IEICE TRANS. FUNDAMENTALS, VOL.E102-A, NO.9 SEPTEMBER 2019

1285

[PAPER

Opcount: A Pseudo-Code Performance Estimation System for

Pairing-Based Cryptography*

Masayuki ABE"™ ", Senior Member, Fumitaka HOSHINO™ ", Nonmember, and Miyako OHKUBO' 719 Member

SUMMARY  We propose a simple framework for evaluating the perfor-
mance of pairing-based cryptographic schemes for various types of curves
and parameter settings. The framework, which we call ‘Opcount’, en-
ables the selection of an appropriate curve and parameters by estimating
the performance of a cryptographic scheme from a pseudo-code describing
the cryptographic scheme and an implementation-information database that
records the performance of basic operations in curves targeted for evaluation.
We apply Opcount to evaluate and compare the computational efficiency of
several structure-preserving signature schemes that involve tens of pairing
products in their signature verification. In addition to showing the useful-
ness of Opcount, our experiments also reveal the overlooked importance
of taking account of the properties of underlying curves when optimizing
computations and demonstrate the impact of tight security reductions.
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1. Introduction

(1) Background

The security and efficiency of cryptographic schemes over
pairing groups depend on the choice of the parameters for
the underlying elliptic curves. The most widely used curves
are so-called Barreto-Naehrig (BN) curves, which balance
the security and efficiency of the groups associated with the
curves at the 128-bit security level. Owing to recent progress
in the analysis of the discrete logarithm problem (DLP) over
finite fields [11] proposed by Kim and Basbulescu in 2016,
the balance of the BN curves is no longer optimal and other
types of curves have again come under scrutiny. Appropriate
curve types and parameters can differ according to the secu-
rity and performance required for the cryptographic scheme
under consideration. Since group expressions, the speed of
operations, and other factors in relation to pairing groups
differ greatly according to specific parameters, the platform,
and the implemented high-speed technique, the only way of
selecting a security level and parameters to optimize the per-
formance of a certain cryptographic scheme or maintain the
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performance within an allowable range at present is to actu-
ally implement the scheme and make comparisons. Inreality,
however, implementations of pairing libraries are often op-
timized and hence limited to specific curves and parameters,
and the evaluation of the implementation efficiency of an
individual cryptographic scheme for a variety of curves and
parameters might be difficult.

Papers on cryptographic theory often make rough esti-
mates of performance either in terms of the number of time
dominant operations are performed or by presenting the re-
sults of an implementation for only specific parameters and
platforms, which makes it difficult to compare the perfor-
mance of different schemes. In addition, since there are a
variety of algorithms making up each scheme, the dominant
operations in these algorithms may differ. Ultimately, these
algorithms must be compared with sufficient accuracy taking
into account the cost of a variety of operations. For exam-
ple, in the verification of Groth-Sahai proofs [6], tens of
pairing-product equations are evaluated, and whether such
verification can be speeded up by introducing batch verifi-
cation depends on the parameters and variables included in
the equations. The algorithm for converting to a batch, and
the number and speed ratios of all related operations must be
determined. The determination of these factors is therefore
not a trivial task. When comparing various algorithms in the
development process of a cryptographic scheme or investi-
gating whether the introduction of a new algorithm has any
effect, it would be desirable if the performance of the cryp-
tographic scheme could be estimated easily and accurately.

It will be even more difficult to compare schemes when
the security loss in their security proofs is rigorously taken
into consideration. Suppose that we compare the perfor-
mance of cryptographic schemes A and B based on the same
hardness assumption. Scheme A, although compact with a
small number of operations, has a 60-bit reduction loss, and
scheme B, although requiring more operations, exhibits a
tight reduction. To ensure the same degree of security, we
will have to implement scheme A with a 192-bit security
parameter and scheme B with a 128-bit security parameter.
Successively implementing these cryptographic schemes for
different parameters, security levels, or platforms and com-
paring the performance after maximum tuning requires a
high level of skill in the implementation of cryptographic
schemes as well as considerable.

(2) Our Contribution

In this paper, we propose a simple framework, which we call
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Fig.1 Data flow of performance estimaition with Opcount.

‘Opcount’, for evaluating the performance of cryptographic
schemes over pairing groups and assess its effectiveness and
usefulness. Opcount takes three objects: a description of a
cryptographic scheme written in a proprietary pseudo-code
(CSDL/PSDL), a performance database (PDB) that provides
the timing related to basic pairing-group operations for spe-
cific parameters on a specific platform, and a script describ-
ing the output format (CMD). It evaluates and outputs values
of specified parameters, function timing results, and so forth.
Opcount is divided into two steps: an “operation-counting
step” that counts the number of basic operations included
in the considered cryptographic scheme, and an “evaluation
step” that substitutes timing values obtained from the PDB
into evaluation formulas, calculates specific values, and out-
puts results according to the specified script. The evaluation
step uses PARI/GP systems. Figure 1 shows a schematic
diagram of Opcount.

Since the scheme description and basic operation per-
formance are handled separately, they can be used in different
combinations to compare and investigate the performance for
a variety of schemes and parameter settings. In addition, the
CMD script enables the flexible selection of evaluation tar-
gets from multiple structured functions and variable values
described in a pseudo-code. The PDB is based on exist-
ing pairing-library benchmarks, but it may also be based on
theoretical estimations.

Opcount system supports two similar languages for de-
scribing a scheme in consideration. One is called C-like
Scheme Description Language (CSDL) which mostly fol-
lows C as its name suggests. CSDL allows one to describe
a scheme in a simple fashion by focusing on the main part
of the algorithm in the scheme. One can, for instance, omit
details of a low-level function if it is known in advance that
its impact to overall performance is negligible. While the
simplicity of CSDL is an advantage, it is useful if correct-
ness of the scheme description is assured when all details
matter. For that purpose, we provide an alternative way to
describe schemes that we call Python-like Scheme Descrip-
tion Language (PSDL). It follows the language for Sage [13].
By providing concrete parameters, one can run the code de-
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scribed in PSDL over Sage to check the correctness.

In the operation counting step, an actual program that
processes the given pseudo-code is different depending on
the language the code is written in. While pseudo-codes writ-
ten in CSDL are processed directly by a proprietary software,
those written in PSDL are first given to Sage that outputs in-
ternal codes in Python. Then a proprietary program written
also by Python transforms the internal codes into evalua-
tion formulas. Support of two description languages should
meet variety of demands while balancing simplicity and ac-
curacy. Nevertheless, CSDL and PSDL are very similar, and
whichever language is used the output from opcount will be
the same for the same scheme. Thus, in the rest of this paper,
we focus on CSDL and give notes about PSDL if necessary.

We perform the following evaluation experiments on
the CSDL version to assess the effectiveness and usefulness
of Opcount.

Accuracy test:  This experiment compares timing-
evaluation values obtained by Opcount with measured
timing values in an actual implementation. As a mea-
surement target, we implement a structure-preserving
signature scheme in [1] that includes many pairing op-
erations using the pairing curve library of Kiyomura et
al. [12] at the 256-bit security level. We then compare
measured timing values for the functions of key gener-
ation, signature generation, and signature verification
with evaluation values estimated by Opcount.

Comparison of different computation methods: In this
experiment, we use Opcount to compare different strate-
gies of batch verification of pairing-product equations.
Verifying several pairing product equations at the same
time can be done efficiently by combining the equations
into a single equation in such a way that the original
equations hold if the combined equation holds. A typ-
ical example is a verification of a structure-preserving
signature that evaluates a handful of pairing-product
equations. The way of combining multiple pairing-
product equations into one equation is not unique. De-
pending on the form of the equations and the involved
variables the optimal strategy will vary. It is indeed not
atrivial task to determine which strategy is the most effi-
cient. We describe two typical strategies applied to two
structure-preserving signature schemes using CSDL,
and observe how their computational cost differs de-
pends on the underlying curves by using Opcount.

Comparison of schemes with different parameters: In
this experiment, we compare several structure-
preserving signature schemes in two ways. First we
compare six recent schemes in the literature under the
same 128-bit security parameter. Their signatures con-
sist of different numbers of group elements and it is
expected that the smaller the signature size, the more
efficient their generation and verification of the signa-
tures will be. To examine whether this hypothesis is
correct, we describe these schemes in CSDL and com-
pare their timings by using Opcount. We then increase
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the rigor of this comparison by taking the reduction
cost into account. For the case of Q signing queries, we
estimate the timings of schemes having a reduction cost
of O(Q?) or O(Qlog Q) at a higher, 192-bit, security
level to offset the large security loss. This is carried
out simply by replacing the PDB given to Opcount. We
then compare the results between these two security
parameters.

In short, we evaluate the effectiveness of this framework
by the above accuracy test and demonstrate the flexibil-
ity and usefulness of the framework by the above effect-
measurement and efficiency-comparison experiments, which
reflect the ease of comparing the effects of changing the al-
gorithms.

Furthermore, the results of the experiments are of in-
dependent interest. The second experiment reveals the over-
looked importance of taking account of properties of under-
lying curves when optimizing computations via batch veri-
fication. The third experiment demonstrates the impact of
tight security reductions by a direct comparison of schemes
with different security parameters.

All documentations and data including source codes of
Opcount, performance data files, and scripts for experiments
are available at:
https://github.com/security-kouza/opcount/.

2. Pseudo-Code

We design CSDL to allow simple and easily understandable
descriptions of cryptographic schemes over bilinear groups
(G1, Gy, Gy) of order p. Variables that represent group ele-
ments are assigned to types ‘groupQ’, ‘groupl’, and ‘target’,
respectively. The security parameter and group order are
expressed as global values and specific values are used in
the evaluation step. (Consequently, cryptographic schemes
that can be described are limited to those that handle one
pairing group.) There is also an ‘integer’ type for express-
ing integers and a ‘list’ type for specifying a sequence of
variables of any type. Integers, whether they be literals or
variables, are treated as Z,, elements. Group operations con-
form to the notation of multiplicative groups; Multiplication
*, exponentiation -, and pairing e(-, -) can be described. Our
scheme description languages support simple fixed number
of ‘for’ loops and even data-dependent branches such as ‘if-
then-else’ when their average occurrence can be evaluated in
advance. Data dependent branches whose average behaviour
is hard to predict in advance cannot be described. To give
a simple example, Fig.2 shows the decoding function of
Linear Encryption [4] described in CSDL.

This pseudo-code is processed by a program giving the
evaluation formula shown in Fig. 3.

Each term on the right side of this formula expresses
the cost (timing) incurred by a basic operation (or action).
Variables in each term are assigned specific values in the
evaluation step and the total cost of the entire function is
determined by call_Linear_Decy. GROUPOQ_batch(a, b) is
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group® Linear_Dec_0(list sk, list ct)
{

integer rl, r2;

integer x1, x2;

group® ul, u2, u3, NM;

(x1, x2) = sk;
(ul, u2, u3) = ct;

1
2
3
4
5
6
7
8
9 M = u3 * ulA(-x1) * u2A(-x2);

11 return M;

Fig.2  Pseudo-code of the decryption function of Linear Encrypiton in

1 call_Linear_Dec_0 = (1)*GROUP®_assign+(1l)*GROUPO_batch
(2*%1,1*1)+(2) *INTEGER _uminus+(2) *LIST_LITERAL_assign
+(1) *LIST_VARIABLE_assign ;

Fig.3 Internal evaluation formula.

a variable expressing the combined cost of multi-base ex-
ponentiation consisting of ‘a’ bases and ‘b’ multiplication
operations. The PDB described in the next section includes
information on the type of algorithm used to calculate this
variable by other basic operations plus information on actual
timing values.

3. Performance Database

The PDB is a database of information on the timing of ba-
sic operations related to pairing groups. While it is as-
sumed that timing values are benchmark values found in
existing pairing libraries, they may also be theoretically de-
termined evaluation values. The PDB gives specific values
for parameters such as the pairing group order and embed-
ding degree, and for each group (e.g., Gy), it gives spe-
cific values or evaluation formulas for the multiplication
cost ‘GROUPO_mul’, exponentiation cost ‘GROUPO_pow’,
and low-order operations. For higher-order functions, it
also gives the Miller-Loop cost ‘Miller_Loop’ and final-
exponentiation cost ‘Final_Exponentiation’. The PDB also
describes the ‘pairing batch’, the cost of the aforementioned
pairing product, in the form of an evaluation formula that
reflects the provided APIs and calculation methods. An ex-
ample of a PDB description is shown in Fig. 4.

For this study, we created three PDBs with different
properties.

(1) Kiyol7 PDB:

This PDB is based on timing data [12] presented by Kiy-
omura et al. at ACNS2017. Their study implemented the
BLS-24, KSS-32, KSS-36, BLS-42, and BLS-48 curves, se-
lecting the 256-bit security level parameter for each while
taking exTNFES into account. To measure low-order opera-
tion costs not presented in their study and improve the accu-
racy of Opcount, we conducted futher for the same library
as in [12] on a different platform (Intel(R) Xeon(R) CPU
E5-2699 v4 @ 2.20 GHz stepping 01, Linux 2.6 x86_64
(CentOS 6.8), gcc version 6.3.0 (GCC)) and converted the
timing data that we obtained into a PDB. The measured data
is listed in Table 1. The relative behavior of this timing data
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\\ Common Parameters

1
2 CURVE = "KSS-32";

3 Sep = 256; \\ security parameter
4 Order = 738; \\ Group order in bits
5 EmbDeg = 32; \\ Embedding degree

6 ExtDeg = 8; \\ Extension Degree

7

8

\\ Measured functions
9  GROUPO_pow

10 GROUP1_pow

11 TARGET_pow

12 Miller_Loop

13  Final_Exponentiation
14 GROUPO_mul

7.399618 * Mclk;
41.328962 * Mclk;
49.085291 * Mclk;
26.057327 * Mclk;
156.147854 * Mclk;
0.017542 * Mclk;

15 GROUPO_square 0.009950 Mclk
16 GROUP1_mul 0.129000 * Mclk
17 GROUP1_square 0.147782 * Mclk;
18 TARGET_mul 0.158917 * Mclk;
19 TARGET_square 0.116364 * Mclk
20 TARGET_inv 0.314343 * Mclk;

21 GROUPO_batch(n,m)
22  GROUP1_batch(n,m)
23  pairing_batch(n)

GROUP®_pow * n + GROUP®_mul *
GROUP1_pow * n + GROUP1_mul *
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(max(®,n-1) + m);
(max(®,n-1) + m);
n * Miller_Loop + Final_Exponentiation + (n-1)

* TARGET_mul;

Fig.4 Example of performance database (PDB).
Table1  Timings on Xeon with Kiyol7 implementation.
Operation Timing (in Mclk)

BLS-24  KSS-32  KSS-36  BLS-42  BLS-48
ML 42.00 26.05 29.97 30.52 16.78
Pairing | FE 68.01 156.14 114.79 82.15 77.59
Total 110.01 182.19 144.76 112.67 94.37
Scalar mult. in G 10.43 7.39 5.78 3.70 3.34
Scalar mult. in G, 30.92 41.32 28.73 39.34 21.18
Exponentiation in G 52.58 49.08 58.28 43.94 49.56

among these curves and operations is the same as that of
the benchmark data of [12], but the speed was improved by
about 20% simply due to the use of a different environment.

(2) BDI17PDB:

This PDB estimates the timing of pairing-related operations
in terms of the number of 16-bit X 16-bit multiplications
at the 128- and 192-bit security levels in accordance with
Barbulescu and Doquesme [3]. It selects the four curve
parameters of BN, BLS-12, KSS-16, and KSS-18 at the
128-bit security level and the two curve parameters of KSS-
18 and BLS-24 at the 192-bit security level. Khandaker et
al. conducted implementations for the above BN, BLS-12,
and KSS-16 curves in [9] and showed that nearly the same
comparison results as in [3] could be obtained. In particular
they introduced, a new technique for KSS-16 and speeded
up the Miller-Loop, and concluded that KSS-16 is superior
at the 128-bit security level similarly to in [3].

(3) RVI5 PDB:

This PDB is based on benchmarks for the BN curves ob-
tained on ARM v7 by Verma [14]. It measures the timing at
the 128-, 192-, and 256-bit security levels using conventional
parameter settings without taking exTNFS into account. Al-
though not used in the experiments presented here, this PDB
can be used for currently implemented applications running
on BN curves to measure the effect of simply increasing
the security parameter to improve the security level on the
performance.

While benchmarks in a variety of environments have
been presented in the literature, there are few based on pa-
rameters that take exXTNFS into account. In particular, there
are no reports on implementations at the 192-bit security
level, so progress in this area is anticipated.

4. Experiments
4.1 Accuracy Test

In this section, we compare timing evaluation values ob-
tained by Opcount with measured timing values in an actual
implementation. As the targets of measurement, we imple-
mented a structure-preserving signature scheme in [1] that
includes many pairing operations for five types of curves at
the 256-bit security level based on the Kiyo17 library of Kiy-
omura et al. [12]. We then measured timing values for the
functions of key generation, signature generation, and sig-
nature verification and compared them with the evaluation
values obtained by Opcount. Results are listed in Table 2.
Measured values were obtained by averaging 10 ran-
dom trials. The standard deviation values were 1.93 — 2.96
Mclock for key generation, 2.24 — 3.81 Mclock for signature
generation, and 0.35 — 5.28 Mclock for verification. There
are small negative errors in some of the results for signa-
ture generation, which mean that the measured values were
faster. The reason for this is thought to be that the cache
effect differed between the benchmark measurement in the
PDB referenced for the evaluation value and the actually
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Real vs. estimated timings of AHNOP signature scheme.
Timings: Real/Estd (in Mclk)

Sign Verify

Table 2
Curve KeyGen
BLS-24 944 / 941 (0.2%)
KSS-32 | 1098 /1094 (0.3%)
KSS-36 782/ 777 (0.7%)
BLS-42 | 1005/ 958 (4.6%)
BLS-48 553/ 550 (0.6%)

903/ 901 (0.1%)
1005 / 1008 (-0.3%)
723/ 720 (0.4%)
890/ 860 (3.3%)
503 /503 (-0.05%)

3934 /3927 (0.1%)
4152 /4149 (0.07 %)
3827 /3802 (0.6%)
3356 /3349 (0.1 %)
2337 /2334 (0.1%)

Error(%) = (real - estd)/ real.

measured value in the signature-scheme implementation.
4.2 Comparison of Different Computation Methods

Batch verification of pairing-product equations is a method
for efficiently verifying n pairing-product equations of the
form

1=] e v, 1= [ e Ya)

i i

at the same time by verifying a combined equation of the
form

I= 1_[ ne(in, Y;i)"
i

using a random r;. The calculation can be made more ef-
ficient by incorporating r; further within the pairings and
by merging multiple pairing products having the same vari-
ables. The computational cost of evaluating merged pairings
depends on the selected form and the common variable the
merge is based on. We consider two strategies for merging
pairings:

e Full batch: A merge that minimizes the number of
pairing operations. As an example, e(X, Y;)"" e(X, Y;)"
are merged to e(X, Yl.” erj ), which can be computed by
a two-base scalar multiplication in G,, one Miller loop,
and one final exponentiation.

* Gj batch: A merge that moves the random power to
the G, side having a comparatively small operation cost,
giving the G, side a form that has as much commonality
as possible. The same pairings as above are transformed
to e(X",Y;) e(X'7,Y;) in this case. This can be com-
puted by two scalar multiplications in G;, two Miller
loops, one multiplication in G;, and one final exponen-
tiation.

In either case, we consider that the effect will depend on the
variables and parameters included in the original validation
equations, the calculation algorithm, and the speed ratios of
all related operations.

Targeting the structure-preserving signature scheme
AHNORP [1], which uses many pairing-product equations in
signature verification, we used Opcount to evaluate its perfor-
mance for various curve parameters and for three signature-
verification algorithms, no-batch, G;-batch, and full-batch
methods. Figures A- 1, A-2, and A- 3 respectively illustrate

Table 3  Timings of batch verification for an AHNOP signature.
Timing (in Mclk)
Batch algorithm | KSS-18 KSS-16 BLS-12 BN
None 111.2 96.5 141.1 206.7
G-batch 46.1 38.4 70.1 103.3
Full-batch 39.9 35.4 56.7 82.1

the CSDL pseudo-code for the original verification equations
and the G,-batch, and full-batched equations, which are part
of the whole description of the AHNOP scheme. Despite the
numerous variables involved, the descriptions are straight-
forward interpretation of the algorithms that are not difficult
to work with. This allows us to test several merge methods
and instantly see the estimated timing. On the other hand, a
drawback of working with pseudo-codes is that it is difficult
to find bugs since they are never compiled or executed. Ver-
ifying correctness is, however, a general concern even for
real implementations.

The result is of interest beyond the use of Opcount and
we give a futher analysis. The main operations for each al-
gorithm and the number of times they are performed in the
case of a message consisting of 10 G; group elements are as
follows: for no-batch verification, 69 pairing operations, for
the Gy-batch method, 56 G; group scalar multiplications and
34 pairing operations, and for the full-batch method, 38 G,
group scalar multiplications, 18 G, group scalar multiplica-
tions, and 26 pairing operations’. The size of the random
number 7; used in the above batch methods was made uni-
form at 128 bits. (Depending on the curve, group order can
greatly exceed 2!8; thus, selecting r; in a uniformly random
manner from Z,, significantly degrades, the efficiency. In
terms of security reduction, the size of r; is a statistical pa-
rameter independent of the ability of an attacker, so r; can
be as short as A bits for A-bit security.) Table 3 lists the
performance evaluation results for curves KSS-18, KSS-16,
BLS-12, and BN, all at a 128-bit security level, as registered
in BV17 PDB. These results show that the full-batch method,
which merges validation equations so as to reduce the num-
ber of pairings as much as possible, is the most efficient for
all curves.

We applied the same experiment to the other structure-
preserving signature schemes mentioned in the next section
and observed the same result; the full batch is the most

TWe assume a naive method for computing n-base scalar mul-
tiplications that simply computes scalar multiplications n times.
BV17 PDB assumes algorithms that decrease the number of squar-
ing operations in multibase scalar multiplications.
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efficient, except for the Jutla-Ohkubo-Roy (JOR) [7] scheme.
The result is shown in Table 4. Its verification is faster, with
the G, batch on the KSS-16 curve while the full batch is
better for all other curves. The reason is that operations in
the extended group G, are relatively less efficient on KSS-
16 than on other curves due to the larger extension degree.
Hence, it is reasonable to merge pairings having the same G,
elements so that multibase scalar multiplication takes place
in G;, which indeed what the G,-batch does.

4.3 Comparison of Schemes with Different Parameters

Structure-preserving signatures are often combined with a
proof system that proves one’s possession of a correct sig-
nature. Such a proof tends to be more efficient for smaller
signatures. Moreover, smaller signatures should be gen-
erated and verified more efficiently. Considerable effort
has been made to construct structure-preserving signature
schemes having smaller signature size such that the Kiltz-
Pan-Wee (KPW) scheme [10], Jutla-Roy (JR) scheme [8],
Abe-Hofheinz-Nishimaki-Ohkubo-Pan (AHNOP) scheme
[1], Jutla-Ohkubo-Roy (JOR) scheme [7], Gay-Hofheinz-
Kohl-Pan (GHKP) scheme [5], and Abe-Jutla-Ohkubo-Roy
(AJOR) scheme [2] are those based on the symmetric exter-
nal Diffie-Hellman (SXDH) assumption. They have different
signature sizes and verification equations, and if they were
to be compared in terms of efficiency for the same secu-
rity parameter, it is expected that the JR scheme, having the
smallest signature size, will be the most efficient while the
AHNOP scheme, with the largest signature size, will be the
least efficient. To verify the validity of this intuition, we eval-
uate the key generation, signature generation, and signature
verification timings of all of these schemes on the KSS-16
curve at the 128-bit security level using the BD17 PDB. The
message size is fixed to ten group elements in G|, and the
full-batch verification is applied in each scheme except for
the JOR scheme, where the G,-batch is applied instead. The
results of evaluating the performance by Opcount are shown
in the upper portion of Table 5.

Table4  Timings of full and G,-batch verifications of a JOR signature.
Timing (in Mclk)
Batch algorithm | KSS-18  KSS-16  BLS-12 BN

None 71.6 67.1 99.3 146.0
G;-batch 45.2 37.8 70.5 107.9
Full-batch 45.2 41.4 67.6 102.4
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We next consider the reduction cost in each scheme.
While AHNOP, JOR, GHKP, and AJOR feature almost tight
security, i.e., they have a small reduction cost, two schemes,
KPW and JR, having the smallest signature size have a
larger reduction cost. Concretely, for Q signature genera-
tion queries, the reduction cost of KPW is O(Q?) and that of
JR is O(Qlog Q). Assuming Q = 20, if KPW and JR, both
having a reduction loss greater than 30 bits, were to ensure an
equivalent or better security margin than the other schemes
in 128-bit security, they would have to be implemented with
a 192-bit security parameter, the next higher security level.
Although 192-bit security is an excessive setting to compen-
sate for reduction loss, the selection or implementation of a
suitable curve at a security parameter between the 128-bit
and 192-bit levels has not presently observed. The perfor-
mance of KPW and JR at a 192-bit security level is evaluated
by opcount by replacing the BLS-24 curve in the BD17 PDB
with the other parameters intact. The results are listed in the
lower portion of Table 5.

It can be seen from these results that even the AHNOP
scheme at the 128-bit security level is two to three times
faster than the JR and KPW schemes at the 192-bit security
level for the operations of key generation, signature genera-
tion, and signature verification. This result demonstrates the
effectiveness of tight reduction in practice, where Opcount
helped clarify the impact with convincing accuracy without
fully implementing every scheme.

5. Conclusion

We proposed Opcount as a simple framework for evaluating
the performance of a pairing-based cryptographic scheme
based on a pseudo-code describing the scheme and verified
the effectiveness and usefulness of this framework. The esti-
mated timings were only 5% (and even < 1% in most cases)
different from the actual values. Hence, timings estimated
by Opcount are sufficiently reliable for rapid performance
evaluation and comparison.

We have shown that the suitability of batch verification
methods can depend on the target equations and underlying
curves. Opcount helps find the most suitable scheme before
implementing it in full. We have also shown that tightly
secure schemes having more operations in signature gener-
ation and verification can be more efficient in reality than
non-tight schemes having fewer operations implemented in
a higher security level to offset the security loss.

Table 5  Estimated timings of structure-preserving signature schemes.

. . lo| Timing (in Mclk)

Curve/Security ~ Scheme  Reduction Cost (G1.G) KeyGen Sign  Verify
AHNOP O0(1) (13,12) 18.1 14.8 354

JOR o) (11,6) 23.3 12.5 37.8

GHKP O(log Q) (8,6) 18.8 8.2 25.0

KSS-16/128 s j0r O(log Q) (6,6) 214.8 10.3 29.1
KPW 0(0% (6,1) 13.1 7.0 20.8

JR 0(Qlog Q) 5.1) 14.1 6.3 19.0

KPW 0(0Y (6.,1) 550 306 120.1

BLS-24/192  1» 0(Qlog Q) (5.1) 59.6 279 109.0
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As future works, we plan to improve the descriptive

power of CSDL/PSDL and enhance the PDB by adding more
diverse benchmark results.
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Appendix: Pseudo-Code of Batched Verification Equa-
tions

1 1==e(G, Ah) * e(Z, Gh) * e(R,Ghr) * product(10, e(Mi,Ghi)) &&

2 1==e(C12004(-1), Gh) * e(C1x00, Gh) * e(Clz10, Ah) * e(G, rhoh®0) &&

3 1==e(C22004(-1), Gh) * e(C2x00, Gh) * e(C2z19, Ah) * e(Q0, rhoh00) &&

4 1==e(C1104(-1), Ehz®) * e(C1z00, Gh) * e(Cly0®, Ehs) * e(G, rhoh01l) &&

s 1==e(C2104(-1), Ehz®) * e(C2z00, Gh) * e(C2y00, Ehs) * e(Q0®, rhoh8l) &&

6 1==e(C12014(-1)*(Clz11), D1x21) * e(Clz®1%*Clz11A(-1), D1z21)

7 * e(G, pih101) * e(thetl01l, Gh) &&

8 1==e(C2z01+(-1)*C2z11, D1x21) * e(C2z0®1%*C2z11+(-1), D1z21l)

9 * e(Ql, pih101) * e(thetl02, Gh) &&

10 1==e(C1z0®1+(-1)*Clz11l, D2x21) * e(Clz®1*Clzl1A(-1), D2z21l)

1 * e(G, pih102) * e(thetl0l, Qhl) &&

12 1==e(C22014(-1)*C2z11, D2x21) * e(C2z01%C2z11A(-1), D2z21)

13 * e(Ql, pih102) * e(thet102, Qhl) &&

14 1==e(C1117(-1), Ehz®) * e(Clz01, Gh) * e(Cly01, Ehs) * e(G, rhohll) &&

is 1==e(C2117(-1), Ehz®) * e(C2z01, Gh) * e(C2y01, Ehs) * e(Ql, rhohll) &&

16 1==e(C111A(-1), Ehzl) * e(Clzll, Gh) * e(Clyll, Ehs) * e(G, rhohl2) &&

17 1==e(C2117(-1), Ehzl) * e(C2z11l, Gh) * e(C2yll, Ehs) * e(Ql, rhohl2) &&

18 1==e(Ez2+(-1), D111) * e(G, D1z21) * e(Et, Dly21) * e(rhol3, Gh) &&

19 1==e(Ez2+(-1), D211) * e(G, D2z21) * e(Et, D2y21) * e(rhol3, Qhl)

Fig.A- 1

CSDL description of original verification equations of AHNOP scheme.
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e(bitexp(batch_quality, C1x00A(-b)*C2x00A(-c)*C1lz00+(-d)*C2z00+(-1)

1
2 *C1z014(-p)*C2z014(-q)*C1z11A(-r)*C22z114(-s)*C1z00~b*C1z00Ac*thet1014(-h)
3 *thet1024(-j)*Z*rhol134(-t)), Gh) *

4 e(G,Ah) *

5 e(bitexp(batch_quality, GA(-w)), D2z21) *

6 e(bitexp(batch_quality, GA(-t)), D1z21) *

7 e(bitexp(batch_quality, GA(-b)*Q0A(-c)), rhoh®@®) *

8 e(bitexp(batch_quality, GA(-d)*Q0A(-£f)), rhoh®l) *

9 e(bitexp(batch_quality, GA(-h)*Q1A(-j)), pih101) *

10 e(bitexp(batch_quality, QLA(-L)*GA(-k)), pihl1§2) *

11 e(bitexp(batch_quality, GA(-p)*QlA(-q)), rhohll) *

12 e(bitexp(batch_quality, GA(-r)*QlA(-s)), rhohl2) *

13 e(bitexp(batch_quality, thetl®1A(-k)*thetl02+(-L)*rhol34(-w)), Qhl) *

14 e(bitexp(batch_quality, Cly®0r(-d)*C2y00r(-£)*Cly01A(-p)*Clyllr(-r)

15 *C2y01+(-q)*C2y11+(-s)), Ehs) *

16 e(bitexp(batch_quality, C110Ad*Cl11Ap*C2114q*C2102£f), Ehz0) *

17 e(bitexp(batch_quality, Cl111Ar*C211%s), Ehzl) *

18 e(bitexp(batch_quality, EtA(-t)), Dly21) *

19 e(bitexp(batch_quality, EtA(-w)), D2y21) *

20 e(bitexp(batch_quality, Ez24t), D111) *

21 e(bitexp(batch_quality, Ez24w), D211) *

22 e(bitexp(batch_quality, (_C1z01_Clz11)Ah*(_C2z01_C2z11)Aj), D1x21) *

23 e(bitexp(batch_quality, (_C1z01_Cl1z11)Ak*(_C2z01_C2z11)AL), D2x21) *

24 e(bitexp(batch_quality, (_C1z01_C1z11)A(-h)*(_C2z01_C2z11)A(-j)), D1z21l) *
25 e(bitexp(batch_quality, (_C1z01_Clz11)A(-k)*(_C2z01_C2z11)A(-L)), D2z21l) *
26 e(bitexp(batch_quality, C1x104(-b)*C2x102(-c)), Ah) *

27 e(R, Ghr) *

28 product (10, e(Mi,Ghi))

29 =1

Fig.A-2  CSDL description of the G,-batch verification equation of AHNOP scheme.

1 e(bitexp(batch_quality, C1x004(-b)*C2x004(-c)*C1z00+(-d)*C2z00+(-£)*C1z01+(-p)
2 *C2z01A(-q)*C1lz11A(-r)*C2z114(-s)*C1z00+*b*C1z00~c*thetl1®14(-h)*thetl1®22(-j)
3 *Z*rhol3A(-t)), Gh) *

4 e(bitexp(batch_quality, thetl®1A(-k)*thetl102+(-L)*rhol34(-w)), Qhl) *

5 e(bitexp(batch_quality, Cly®0+(-d)*C2y00+(-£f)*Cly®1A(-p)*Clyl1A(-r)*C2y01+(-q)
6 *C2y112(-s)), Ehs) *

7 e(bitexp(batch_quality, C1104d*Cl114p*C2114q*C2102£f), Ehz®) *

8 e(bitexp(batch_quality, C1114Ar*C211%s), Ehzl) *

9 e(bitexp(batch_quality, (_C1z01_Clz11)Ah*(_C2z01_C2z11)Aj), D1x21) *

10 e(bitexp(batch_quality, (_C1z01_C1z11)Ak*(_C2z01_C2z11)AL), D2x21) *

11 e(bitexp(batch_quality, (_C1z01_C1z11)A(-h)*(_C2z01_C2z11)~(-j)), D1z21) *

12 e(bitexp(batch_quality, (_C1z01_C1z11)A(-k)*(_C2z01_C2z11)A(-L)), D2z21) *

13 e(bitexp(batch_quality, C1x104(-b)*C2x104(-c)), Ah) *

14 e(G, bitexp(batch_quality, Ah*rhoh®0*(-b)*rhoh®14(-d)*pih1014(-h)*rhohl114(-p)
15 *pih1024(-k)*rhohl12A(-r)*D2z214(-w)*D1z21A(-t))) *

16 e(Q®, bitexp(batch_quality, rhoh®0A(-c)*rhoh®1A(-£))) *

17 e(Ql, bitexp(batch_quality, pihl101A(-j)*pih1024(-L)*rhoh11A(-q)*rhoh124(-s))) *
18 e(EtA(-1), bitexp(batch_quality, Dly21At*D2y21Aw)) *

19 e(Ez2, bitexp(batch_quality, D111At*D211rw)) *

20 e(R, Ghr) *

21 product (10, e(Mi,Ghi))

22 = 1

Fig.A-3  CSDL description of the full-batch verification equation of AHNOP scheme.
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