

n∑
j=1

ai j xi x j +

n∑
i=1

bi xi + c, (1 ≤ k ≤ m)

where ai j, bi, c ∈ F, then F (x1, . . . , xn) = ( f1, . . . , fm) :
Fn → Fm is called a quadratic map.

Multivariate cryptography refers to the study of public
key cryptosystems whose public keys are quadratic maps.
The security of multivariate cryptography is based on MQ
problem, that is, given m quadratic polynomials p1, . . . , pm ∈
F[x1, . . . , xn],find z ∈ Fn such that p1(z) = · · · = pm(z) = 0.
MQ problem is proven to be NP-complete even for the sim-
plest case of multivariate quadratic polynomials over GF(2).
Therefore, multivariate cryptography is considered to be a
candidate for post-quantum cryptography.

2.2 Construction of Multivariate Encryption Schemes

To construct a multivariate encryption scheme, we need to
design its private key, public key, encryption and decryption
processes.

– Private Key
We start with choosing an easy-to-invert quadratic

map F (x1, . . . , xn) = ( f1, . . . , fm). “Easy-to-invert” means
given the value (y1, . . . , ym) ∈ Fm, solving the system
f i = yi (1 ≤ i ≤ m) is easy. Such map F is also called
a central map. Then we choose two invertible linear maps
S : Fn → Fn and T : Fm → Fm. The set {F, S,T } is a private
key.

– Public Key
Given a private key {F, S,T }, a public key P can be

generated from the composition of F, S,T , i.e. P = T ◦F ◦S.

– General Workflow
Given a public key P and a plaintext z ∈ Fn, the cipher-

text c ∈ Fm of z can be obtained by performing c = P(z).
Conversely, given a private key {F, S,T } and a cipher-

text c ∈ Fm, a multivariate encryption scheme decrypts c by
computing the inverse of T, F and S individually.

2.3 Algebraic Attack

Algebraic attack directly solves the system:

p1(x1, . . . , xn) = c1, · · · , pm(x1, . . . , xn) = cm, (1)

where pi’s are public key polynomials, and c = (c1, . . . , cm)
is a ciphertext. Usually, Gröbner basis method is used in the

solving process.
Gröbner basis method was introduced by Buchberger,

who proposed Buchberger algorithm [2], and was later im-
proved by Faugere with F4/F5 algorithms, see [10], [11].
“Field equations” xq1 − x1 = 0, · · · , xqn − xn = 0 are added
to the polynomial system (Eq. (1)) to solve this system in F,
and it is much faster to compute a Gröbner basis when field
equations are added. In multivariate cryptography, let

G = {p1 − c1, . . . , pm − cm, xq1 − x1, . . . , xqn − xn}, (2)

we then need to compute the Gröbner basis of the ideal I
generated byG. The complexity of the Gröbner basis method
is determined by a so-called degree of regularity. There are
several different definitions for degree of regularity, through
out this paper, we regard the degree of regularity as the
degree where a non-trivial syzygy producing a degree fall
first occurs, which is also called the first fall degree [14]. If
F4 or F5 algorithm is used, the complexity of computing the
Gröbner basis of I is

ComplexityF4/F5 = O *
,

(
n + dreg−1

dreg

)2 (n
2

)
+
-
, (3)

where dreg is the degree of regularity of I.
In [1], Bettale et al. proposed a hybrid algebraic method

for solving multivariate systems over finite fields, which can
speed up the computation of Gröbner basis with F4/F5 algo-
rithms. Hybrid algebraic method is a combination of alge-
braic attack and exhaustive search. Specifically, given e ∈ N,
hybrid algebraic method first guesses the value of variables
x1, . . . , xe, evaluate them in G with the guessing values, and
then apply algebraic attack on the remaining polynomial sys-
tem. The guessing processes terminates when a solution is
found.

3. Extension Field Cancellation (EFC)

In this section, we recall the constructions of EFC−p and
EFC−

pt2 [21], and the original decryption algorithms de-
signed for them.

3.1 Notations

Let F be a finite field of 2 elements. Given a positive
integer n, x1, . . . , xn are n variables over F, and define
x = (x1, . . . , xn). E denotes a degree n extension field of
F. Denote the set of all n×m matrices by Fn×m.Matrices are
denoted by capital letters, vectors are denoted by bold low-
ercase letters, and all vectors are treated as row vectors. The
i-th entry of a vector v is denoted by vi, the i-th row of a ma-
trix M is denoted by Mi . For N, M ∈ Fn×n, (N | |M) ∈ Fn×2n

denotes the horizontal join of N and M .
Choose a basis {θ1, . . . , θn} of E/F, and define the iso-

morphism ϕ : Fn 3 v 7→ vb> ∈ E, where b = (θ1, . . . , θn) ∈
En. For A ∈ Fn×n, and v = (v1, . . . , vn) ∈ Fn, define
α(v) = ϕ(vA) ∈ E. The matrix associated with the lin-
ear map E 3 X 7→ α(v)X ∈ E is denoted by αm(v) ∈ Fn×n.
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For a matrix B ∈ Fn×n and v ∈ Fn, we define β(v) and
βm(v) in the same way as α(v) and αm(v). For a positive
integer a, πa stands for the following projection:

πa : F2n 3 (v1, · · · , v2n) 7→ (v1, · · · , v2n−a) ∈ F2n−a .

3.2 Construction of the EFC−p Scheme

– Key Generation

Given a prime number n, randomly choose A, B ∈ Fn×n of
rank n−1 such that the intersection of the kernel spaces of A
and B is the zero subspace. Randomly choose two invertible
linear maps S : Fn → Fn and T : F2n → F2n, we identify
these linear maps with matrices S ∈ Fn×n, T ∈ F2n×2n. The
central map F for EFC−p is

F : Fn 3 x 7→ (x · αm(x), x · βm(x)) ∈ F2n.

The public key for EFC−p is given by

P = (p1, · · · , p2n−a) = πa ◦ T ◦ F ◦ S : Fn → F2n−a,

where pi (1 ≤ i ≤ 2n − a) are quadratic polynomials in
x1, . . . , xn over F.

Next we take a look at the explicit form of the central
map F . For any x ∈ Fn, α(x) ∈ E can be represented with
basis {θ1, . . . , θn}, i.e. α(x) = xAb>. Let αi = Aib> ∈ E for
1 ≤ i ≤ n, then we have α(x) =

∑n
i=1 xiαi . Define matrices

C (i) ∈ Fn×n by (C (i))>j = ϕ
−1(αiθ j ) for 1 ≤ i, j ≤ n. It is

easy to check that C (i) satisfies bC (i) = αib for 1 ≤ i ≤ n,
which indicates αm(x) =

∑n
i=1 xiC (i) . Similarly, we define

matrices D(i) ∈ Fn×n for 1 ≤ i ≤ n and they satisfy βm(x) =∑n
i=1 xiD(i) . Therefore, the explicit form of F is

F : Fn 3 x 7→ *
,
x · *

,

n∑
i=1

C (i) xi+
-
, x · *

,

n∑
i=1

D(i) xi+
-
+
-
∈ F2n.

– Encryption

Given a public key P and a plaintext z ∈ Fn, its ciphertext is
c = P(z) ∈ F2n−a.

– Decryption

Given the private key {A, B, S,T } and a ciphertext c ∈ F2n−a,
decryption process is to find the plaintext z ∈ Fn such that
P(z) = c. First, we need to guess the value v from Fa
for the deleted polynomials by πa . Second, we compute
Fn × Fn 3 (d1, d2) = d = T−1(c, v). Next we invert the map
F by solving the linear system

d2αm(x) = d1 βm(x), (4)

and obtain a solution h ∈ Fn. Finally, if F (h) = (d1, d2), then
we obtain the plaintext by z = S−1(h). The loop of guessing
the value v from Fa terminates when the correct plaintext z
is found. The details are shown in Algorithm 1.

Regrading the complexity of this decryption algorithm,

we have the following proposition:

Proposition 1. The number of field operations involved in
the decryption algorithm for EFC−p is

8n4+9n3+
1
2

n2−
7
2

n+2(a−1)
(
26
3

n3 +
21
2

n2 −
31
6

n
)
. (5)

Algorithm 1: Decryption algorithm for EFC−p [21]
Input : A ciphertext c ∈ F2n−a ,

The private key A, B, S ∈ Fn×n and T ∈ F2n×2n .
Output: The plaintext z ∈ Fn .

1 Sinv ← S−1, Tinv ← T−1

2 Generate αm (x), βm (x) and F from A, B
3 for v ∈ Fa do
4 Fn × Fn 3 (d1, d2) = d← (c, v) · Tinv
5 construct a linear system d2 · αm (x) − d2 · βm (x) = 0
6 x = h← solve d2 · αm (x) − d2 · βm (x) = 0
7 if F (h) = d then
8 break

9 Fn 3 z← h · Sinv
10 Return z.

Proof. Let [+]F denotes F-addition, and [×]F denotes F-
multiplication of F. We recall the complexity of Gaussian
Elimination, and multiplication in E. For an input of n ×
m (m ≥ n) matrix over F, Gaussian Elimination requires
n−1∑
i=1

(n− i)(m− i) [+]F and
n−1∑
i=1

(n− i)(m− i)+
n−1∑
i=1

(n− i) [×]F.

For any a, b ∈ E, that are represented in basis {θ1, . . . , θn},
the multiplication a · b requires (n− 1)(2n− 1) [+]F and 2n2

[×]F.
Now we analyze the complexity based on the Algo-

rithm 1.
In step 1, computingT−1 requires n(20n2−12n+1)

3 [+]F and
2n(10n2−3n−1)

3 [×]F, and computing S−1 requires n(5n2−6n+1)
6

[+]F and n(5n2−3n−2)
6 [×]F. In step 2, to obtain αm(x), we

need to compute α(x) =
∑n

i=1 xiαi , where αi = Aib> (1 ≤
i ≤ n), and this requires n(n− 1) [+]F and n2 [×]F. Then we
need to compute αib for 1 ≤ i ≤ n, which indicates n2 [×]E,
and it requires n2(n − 1)(2n − 1) [+]F and 2n4 [×]F. Same
complexity holds for obtaining βm(x).

From step 3 to step 8, we enter a loop of size 2a. In step
4, (c, v) ·Tinv requires 2n(2n− 1) [+]F and 4n2 [×]F. In step
5, constructing the linear system needs 2n3 − n2 [+]F and
2n3 [×]F. In step 6, solving the linear system with Gaussian
Elimination requires n(n−1)(2n+5)

6 [+]F and n(n2+3n−1)
3 [×]F.

In step 7, verifying whether F (h) = d holds costs 2n(n2−1)
[+]F and 2n2(n + 1) [×]F. The loop terminates in step 8
after an average of 2(a−1) times. Therefore, the loop costs
2(a−1) ( 13

3 n3 + 7
2 n2 − 29

6 n) [+]F and 2(a−1) ( 13
3 n3 + 7n2 − 1

3 n)
[×]F in average.

In step 9, computing h · Sinv needs n(n − 1) [+]F and
n2 [×]F.
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Since step 1, step 2 and step 9 together costs 4n4 +
3
2 n3 − 5

2 n [+]F and 4n4 + 15
2 n3 + 1

2 n2 − n [×]F, the total cost
of this decryption algorithm is Eq. (5). This completes the
proof. �

3.3 Construction of the EFC−
pt2 Scheme

– Key Generation

Choose the secret key A, B and S,T as in EFC−p . The central
map F for EFC−

pt2 is

F : Fn → F2n : x 7→
(
xαm(x) + ϕ−1(β(x)3) ,

xβm(x) + ϕ−1(α(x)3)
)
.

(6)

The public key for EFC−
pt2 is P = (p1, . . . , p2n−a) = πa ◦T ◦

F ◦ S : Fn → F2n−a. The private key consists of A, B and
S,T .

We take a look at the explicit structure of (6) using b =
(θ1, . . . , θn). Since x·αm(x) and x· βm(x) can be represented
in the same way as in Sect. 3.2, we show the explicit form
of ϕ−1(α(x)) and ϕ−1(β(x)) here. Let Θ = b> · b ∈ En×n
and ϕ−1(Θ) = (Θ1, . . . ,Θn) ∈ (Fn×n)n. Define a matrix
∆ ∈ Fn×n by its i-th row ∆i = ϕ−1(θ2

i ). Then α(x)3 can be
represented as

α(x)3 = α(x)2 · α(x) = xA
(
θ2

1, · · · , θ
2
n

)>
· b(xA)>

= xA∆Θ(xA)> =
n∑
i=1

θi · xA∆Θi (xA)>.

β(x)3 can be represented in the same way. Therefore,

ϕ−1(α(x)3) = (xA∆Θ1(xA)>, . . . , xA∆Θn(xA)>),

ϕ−1(β(x)3) = (xB∆Θ1(xB)>, . . . , xB∆Θn(xB)>).

– Encryption

Given a public key P and a plaintext z ∈ Fn, the ciphertext
is c = P(z) ∈ F2n−a .

– Decryption

We take a look at how to invert the central map F . It requires
solving the system F (x) = d ∈ F2n, i.e.

x ·αm(x)+ϕ−1(β(x)3) = d1, x · βm(x)+ϕ−1(α(x)3) = d2,

(7)

where d = (d1, d2) ∈ Fn × Fn. By definition of αm(x) in
Sect. 3.1, the equation ϕ(x ·αm(x)) = ϕ(x)α(x) holds. Thus
(7) is equivalent to

ϕ(x)α(x) + β(x)3 = ϕ(d1), ϕ(x) β(x) + α(x)3 = ϕ(d2),

from which the following system can be constructed:

d2αm(x) − d1 βm(x) = ϕ−1(α(x)4 − β(x)4). (8)

Define a matrix Λ ∈ Fn×n by Λi = ϕ
−1(θ4

i ) for 1 ≤ i ≤ n,
and apply it to (8). Then (8) turns into

d2αm(x) − d1 βm(x) = x(A − B)Λ, (9)

which is a linear system in x. The rest of the procedures of
decryption is similar to that of EFC−p , details are shown in
Algorithm 2.

Algorithm 2: Decryption algorithm for EFC−
pt2 [21]

Input : b = (θ1, . . . , θn ) ∈ En, a ciphertext c ∈ F2n−a ,
the private key A, B, S ∈ Fn×n and T ∈ F2n×2n .

Output: The plaintext z ∈ Fn .
1 Sinv ← S−1, Tinv ← T−1

2 Define Λ ∈ Fn×n by Λi = ϕ
−1 (θ4

i )
3 Generate αm (x), βm (x) and F from A, B
4 for v ∈ Fa do
5 Fn × Fn 3 (d1, d2) = d← (c, v) · Tinv
6 construct a linear system d2αm (x) −d1βm (x) = x(A−B)Λ
7 x = h← solve d2αm (x) − d1βm (x) = x(A− B)Λ
8 if F (h) = d then
9 break

10 Fn 3 z← h · Sinv
11 Return z.

We analyze the complexity of the decryption algorithm
for EFC−

pt2 adopting the same approach as in the proof of
Proposition 1, and obtain the number of field operations
involved in the decryption algorithm for EFC−

pt2 as

8n4+17n3−
11
2

n2−
3
2

n+2(a−1)
(
32
3

n3 +
19
2

n2 −
31
6

n
)
. (10)

4. Our Proposed Efficient Decryption Algorithms for
EFC−p and EFC−

pt2

In this section, we introduce our new decryption algorithms
for EFC−p and EFC−

pt2 .

4.1 New Decryption Algorithm for EFC−p

The new decryption algorithm is derived from linearization
equations, which represent a relation between the plaintext
and ciphertext.

We begin with deriving linearization equations related
to the central map of EFC−p . Recall that the linear system (4)
for inverting its central map is

d2αm(x) − d1 βm(x) = 0,

which can also be written as

α(x)ϕ(d2) − β(x)ϕ(d1) = xAb> · bd>2 − xBb> · bd>1 = 0.

Let Θ = b> · b and (Θ1, . . . ,Θn) = ϕ−1(Θ), then from this
equation, we can obtain linearization equations correspond-
ing to the central map of EFC−p as follows:
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x(BΘi | |AΘi)d> = 0, (1 ≤ i ≤ n), (11)

where d = (d1, d2).
Subsequently, we apply S and T to the linearization

equation related to the central map. Let c ∈ F2n be a ci-
phertext of EFC−p without minus modifier, then c = T (d).
Apply the linear maps S and T to Eq. (11), and we obtain the
linearization equations between a plaintext x and c as

xS(BΘi | |AΘi)(cT−1)> = 0. (12)

For a ciphertext c of EFC−p without minus modifier, its cor-
responding plaintext can be found by solving Eq. (12).

Next we show how to represent Eq. (12) into one simple
equation. Let N (i) = T−1(SBΘi | |SAΘi)> ∈ F2n×n, and
define matrices U ( j) by U ( j)

i = N (i)
j for 1 ≤ j ≤ 2n and

1 ≤ i ≤ n. Then Eq. (12) turns into one simple equation

(c1U (1) + · · · + c2nU (2n)) · x> = 0. (13)

This equation indicates that as long as we have the set Ψ =
(U (1), . . . ,U (2n)), the decryption process of EFC−p without
minus modifier can be reduced into the computation of the
right kernel space of c1U (1) + . . . + c2nU (2n) .

Since in our new decryption algorithm, only the ci-
phertext c and U (1), . . . ,U (2n) are necessary, we intend to
save Ψ = (U (1), . . . ,U (2n)) as the new private key for EFC−p ,
which is 2n/7 times larger than the original private key.

Now we explain our proposed decryption algorithm for
EFC−p . First, we compute L =

∑2n−a
i=1 ciU (i) . Second, we

guess the values for the deleted polynomials by πa from Fa,
and denote these values by v = (v1, · · · , va). Next, we com-
pute the right kernel space ker = ker(L +

∑a
i=1 viU

(2n−a+i)).
Finally, we check if there exists z ∈ ker such that P(z) = c
holds. If so, then z is the plaintext, otherwise, go back to the
guessing step and start over. The details of the procedures
of generating Ψ and the decryption process are shown in
Algorithm 3.

Remark 1. The iterative computation complexity of∑a
i=1 viU

(2n−a+i) can be further reduced. Assume we have
v(1), v(2) ∈ Fa2 , and we need to compute

L(1) =

a∑
i=1

v (1)
i U (2n−a+i), L(2) =

a∑
i=1

v (2)
i U (2n−a+i) .

If we know the difference between v(1) and v(2), we will be
able to compute L(2) from L(1) by subtracting a fewmatrices.
Since Gray code has the property that two successive binary
numeral values differ in only one bit, we use Gray code to
represent Fa2 . Assume v(1) and v(2) are two successive codes,
and they differ at j-th bit, then we can compute L(2) by

L(2) = L(1) +U (2n−a+j) .

Therefore, this technique reduces the number of operations
of matrix addition involved in recursive computation of∑a

i=1 viU
(2n−a+i) . We consider this technique when we eval-

uate the complexity of our new decryption.

Algorithm 3: New decryption algorithm for EFC−p
Input : b = (θ1, · · · , θn ), the private key A, B, S ∈ Fn×n and

T ∈ F2n×2n, a ciphertext c ∈ F2n−a .
Output: The plaintext z ∈ Fn s.t. P(z) = c.

1 Θ← b> · b, (Θ1, . . . , Θn ) ← ϕ−1 (Θ)
2 for i ← 1 to n do
3 N (i) ← T−1 (SBΘi | |SAΘi )> ∈ F2n×n

4 for j ← 1 to 2n and i ← 1 to n do
5 U

( j )
i ← N (i)

j

6 L ←
∑2n−a

i=1 ciU
(i)

7 for v = (v1, . . . , va ) ∈ Fa do
8 H ← L +

∑a
i=1 viU

(2n−a+i)

9 ker← RightKer(H )
10 for z ∈ ker do
11 if P(z) = c then
12 Return z
13 break

Regarding the complexity of the new decryption algo-
rithm for EFC−p, we have the following proposition.

Proposition 2. The number of field operations involved in
the new decryption for EFC−p is

2(a−1)
(
14
3

n3 + (
11
2
− 2a)n2 − (a +

19
6

)n + a
)

+4n3 − (2a + 1)n2
(14)

Proof. Let [+]F denote F-addition, and [×]F denote the F-
multiplication. We analyze the complexity based on Algo-
rithm 3. Note that we analyze the complexity starting from
step 6 since we save Ψ as the new private key.

In step 6,
∑2n−a

i=1 ciU (i) requires n2(2n− a−1) [+]F and
n2(2n − a) [×]F.

From step 7 to 13, we enter a loop of size 2a . In step
8, L +

∑a
i=1 viU

(2n−a+i) costs 2n2 [+]F using Gray code
technique in Remark 1. In step 9, finding the right ker-
nel of H requires n(n−1)(2n+5)

6 [+]F and n(n2+3n−1)
3 [×]F. In

step 11, verifying the solution requires (2n − a)(n2 − 1)
[+]F and (2n − a)(n2 + n) [×]F. In step 13, the loop ter-
minates after an average of 2(a−1) times. Therefore, the
loop requires 2(a−1) ( 7

3 n3 + ( 5
2 − a)n2 − 17

6 n + a) [+]F and
2(a−1) ( 7

3 n3 + (3 − a)n2 − (a + 1
3 )n) [×]F in average.

Therefore, the total cost of this decryption algorithm is
Eq. (14). This completes the proof. �

4.2 New Decryption Algorithm for EFC−
pt2

Same as EFC−p , the new decryption algorithm for EFC−
pt2

also derives from linearization equations.
We first consider linearization equations related to the

central map of EFC−
pt2 . Recall in Sect. 3.3, inverting the

central map of EFC−
pt2 requires solving the linear system
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d2αm(x) − d1 βm(x) = x(A − B)Λ, (15)

where Λ ∈ Fn×n,Λi = ϕ
−1(θ4

i ) for 1 ≤ i ≤ n. This equation
can also be written as

ϕ(d2)α(x) − ϕ(d1) β(x) = ϕ(x(A − B)Λ). (16)

Applying ϕ−1 on both sides of Eq. (16) gives us

x(BΘi | |AΘi)d>− (x(A−B)Λ)i = 0, (1 ≤ i ≤ n), (17)

which are the linearization equations related to the central
map of EFC−

pt2 .

Next we apply S and T to the linearization equations
we obtained. Let c ∈ F2n be a ciphertext of EFC−

pt2 without
minus modifier, then c = T (d). Applying linear maps S and
T on (17) gives us the linearization equations of a plaintext
x and a ciphertext c:

x(SBΘi | |SAΘi)(cT−1)> − (xS(A − B)Λ)i = 0. (18)

Next we show how to represent Eq. (18) into one sim-
ple equation. Let M = S(A − B)Λ ∈ Fn×n, N (i) =

T−1(SBΘi | |SAΘi)> ∈ F2n×n, and define matrices U ( j) by
U ( j)
i = N (i)

j for 1 ≤ j ≤ 2n and 1 ≤ i ≤ n. Then (18) can be
rearranged into

(c1U (1) + · · · + c2nU (2n) − M>) · x> = 0. (19)

This equation indicates that the decryption of EFC−
pt2 with-

out minus modifier can be reduced to the computation of the
right kernel space of c1U (1) + · · · + c2nU (2n) − M>.

Similar to EFC−p, we save Ψ = (U (1), . . . ,U (2n), M) as
the new private key for EFC−

pt2, which is (2n + 1)/7 times
larger than the original private key. New decryption algo-
rithm for EFC−

pt2 works similarly to that of EFC−p, detailed
procedures are shown in Algorithm 4.

We can analyze the complexity of the decryption algo-
rithm for EFCpt2 using the same approach as in the proof of
Proposition 2. The number of field operations involved in
the new decryption algorithm for EFC−

pt2 is

2(a−1)
(
14
3

n3 + (
11
2
− 2a)n2 − (a +

19
6

)n + a
)

+4n3 − 2an2.

(20)

4.3 Implementation

Weverify the effectiveness of our decryptionmethod through
implementation operated on a 2.10GHz Intel® Xero® Gold
6130 CPU with Magma V2.23-10 under originally claimed
80-bit security parameters, see [21], and then compare the
results with complexity given in (5), (10), (14) and (20). The
implementation results are given in Table 1.

FromTable 1, we know, under 80-bit security parameter
given in [21], theoretically our newdecryption algorithms are
2.24 times faster for EFC−p and 3.58 times faster for EFC−

pt2

Algorithm 4: New decryption algorithm for EFC−
pt2

Input : b = (θ1, · · · , θn ), the private key A, B, S ∈ Fn×n and
T ∈ F2n×2n .

Output: The plaintext z ∈ Fn s.t. P(z) = c.
1 Θ← b> · b, (Θ1, . . . , Θn ) ← ϕ−1 (Θ)
2 Define Λ ∈ Fn×n, where Λi = ϕ

−1 (θ4
i )

3 M ← S(A− B)Λ
4 for i ← 1 to n do
5 N (i) ← T−1 (SBΘi | |SAΘi )> ∈ F2n×n

6 for j ← 1 to 2n and i ← 1 to n do
7 U

( j )
i ← N (i)

j

8 L ←
∑2n−a

i=1 ciU
(i) −M>

9 for v = (v1, . . . , va ) ∈ Fa do
10 H ← L +

∑a
i=1 viU

(2n−a+i) ;
11 ker← RightKer(H )
12 for z ∈ ker do
13 if P(z) = c then
14 Return z
15 break

Table 1 Timing comparison between old EFC−p, EFC−pt2 with new
EFC−p, EFC−pt2 under 80-bit security parameter given in [21], [+, ×] repre-

sents the number of involved field operations†.

Scheme (n, a) KeyGen.[s] Enc.[s] Dec.[s] [+, ×]F

Old
EFC−p (83, 10) 0.022 0.00023 0.116 2.96 × 109

EFC−
pt2 (83, 8) 0.023 0.00023 0.028 1.18 × 109

New
EFC−p (83, 10) 0.022 0.00023 0.013 1.32 × 109

EFC−
pt2 (83, 8) 0.023 0.00023 0.003 0.33 × 109

than the original decryption algorithms, and the speed-up
obtained in our implementation are 8.92 and 9.33 times for
EFC−p and EFC−

pt2 , respectively.
Since our proposed decryption algorithms do not alter

public keys for EFC−p and EFC−
pt2, their security does not

change. As for the private key, to match with our proposed
decryption algorithms, we use new private keys, which is
2n/7 times larger for EFC−p , and (2n + 1)/7 times larger for
EFC−

pt2 compared to the original private keys.

5. Hybrid Attack Against EFC−p and EFC−
pt2

Because of the minus modifier, the most efficient attack
against EFC−p and EFC−

pt2 is expected to be the algebraic
attack, see Sect. 2.3, which computes the Gröbner basis of
the ideal generated by the public key and the field equations.
Normally we use F4/F5 [10], [11] algorithms, which has
complexity given in Eq. (3). In [21], upper bounds for the
degree of regularity of EFC−p and EFC−

pt2 are given:

†Note that only 80-bit security level parameters are proposed
in [21].
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dreg ≤
r
2
+ 2, r =

{
2 + a, EFC−p,
4 + a, EFC−

pt2 .
(21)

And [21] also claimed the degree of regularity of EFC−p and
EFC−

pt2 lie close to these upper bounds. Under the assump-
tion that these upper bounds are identical to the degree of
regularity of EFC−p and EFC−

pt2 , 80-bit and 128-bit security
parameters are estimated in [21] and [23], respectively.

In this section, we apply hybrid algebraic attack on
EFC−p and EFC−

pt2 to learn how parameters n and a affect
their degree of regularity. All of our experiments are con-
ducted on a 2.10GHz Intel® Xero® Gold 6130 Processor
with Magma V2.23-10, where F4 algorithm is implemented.

5.1 Notations

Notations used in this section are as follows:

• dreg : degree of regularity (see Sect. 2.3).
• stepdeg : step degree, a sequence of degrees of polyno-
mials appeared in all the steps of F4 algorithm.

• sdeg : solving degree, the degree of the most time-
consuming step of F4 algorithm.

• e : the number of variables evaluated in hybrid algebraic
attack (see Sect. 2.3).

• time/gb : average time cost of one round of F4 algorithm
in hybrid algebraic attack.

• total time (est.) : estimated time cost of hybrid al-
gebraic attack, and it holds the following equation:
total time (est.) = 2e−1 ∗ (time/gb).

• total time : average time cost of hybrid algebraic attack.
• s, h, d, y : second, hour, day, year.

5.2 Hybrid Attack on EFC−p and Update Secure Parameters

For EFC−p, we first verify if the claimed 80-bit security pa-
rameter in [21] indeed has 80-bit security against hybrid
attack. Let e be a positive integer. We guess values for
variables (x1, . . . , xe) from Fe (|Fe | = 2e), and evaluate the
system G, see (2), with those guessing values, then perform
algebraic attack on the obtained system. The experiment
terminates when a solution can be found. The results are
shown in Table 2. From this table, we know when e = 16,
both of dreg and sreg are 4, and the complexity of the hybrid
attack is around 216

(83−16+4−1
4

)2 (83−16
2

)
≈ 267 by formula (3).

Therefore, the originally proposed 80-bit security parameter
fails in achieving its claimed security level.

To update secure parameters for EFC−p,we need to find a
lower bound for the degree of regularity for EFC−p . The upper
bound given in (21) is given following analysis onHFEbased
schemes [5], [6], [8], [9], and it is deduced according to the
fact that the dreg of a subsystem is equal to or larger than the
full polynomial system. Following this approach, we know
the dreg of an EFC−p system with a − 1 polynomial deleted
is equal to or smaller than that of an EFC−p system with a
polynomial deleted. It means a lower bound for dreg of

Table 2 Hybrid algebraic attack on EFC−p (83, 10).

e stepdeg dreg sdeg time/gb total time (est.)
15 (2,3,4,4,5,...) 4 ≥ 5 − −

16 (2,3,4,4,4,4) 4 4 2.618d 235.065y
17 (2,3,4,4,4) 4 4 1.896d 340.418y
18 (2,3,4,4,3) 4 4 23.658h 353.983y
19 (2,3,4,4) 4 4 4.900h 146.647y
20 (2,3,4,4) 4 4 4.016h 240.370y
21 (2,3,4,4) 4 4 3.132h 374.864y

Table 3 Behave of dreg of EFC−p (n = 41, a) with e = 1.

a stepdeg dreg sdeg total time
10 (2,3,4,4,5,2,3,4,5,6,7) 4 5 2.181h
11 (2,3,4,5,2,3,4,5,6,7) 5 5 2.550h
12 (2,3,4,5,4,2,3,4,5,6,7) 5 5 2.707h
13 (2,3,4,5,5,2,3,4,6,7) 5 5 6.204h
14 (2,3,4,5,5,2,3,4,5,6,7) 5 5 6.995h
15 (2,3,4,5,5,2,3,4,5,6,7) 5 5 7.911h
16 (2,3,4,5,5,2,3,4,5,6,7) 5 5 8.713h
17 (2,3,4,5,5,2,3,4,5,6,7) 5 5 9.305h
18 (2,3,4,5,6,...) ≥ 6 ≥ 6 –

EFC−p can be obtained as long as one linear combination of
the polynomials deleted by minus modifier can be recovered.
However, this indicates the total break of EFC−p , and it is a
very difficult task. Therefore, we experiment with small
parameters to find an experimental lower bound. Parameter
n is fixed to be 41, then we experiment with parameter a
increasing. The results are shown in Table 3, from which we
know there are two turning points for the degree of regularity.
One of them is when a rises to 11 from 10, the degree of
regularity turns into 5, the other one is when a rises from
17 to 18, the degree of regularity turns into 6. We regard
them as lower bounds to update new parameters in Sect. 5.4.
Since the dreg of an EFC−p system with larger parameter is
equal to or larger than the dreg of an EFC−p system with
smaller parameter, updateding new parameters using those
experimental lower bounds should be enough.

5.3 Hybrid Attack on EFC−
pt2

We apply hybrid attack on EFC−
pt2 in the same approach as

EFC−p, the results are shown in Table 4. This table shows
hybrid attack cannot work any better than algebraic attack.
Therefore, the originally proposed 80-bit security parameter
set for EFC−

pt2 remains secure against hybrid attack. Table 4
also shows the variation of dreg of EFC−

pt2 is more drastic
compared to EFC−p , which is also the reasonwhywewere not
able to perform hybrid attack with small parameters. Even
with n = 40, a = 8, which is expected to have dreg ≤ 8, it
takes significantly long time to perform F4 algorithm that
we were not able to get the results. We therefore use bound
given in (21) to estimate 128-bit security level parameter.

From Table 4, we can see that there is a tendency of hy-
brid attack not outperforming direct attack for EFC−

pt2 . Be-
cause of this, the estimation of secure parameters for EFC−

pt2
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Table 4 Hybrid algebraic attack on EFC−
pt2 (83, 8).

e stepdeg dreg sdeg complexity
36 (2,3,4,5,6,...) ≥ 6 ≥ 6 ≥ 295

37 (2,3,4,5,5) 5 5 289

44 (2,3,4,5) 5 4 293

45 (2,3,4,4) 4 4 288

53 (2,3,4) 4 3 292

54 (2,3,3) 3 3 287

Table 5 Updated parameters sets.
Security Old parameters New parameters

EFC−p
80-bit (83, 10) (241, 11)
128-bit (467, 10) (1523, 18)

EFC−
pt2

80-bit (83, 8) (83, 8)
128-bit (467, 8) (467, 8)

Table 6 Performance comparison between EFC−p and EFC−
pt2 with up-

dated parameters and new decryption algorithms.

Scheme (n, a) KeyGen.[s] Enc.[s] Dec.[s]

80-bit
EFC−p (241, 11) 0.352 0.0013 0.090

EFC−
pt2 (83, 8) 0.023 0.00023 0.003

128-bit
EFC−p (1523, 18) 403.946 0.215 562.435

EFC−
pt2 (467, 8) 3.734 0.0072 0.065

for high security levels strongly relies on a good theoretical
estimation of degree of regularity. Therefore, the tightness
of bound given in (21) should be further investigated, and we
would like to continue working in this regard in the future.

5.4 Update New Secure Parameters

Taking the experimental results of hybrid algebraic attack
on EFC−p and EFC−

pt2 into account, we update their secure
parameters, see Table 5. Old 128-bit security parameters
are deduced according to (21), and new parameter for EFC−p
are obtained by considering the experimental lower bound
of degree of regularity in Sect. 5.2 and Sect. 5.3.

5.5 Implementation Under New Parameters

New secure parameters for EFC−p are updated, we verify
its performance by implementation, and compare it with
EFC−

pt2, see Table 6. From this table, we can easily see,
EFC−

pt2 performs better when it comes to efficiency.

6. Conclusion

We have shown that EFC−p and EFC−
pt2 both contain redun-

dant computation in their decryption. By removing them,
both of their decryption process can be improved. Based
on this idea, we proposed our decryption algorithms for
EFC−p and EFC−pt2 without weakening their security. We also
showed originally proposed 80-bit security parameter for
EFC−p failed in achieving the claimed security level through

hybrid algebraic attack. However, the originally proposed
80-bit security parameter for EFC−

pt2 seemed secure enough.
We estimated new secure 80-bit and 128-bit security param-
eter for EFC−p and compared its performance with EFC−

pt2

under the same security level, and conclude that it is recom-
mended to use EFC−

pt2 since 128-bit EFC−p is very inefficient.
Moreover, a thorough investigation on degree of reg-

ularity of EFC−p and EFC−
pt2 is inadequate. With a good

estimation of degree of regularity, parameter choosing pro-
cess will become simpler comparing to our method of us-
ing experimental results on hybrid attack. We will continue
working on this in the future.
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